Datasheet MC33282P, MC33284P Datasheet (Motorola)

Page 1
 
SEMICONDUCTOR
TECHNICAL DATA
HIGH PERFORMANCE
OPERATIONAL AMPLIFIERS
Order this document by MC33282/D
P SUFFIX
PLASTIC PACKAGE
D SUFFIX
PLASTIC PACKAGE
(SO–8)
P SUFFIX
PLASTIC PACKAGE
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
Output 1
Inputs 1
V
EE
V
CC
Output 2
Inputs 2
1
2
3
45
6
7
8
+
1
– +
2
(Top View)
(Top View)
Output 1
Inputs 1
V
CC
Inputs 2
Output 2
Output 4
Inputs 4
V
EE
Inputs 3
Output 3
– +
1
– +
4
+ –
2
+ –
3
1 2 3 4 5 6 7
14 13 12 11 10
9 8
DUAL
QUAD
PIN CONNECTIONS
PIN CONNECTIONS
1
8
1
8
14
1
14
1
1
MOTOROLA ANALOG IC DEVICE DATA
 & !%$ #$  & $  &$  !%$ !"$  !"#
The MC33282/284 series of high performance operational amplifiers are quality fabricated with innovative bipolar and JFET design concepts. This dual and quad amplifier series incorporates JFET inputs along with a patented Zip–R–Trim element for input offset voltage reduction. These devices exhibit low input offset voltage, low input bias current, high gain bandwidth and high slew rate. Dual–doublet frequency compensation is incorporated to produce high quality phase/gain performance. In addition, the MC33282/284 series exhibit low input noise characteristics for JFET input amplifiers. Its all NPN output stage exhibits no deadband crossover distortion and a large output voltage swing. They also provide a low open loop high frequency output impedance with symmetrical source and sink AC frequency performance.
The MC33282/284 series are specified over –40° to +85°C and are available in plastic DIP and SOIC surface mount packages.
Low Input Offset Voltage: Trimmed to 200 µV
Low Input Bias Current: 30 pA
Low Input Offset Current: 6.0 pA
High Input Resistance: 10
12
Low Noise: 18 nV Hz
@ 1.0 kHz
High Gain Bandwidth Products: 35 MHz @ 100 kHz
High Slew Rate: 15 V/µs
Power Bandwidth: 175 kHz
Unity Gain Stable: w/Capacitance Loads to 300 pF
Large Output Voltage Swing: +14.1 V/–14.6 V
Low Total Harmonic Distortion: 0.003%
Power Supply Drain Current: 2.15 mA per Amplifier
Dual Supply Operation: ±2.5 V to ±18 V (Max)
ORDERING INFORMATION
Op Amp
Function
Device
Operating
Temperature Range
Package
MC33282D
SOP–8
Dual
MC33282P
°
°
Plastic DIP
MC33284D
T
A
= –
40° to +85°C
SO–14
Quad
MC33284P Plastic DIP
Zip–R–Trim is a registered trademark of Motorola Inc.
Motorola, Inc. 1996 Rev 0
Page 2
MC33282 MC33284
2
MOTOROLA ANALOG IC DEVICE DATA
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to VEE) V
S
+36 V
Input Differential Voltage Range V
IDR
(Note 1) V
Input Voltage Range V
IR
(Note 1) V
Output Short Circuit Duration (Note 2) t
SC
Indefinite sec
Maximum Junction Temperature T
J
+150 °C
Storage Temperature T
stg
– 60 to +150 °C
Maximum Power Dissipation P
D
(Note 2) mW
NOTES: 1. Either or both input voltages should not exceed VCC or VEE.
2.Power dissipation must be considered to ensure maximum junction temperature
(TJ) is not exceeded (see Figure 2).
DC ELECTRICAL CHARACTERISTICS (V
CC
= +15 V , VEE = –15 V , TA = 25°C, unless otherwise noted.)
