Datasheet MC33274AD, MC33274ADR2, MC33274AP, MC33272ADR2, MC33272AP Datasheet (Motorola)

...
Page 1
 "  ! 
T
40° to +85°C
!       
Order this document by MC33272A/D
 
HIGH PERFORMANCE
OPERATIONAL
AMPLIFIERS
The MC33272/74 series of monolithic operational amplifiers are quality fabricated with innovative Bipolar design concepts. This dual and quad operational amplifier series incorporates Bipolar inputs along with a patented Zip–R–Trim element for input offset voltage reduction. The MC33272/74 series of operational amplifiers exhibits low input offset voltage and high gain bandwidth product. Dual–doublet frequency compensation is used to increase the slew rate while maintaining low input noise characteristics. Its all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, and an excellent phase and gain margin. It also provides a low open loop high frequency output impedance with symmetrical source and sink AC frequency performance.
The MC33272/74 series is specified over –40° to +85°C and are available in plastic DIP and SOIC surface mount packages.
Input Offset Voltage Trimmed to 100 µV (Typ)
Low Input Bias Current: 300 nA
Low Input Offset Current: 3.0 nA
High Input Resistance: 16 M
Low Noise: 18 nV/ Hz
@ 1.0 kHz
High Gain Bandwidth Product: 24 MHz @ 100 kHz
High Slew Rate: 10 V/µs
Power Bandwidth: 160 kHz
Excellent Frequency Stability
Unity Gain Stable: w/Capacitance Loads to 500 pF
Large Output Voltage Swing: +14.1 V/ –14.6 V
Low Total Harmonic Distortion: 0.003%
Power Supply Drain Current: 2.15 mA per Amplifier
Single or Split Supply Operation: +3.0 V to +36 V or ±1.5 V to ±18 V
ESD Diodes Provide Added Protection to the Inputs
ORDERING INFORMATION
Op Amp
Function
Dual MC33272AD
Quad MC33274AD
Device
MC33272AP
MC33274AP Plastic DIP
Operating
Temperature Range
°
A
= –
°
Package
SO–8
Plastic DIP
SO–14
SEMICONDUCTOR
TECHNICAL DATA
8
1
P SUFFIX
CASE 626
PIN CONNECTIONS
1
Output 1 V
Inputs 1
14
1
P SUFFIX
CASE 646
2 3 4
V
EE
PIN CONNECTIONS
1
Output 1
2
Inputs 1
V
Inputs 2
Output 2
– +
3 4
CC
5
+ –
6
78
DUAL
8 7
– +
(Top View)
6
+
5
Output 2
QUAD
– +
4
1
+
23
8
1
D SUFFIX
CASE 751
(SO–8)
CC
Inputs 2
14
1
D SUFFIX
CASE 751A
(SO–14)
14
Output 4
13
Inputs 4
12
11
V
EE
10
Inputs 3
9
Output 3
MOTOROLA ANALOG IC DEVICE DATA
(Top View)
Motorola, Inc. 1996 Rev 0
1
Page 2
MC33272A MC33274A
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage VCC to V Input Differential Voltage Range V Input Voltage Range V Output Short Circuit Duration (Note 2) t Maximum Junction Temperature T Storage Temperature T Maximum Power Dissipation P
NOTES: 1. Either or both input voltages should not exceed VCC or VEE.
2.Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2).
EE
IDR
IR
SC
J
stg
D
+36 V (Note 1) V (Note 1) V
Indefinite sec
+150 °C
–60 to +150 °C
(Note 2) mW
DC ELECTRICAL CHARACTERISTICS (V
Characteristics Figure Symbol Min Typ Max Unit
Input Offset Voltage (RS = 10 , VCM = 0 V, VO = 0 V)
(VCC = +15 V, VEE = –15 V)
TA = +25°C TA = –40° to +85°C
(VCC = 5.0 V, VEE = 0)
TA = +25°C
Average Temperature Coefficient of Input Offset Voltage
RS = 10 , VCM = 0 V, VO = 0 V, TA = –40° to +85°C
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C TA = –40° to +85°C