Characteristics Symbol Figure Min Typ Max Unit
Input Offset Voltage (RS = 10 , VCM = 0 V, VO = 0 V)
TA = +25°C TA = –40° to +85°C
|VIO| 3
— —
0.2 —
2.0
4.0
mV
Average Temperature Coefficient of Input Offset V oltage
RS = 10 , VCM = 0 V, VO = 0 V, TA = T
low
to T
high
|VIO|/T 3
15
µV/°C
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C TA = –40° to +85°C
I
IB
4, 5
–200
–2.0
30 —
200
2.0
pA nA
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = +25°C TA = –40° to +85°C
I
IO
–100
–1.0
6.0 —
100
1.0
pA nA
Common Mode Input Voltage Range
(VIO = 5.0 mV, VO = 0 V)
V
ICR
6 –11
–12 +14
+11
V
Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 k)
TA = +25°C TA = –40° to +85°C
A
VOL
7
50 25
200
— —
V/mV
Output Voltage Swing (VID = ±1.0 V)
RL = 2.0 k RL = 2.0 k RL = 10 k RL = 10 k
VO+ VO– VO+ VO–
8, 9, 10
13.2 —
13.7 —
+13.7 –13.9 +14.1 –14.6
–13.2
–14.3
V
Common Mode Rejection (Vin = ±11 V) CMR 11 70 90 dB Power Supply Rejection
VCC/VEE = +15 V/–15 V , +5.0 V/–15 V, +15 V/–5.0 V
PSR 12
75 100
dB
Output Short Circuit Current (VID = 1.0 V, output to ground)
Source Sink
I
SC
13, 14
15 —
+21 –27
–15
mA
Power Supply Current (VO = 0 V, per amplifier)
TA = +25°C TA = –40° to +85°C
I
D
15
— —
2.15—2.75
3.0
mA
Page 3
MC33282 MC33284
3
MOTOROLA ANALOG IC DEVICE DATA
AC ELECTRICAL CHARACTERISTICS (V
CC
= +15 V , VEE = –15 V , TA = 25°C, unless otherwise noted.)
Characteristics Symbol Figure Min Typ Unit
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 k, CL = 100 pF, AV = +1.0) SR 16, 28, 29 8.0 15 V/µs Gain Bandwidth Product (f = 100 kHz) GBW 17 20 35 MHz AC Voltage Gain (RL = 2.0 k, VO = 0 V, f = 20 kHz) A
VO
18, 21 1750 V/V
Unity Gain Frequency (Open Loop) f
U
5.5 MHz
Gain Margin (RL = 2.0 k, CL = 0 pF) A
m
19, 20 15 dB
Phase Margin (RL = 2.0 k, CL = 0 pF) φ
m
19, 20 40 Degrees Channel Separation (f = 20 Hz to 20 kHz) CS 22 –120 dB Power Bandwidth (VO = 20 Vpp, RL = 2.0 k, THD 1.0%) BW
P
175 kHz
Distortion (RL = 2.0 k, f = 20 Hz to 20 kHz, VO = 3.0 V
rms
, AV = +1.0) THD 23 0.003 % Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) |ZO| 24 37 Differential Input Resistance (VCM = 0 V) R
in
10
12
Differential Input Capacitance (VCM = 0 V) C
in
5.0 pF
Equivalent Input Noise Voltage (RS = 100 , f = 1.0 kHz) e
n
25 18
nV/ Hz
Equivalent Input Noise Current (f = 1.0 kHz) i
n
0.01
pA/ Hz
D
1
R
2
R
3
R
6
R
10R13
Q
8
J
3
C
1
D
2
V
in
J
2
Q
5
Q
11
Q
9
J
1
Z
1
Q1Q2Q
3
R
1
C
2
V
EE
R
13
R
15
R
12
R
5
R
4
Q
6
Q
7
Q
10
Q
12
Q
13
C
6
C
5
C
4
J
5
V
in
J
4
D
3
Q
15
V
CC
V
O
Q
17
Q
18
D
5
Q
14
Q
16
R
17
D
4
Q
4
AB C D
C
3
R
8
R
16
+
Figure 1. Equivalent Circuit Schematic
(Each Amplifier)
Page 4
MC33282 MC33284
4
MOTOROLA ANALOG IC DEVICE DATA
Figure 2. Maximum Power Dissipation
versus Temperature
Figure 3. Input Offset Voltage versus
Temperature for Typical Units
Figure 4. Input Bias Current
versus Temperature
Figure 5. Input Bias Current versus
Common Mode Voltage
Figure 6. Input Common Mode Voltage
Range versus Temperature