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = +25°C TA = –40° to +85°C
Common Mode Input Voltage Range (VIO = 5.0 mV, VO = 0 V)
TA = +25°C
Large Signal Voltage Gain (VO = 0 V to 10 V, RL = 2.0 k)
TA = +25°C TA = –40° to +85°C
Output Voltage Swing (VID = ±1.0 V)
(VCC = +15 V, VEE = –15 V)
RL = 2.0 k RL = 2.0 k RL = 10 k RL = 10 k
(VCC = 5.0 V, VEE = 0 V)
RL = 2.0 k
RL = 2.0 k Common Mode Rejection (Vin = +13.2 V to –15 V) 13 CMR 80 100 dB Power Supply Rejection
VCC/VEE = +15 V/ –15 V, +5.0 V/ –15 V, +15 V/ –5.0 V
Output Short Circuit Current (VID = 1.0 V , Output to Ground)
Source Sink
Power Supply Current Per Amplifier (VO = 0 V)
(VCC = +15 V, VEE = –15 V)
TA = +25°C
TA = –40° to +85°C
(VCC = 5.0 V, VEE = 0 V)
TA = +25°C
= +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
CC
3 |VIO|
— —
3 VIO/T
4, 5 I
|IIO|
6 V
7 A
8, 9, 12
10, 11
14, 15 PSR
16 I
17 I
VOL
VO+ VO– VO+ VO–
V V
CC
IB
ICR
OL OH
SC
2.0
— —
— —
90 86
13.4 —
13.4 —
3.7
80 105
+25 –25
— —
0.1 —
300
3.0 —
VEE to (VCC –1.8)
100
13.9
–13.9
14
–14.7
— —
+37 –37
2.15 —
1.0
1.8
2.0
650 800
65 80
— —
–13.5
–14.1
0.2
5.0
— —
2.75
3.0
2.75
mV
µV/°C
nA
nA
V
dB
V
dB
mA
mA
2
MOTOROLA ANALOG IC DEVICE DATA
Page 3
MC33272A MC33274A
AC ELECTRICAL CHARACTERISTICS (V
Characteristics Figure Symbol Min Typ Max Unit
Slew Rate
(Vin = –10 V to +10 V, RL = 2.0 k, CL = 100 pF, AV = +1.0 V) Gain Bandwidth Product (f = 100 kHz) 19 GBW 17 24 MHz AC Voltage Gain (RL = 2.0 k, VO = 0 V, f = 20 kHz) 20, 21, 22 A Unity Gain Frequency (Open Loop) f Gain Margin (RL = 2.0 k, CL = 0 pF) 23, 24, 26 A Phase Margin (RL = 2.0 k, CL = 0 pF) 23, 25, 26 φ Channel Separation (f = 20 Hz to 20 kHz) 27 CS –120 dB Power Bandwidth (VO = 20 V Total Harmonic Distortion
(RL = 2.0 k, f = 20 Hz to 20 kHz, VO = 3.0 V Open Loop Output Impedance (VO = 0 V, f = 6.0 MHz) 29 |ZO| 35 Differential Input Resistance (VCM = 0 V) R Differential Input Capacitance (VCM = 0 V) C Equivalent Input Noise Voltage (RS = 100 , f = 1.0 kHz) 30 e Equivalent Input Noise Current (f = 1.0 kHz) 31 i
= 2.0 k, THD 1.0%) BW
pp, RL
= +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
CC
18, 33 SR 8.0 10 V/µs
65 dB — 5.5 MHz — 12 dB — 55 Degrees
160 kHz
16 M 3.0 pF — 18 — — 0.5
, AV = +1.0)
rms
VO
U
m
m
P
28 THD 0.003 %
IN IN
n
n
nV/ Hz
pA/ Hz
Figure 1. Equivalent Circuit Schematic
(Each Amplifier)
V
CC
V
in
+
V
in
+
Sections
BCD
V
O
+
V
EE
MOTOROLA ANALOG IC DEVICE DATA
3
Page 4
MC33272A MC33274A
Figure 2. Maximum Power Dissipation
versus T emperature
2400
2000
1600
1200
800
400
0
D
P (MAX), MAXIMUM POWER DISSIPATION (mW)
MC33272P & MC33274P
MC33274D
MC33272D
0 20 40 60 80 100 120 140 160 180–60 –40 –20 TA, AMBIENT TEMPERATURE (°C)
Figure 4. Input Bias Current versus
Common Mode V oltage
400 350 300 250 200 150 100
IB
I , INPUT BIAS CURRENT (nA)
50
0
–16 –12 –8.0 –4.0 0 4.0 8.0 12 16
VCC = +15 V VEE = –15 V
°
C
TA = 25
VCM, COMMON MODE VOLTAGE (V)
Figure 3. Input Offset Voltage versus
Temperature for Typical Units
5.0
3.0
1.0 2
–1.0
–3.0
IO
V , INPUT OFFSET VOLTAGE (mV)
–5.0
–55 –25 0 25 50 75 100 125
1
VCC = +15 V VEE = –15 V VCM = 0 V
3
°
1. VIO > 0 @ 25
2. VIO = 0 @ 25
3. VIO < 0 @ 25
TA, AMBIENT TEMPERATURE (°C)
C
°
C
°
C
1