Figure 7. Open Loop Voltage Gain
versus Temperature
P
D
(max), MAXIMUM POWER DISSIPATION (mW)
–60 –40 –20 0 20 40 60 80 100 120 140 160 180
MC33282P & MC33284P
MC33284D
MC33282D
TA, AMBIENT TEMPERATURE (
°
C) TA, AMBIENT TEMPERATURE (°C)
–55 –25 0 25 50 75 100 125
V
IO
, INPUT OFFSET VOLTAGE (mV)
VCC= +15 V VEE= –15 V RS = 10
VCM = 0 V
Unit 1
Unit 2
Unit 3
Unit 1
Unit 2
Unit 3
–55 –25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (
°
C)
VCC, VEE=±2.5 V
VCC, VEE=±15 V
I
IB
, INPUT BIAS CURRENT (pA)
–15 –12 –9.0 –6.0 –3.0 0 3.0 6.0 9.0 12 15
VCM, COMMON MODE VOLTAGE (V)
I
IB
, INPUT BIAS CURRENT (pA)
VCC= +15 V VEE= –15 V TA = 25
°
C
V
ICR
, INPUT COMMON MODE VOL TAGE RANGE (V)
TA, AMBIENT TEMPERATURE (°C)
–55 –25 0 25 50 75 100 125
VCC= +5.0 V to +18 V VEE= –5.0 V to –18 V
VIO = 5.0 mV
VO = 0 V
A
VOL
, OPEN LOOP VOL TAGE GAIN (dB)
–55 –25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C)
2400
2000
1600
1200
800
400
0
5.0
3.0
1.0
–1.0
–3.0
–5.0
400 350
300 250 200 150 100
50
0
600
500
400
300
200
100
0
V
CC
VCC–0.5 V VCC–1.0 V VCC–1.5 V
V
EE+
1.5 V VEE+1.0 V VEE+0.5 V
V
EE
150
140
130
120
110
100
VCC= +15 V VEE= –15V RL = 2.0 k
f = 10 Hz
VO = 10 V to +10 V
Page 5
MC33282 MC33284
5
MOTOROLA ANALOG IC DEVICE DATA
V
O
, OUTPUT VOLTAGE (V )
pp
V
O
, OUTPUT VOLTAGE (V )
pp
ǒ
MMNI
MMM
Ǔ
Figure 8. Output Voltage Swing
versus Supply Voltage
Figure 9. Output Voltage
versus Frequency
Figure 10. Output Saturation Voltage
versus Load Current
Figure 11. Common Mode Rejection
versus Frequency
Figure 12. Positive Power Supply
Rejection versus Frequency
Figure 13. Output Short Circuit Source
Current versus Temperature
VCC, VEE SUPPLY VOLTAGE (V)
0 2.0 4.0 6.0 8.0 10 12 14 16 18 20
TA=25°C
RL= 10 k
RL= 2.0 k
1.0 k 10 k 100 k 1.0 M
VCC= +15 V VEE= –15 V RL =
2.0 k
AV = +1.0 THD =
1.0%
TA = 25
°
C
f, FREQUENCY (Hz)
V
sat
, OUTPUT SA TURATION VOLTAGE (V)
2.0 4.0 6.0 8.0 14 16 18 20
TA= +25°C
TA= 125°C
TA= –55°C
TA= –55°C
IL, LOAD CURRENT (mA)
VCC= +15 V RL to Gnd VEE= –15 V
CMR, COMMON MODE REJECTION (dB)
10 100 1.0 k 10 k 100 k 1.0 M
f, FREQUENCY (Hz)
VCC= +15 V VEE= –15 V VCM=0 V
VCM = ±1.5 V
+PSR, POWER SUPPLY REJECTION (dB)
10 100 1.0 k 10 k 100 k 1.0 M
f, FREQUENCY (Hz)
VCC= +15 V VEE= –15 V
VCC = ±1.5 V
TA = 25
°
C
PSR–
PSR+
|I
SC
|, OUTPUT SHORT CIRCUIT CURRENT (mA)
–55 –25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (
°
C)
VCC, VEE=±2.5 V
VCC, VEE=±15 V
VID=±1.0 V RL < 100
10 12
40 36 32
28 24 20 16 12
8.0
4.0 0
30 27 24 21 18 15
12
9.0
6.0
3.0 0
VCC–4.0 V
V
CC
VCC–8.0 V
VCC–12 V
VEE+4.0 V
VEE+2.0 V
V
EE
120
100
80
60
40
20
0
120
100
80
60
40
20
0
50 45 40 35 30 25 20 15 10
5.0 0
+PSR = 20Lo g
– +
A
DM
V
O
V
EE
V
CC
VO/A
DM
V
CC
TA= 125°C
TA= +25°C
V
CM
V
O
CMR = 20Log
ǒ
MVMNI
MMM
xmi
Ǔ
V
CM
V
O
x A
DM
– +
A
DM
Page 6
MC33282 MC33284
6
MOTOROLA ANALOG IC DEVICE DATA
Figure 14. Output Short Circuit Sink
Current versus Temperature
Figure 15. Power Supply Current
versus Supply Voltage
Figure 16. Slew Rate
versus Temperature
Figure 17. Gain Bandwidth Product
versus Temperature
Figure 18. Gain and Phase
versus Frequency
Figure 19. Phase Margin and Gain Margin
versus Differential Source Resistance
|I
SC
|, OUTPUT SHORT CIRCUIT CURRENT (mA)
–55 –25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (
°
C)
VCC, VEE=±15 V
VCC, VEE=±2.5 V
VID=±1.0 V RL < 100
I
D
, POWER SUPPLY CURRENT (mA)
–55 –25 0 25 50 75 100 125
VCC, VEE=±15 V
VCC, VEE=±2.5 V
TA, AMBIENT TEMPERATURE (°C)
SR, SLEW RATE (V/
µ
s)
–55 –25 0 25 50 75 100 125
VCC= +15 V VEE= –15 V
Vin= 20 V CL= 100 pF RL= 2.0 k
Noninverting Amplifier
Inverting Amplifier
GBW, GAIN BANDWIDTH PRODUCT (MHz)
–55 –25 0 25 50 75 100 125
VCC= +15 V VEE= –15 V f = 100 kHz RL = 2 k
CL = 0 pF
TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C)
A
V
, VOLTAGE GAIN (dB)
10 M 100 M
φ
, PHASE (DEGREES)
TA=25°C CL=0 pF
1A
2A
1B
1A) Phase VCC= 18 V, VEE= –18 V
2A) Phase VCC= 1.5 V, VEE= –1.5 V 1B) Gain VCC= 18 V, VEE= –18 V 2B) Gain VCC= 1.5 V, VEE= –1.5 V
f, FREQUENCY (Hz)
1.0 M100 k
A
m
, GAIN MARGIN (dB)
10 100 1.0 k 10 k
φ
m
, PHASE MARGIN
(
DEGREES
)
VCC= +15 V VEE= –15 V RT=R1+R
2
VO=0 V TA=25
°
C
Phase Margin
Gain Margin
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
2B
50 45 40 35 30 25 20 15 10
5.0 0
3.0
2.5
2.0
1.5
1.0
0.5
0
16 14 12 10
8.0
6.0
4.0
2.0 0
50
40
30
20
10
0
50 40 30 20 10
0 –10 –20 –30 –40
–50
20
16
12
8.0
4.0
0
80 100 120
140 160 180
200 220 240
50
40
30
20
10
0
260
R
1
R
2
V
in
V
O
+
Page 7
MC33282 MC33284
7
MOTOROLA ANALOG IC DEVICE DATA
Drive Channel VCC= +15 V VEE= –15 V RL = 2.0 k
VOD = 20 V
pp
TA = 25
°
C
Figure 20. Open Loop Gain and Phase
Margin versus Output Load Capacitance
Figure 21. Gain and Phase
versus Frequency
Figure 22. Channel Separation
versus Frequency
Figure 23. Total Harmonic Distortion
versus Frequency
Figure 24. Output Impedance
versus Frequency
Figure 25. Input Referred Noise Voltage
versus Frequency
A
m
, OPEN LOOP GAIN MARGIN (dB)
10 50 100 500 1.0 k
φ
m
, PHASE MARGIN (DEGREES)
CL, OUTPUT LOAD CAPACITANCE (pF)
V
in
+
2.0 k
V
O
C
L
Phase Margin
Gain Margin
VCC= +15 V VEE= –15 V VO=0 V
10 M 100 M
φ
, PHASE (DEGREES)
f, FREQUENCY (Hz)
1.0 M100 k
A
V
, VOLTAGE GAIN (dB)
1A
2A
Phase
Gain
1B
2B
TA=25°C CL=0 pF
1A) Phase, VO= 10 V 2A) Phase, VO= –10 V 1B) Gain, VO= 10 V 2B) Gain, VO= –10 V
CS, CHANNEL SEPARATION (dB)
100 1.0 k 10 k 100 k 1.0 M
f, FREQUENCY (Hz)
THD, TOT AL HARMONIC DISTORTION (%)
10 100 1.0 k 10 k 100 k
AV= +1000
VCC= +15 V VEE= –15 V VO= 2 Vpp TA=25
°
C
AV= +100
AV= +10
AV= +1.0
f, FREQUENCY (Hz)
|z
o
|, OUTPUT IMPEDANCE (
)
10 k 100 k 1.0 M 10 M
VCC= +15 V VEE= –15 V VO=0 V TA=25
°
C
AV= 100
AV=10
AV= 1000
AV= 1.0
10 k 100 k10 100 1.0 k
e , INPUT REFERRED NOISE VOLTAGE (nV/
n
f, FREQUENCY (Hz)
VCC = +15 V VEE = –15 V TA = 25
°
C
Hz)
VCC= 15 V VEE= –15 V
f, FREQUENCY (Hz)
12
10
8.0
6.0
4.0
2.0
0
50 40 30 20 10
0 –10 –20 –30 –40
–50
160
150
140
130
120
110
100
1.0
0.1
0.01
0.001
100
90 80 70 60 50 40 30 20 10
0
50
30
20
10
0
40
0
10
20
30
40
50
60
80 100 120 140 160 180 200
220 240
+
200 200
2.0k
V
O
Input Noise Voltage Test Circuit
Page 8
MC33282 MC33284
8
MOTOROLA ANALOG IC DEVICE DATA
10
Figure 26. Percent Overshoot versus
Load Capacitance
Figure 27. Noninverting
Amplifier Overshoot
Figure 28. Noninverting
Amplifier Slew Rate
Figure 29. Inverting Amplifier Slew Rate
1.0 k10 100
100
80 70 60 50
20
40 30
0
90
CL, LOAD CAPACITANCE (pF)
PERCENT OVERSHOOT (%)
VCC = +15 V VEE = –15 V
RL = 2.0 k
TA = 25
°
C
t, TIME (1.0 µS/DIV)
V
O
, OUTPUT VOLTAGE (5.0 V/DIV) V
O
, OUTPUT VOLTAGE (50 MV/DIV)
V
O
, OUTPUT VOLTAGE (5.0 V/DIV)
t, TIME (1.0 µS/DIV) t, TIME (1.0 µS/DIV)
Page 9
MC33282 MC33284
9
MOTOROLA ANALOG IC DEVICE DATA
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
OUTLINE DIMENSIONS
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
14
58
F
NOTE 2
–A–
–B–
–T–
SEATING PLANE
H
J
G
D
K
N
C
L
M
M
A
M
0.13 (0.005) B
M
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 9.40 10.16 0.370 0.400 B 6.10 6.60 0.240 0.260 C 3.94 4.45 0.155 0.175 D 0.38 0.51 0.015 0.020 F 1.02 1.78 0.040 0.070 G 2.54 BSC 0.100 BSC H 0.76 1.27 0.030 0.050 J 0.20 0.30 0.008 0.012 K 2.92 3.43 0.115 0.135 L 7.62 BSC 0.300 BSC M ––– 10 ––– 10 N 0.76 1.01 0.030 0.040
__
SEATING PLANE
1
4
58
A0.25MCB
SS
0.25MB
M
h
q
C
X 45
_
L
DIM MIN MAX
MILLIMETERS
A 1.35 1.75
A1 0.10 0.25
B 0.35 0.49 C 0.18 0.25 D 4.80 5.00
E
1.27 BSCe
3.80 4.00
H 5.80 6.20
h
0 7
L 0.40 1.25
q
0.25 0.50
__
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.
D
E
H
A
B
e
B
A1
C
A
0.10
Page 10
MC33282 MC33284
10
MOTOROLA ANALOG IC DEVICE DATA
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
OUTLINE DIMENSIONS
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
4. ROUNDED CORNERS OPTIONAL.
17
14 8
B
A F
HG D
K
C
N
L
J
M
SEATING PLANE
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.715 0.770 18.16 19.56 B 0.240 0.260 6.10 6.60 C 0.145 0.185 3.69 4.69 D 0.015 0.021 0.38 0.53 F 0.040 0.070 1.02 1.78 G 0.100 BSC 2.54 BSC H 0.052 0.095 1.32 2.41 J 0.008 0.015 0.20 0.38 K 0.115 0.135 2.92 3.43 L 0.300 BSC 7.62 BSC M 0 10 0 10 N 0.015 0.039 0.39 1.01
____
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
–A–
–B–
G
P 7 PL
14 8
71
M
0.25 (0.010) B
M
S
B
M
0.25 (0.010) A
S
T
–T–
F
R X 45
SEATING PLANE
D 14 PL
K
C
J
M
_
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 8.55 8.75 0.337 0.344 B 3.80 4.00 0.150 0.157 C 1.35 1.75 0.054 0.068 D 0.35 0.49 0.014 0.019 F 0.40 1.25 0.016 0.049 G 1.27 BSC 0.050 BSC J 0.19 0.25 0.008 0.009 K 0.10 0.25 0.004 0.009 M 0 7 0 7 P 5.80 6.20 0.228 0.244 R 0.25 0.50 0.010 0.019
____
Page 11
MC33282 MC33284
11
MOTOROLA ANALOG IC DEVICE DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Page 12
MC33282 MC33284
12
MOTOROLA ANALOG IC DEVICE DATA
How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/P ACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET .com 51 Ting Ko k Road, Tai Po, N.T., Hong Kong. 852–26629298
MC33282/D
*MC33282/D*
Loading...