Figure 5. Input Bias Current
versus T emperature
600
VCC = +15 V
500
VEE = –15 V VCM = 0 V
400
300
200
100
IB
I , INPUT BIAS CURRENT (nA)
0
–55 –25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (
°
C)
3
2
V
CC
VCC –0.5
VCC –1.0 VCC –1.5
VCC –2.0
VEE +1.0 VEE +0.5
ICR
V
EE
V , INPUT COMMON MODE VOLTAGE RANGE (V)
–55 –25 0 25 50 75 100 125
4
Figure 6. Input Common Mode V oltage
Range versus T emperature
V
CC
VCC = +5.0 V to +18 V
V
EE
TA, AMBIENT TEMPERATURE (
VEE = –5.0 V to –18 V
VIO = 5.0 mV
VO = 0 V
°
C)
Figure 7. Open Loop Voltage Gain
versus T emperature
180
160
140
VCC = +15 V VEE = –15 V
120
100
VOL
A , OPEN LOOP VOL TAGE GAIN (X 1.0 kV/V)
–55 –25 0 25 50 75 100 125
RL = 2.0 k f = 10 Hz
VO = –10 V to +10 V
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
Page 5
MC33272A MC33274A
Figure 8. Split Supply Output Voltage Swing
versus Supply V oltage
40
pp
, OUTPUT VOLT AGE (V )
O
V
TA = 25°C
30
RL = 10 k
20
RL = 2.0 k
10
0
0 5.0 10 15 20
VCC, VEE SUPPLY VOLTAGE (V)
Figure 10. Single Supply Output Saturation V oltage versus Load Resistance to Ground
V
CC
TA = 125°C
VCC –4.0
VCC –8.0
VCC –12
TA = 55
°
C
VCC = +5.0 V to +18 V RL to Gnd VEE = Gnd
Figure 9. Split Supply Output Saturation
V oltage versus Load Current
V
CC
VCC –1.0
VCC –2.0
VEE +2.0
VEE +1.0
, OUTPUT SA TURATION VOLT AGE (V)
sat
V
V
EE
V
CC
14.6
14.2
Source
TA = –55
TA = 125
°
C
TA = 25
Sink
TA = 25°C
TA = 125°C
VCC = +5.0 V to +18 V VEE = –5.0 V to –18 V
5.0 10 15 200
±
IL, LOAD CURRENT (
mA)
Figure 11. Single Supply Output Saturation
V oltage versus Load Resistance to V
15
TA = 25°C
°
C
°
C
TA = –55°C
CC
TA = 125°C
TA = 55°C
+0.2
, OUTPUT SA TURATION VOLT AGE (V)
+0.1
V
sat
Gnd
0
100 1.0 k 10 k 100 k 1.0 M
RL , LOAD RESISTANCE T O GROUND (k
Figure 12. Output Voltage versus Frequency
28 24
pp
20 16
VCC = +15 V
12
VEE = –15 V
RL = 2.0 k
8
, OUTPUT VOLT AGE (V )
O
V
AV = +1.0
4 0
1.0 k 10 k 1.0 M 1 0M100 k
TA = 25
°
C
1.0%
THD =
f, FREQUENCY (Hz)
TA = 125 TA = +25 TA = –55
)
°
8.0
C
°
C
°
C
4.0
, OUTPUT SA TURATION VOLT AGE (V)
sat
V
0
10 100 1.0 k 100 k
TA = 25°C
TA = –55°C
TA = 125°C
RL, LOAD RESISTANCE T O VCC (
VCC = +15 V RL to V
CC
VEE = Gnd R
= 100 k
Fdbk
10 k
)
Figure 13. Common Mode Rejection
versus Frequency
120
VCC = +15 V
100
TA = 125
°
C
TA = –55°C
80
60
V
CM
40
20
CMR = 20Log
CMR, COMMON MODE REJECTION (dB)
0
A
DM
+
V
O
V
CM
X A
DM
V
O
10 100 1.0 k 10 k 100 k 1.0 M
f, FREQUENCY (Hz)
VEE = –15 V VCM = 0 V
VCM = ±1.5 V
MOTOROLA ANALOG IC DEVICE DATA
5
Page 6
MC33272A MC33274A
Figure 14. Positive Power Supply Rejection
versus Frequency
120
TA = 125°C
100
80
60
40
20
+PSR = 20Log
+PSR, POWER SUPPLY REJECTION (dB)
0
10 100 1.0 k 10 k 100 k 1 .0 M
V
CC
A
DM
+
V
O
V
EE
VO/A
DM
V
CC
f, FREQUENCY (Hz)
VCC = +15 V VEE = –15 V
VCC = ±1.5 V
TA = –55°C
Figure 16. Output Short Circuit Current
versus T emperature
60
VCC = +15 V
50
Sink
40
Source
30
20
10
0
SC
–55 –25 0 25 50 75 100 125
|I |, OUTPUT SHORT CIRCUIT CURRENT (mA)
TA, AMBIENT TEMPERATURE (
VEE = –15 V
±
1.0 V
VID =
RL < 100
°
C)
Sink
Source
Figure 15. Negative Power Supply Rejection
versus Frequency
120
100
80
60
40
20
–PSR = 20Log
–PSR, POWER SUPPLY REJECTION (dB)
0
10 100 1.0 k 10 k 100 k 1.0 M
V
CC
A
DM
+
V
O
V
EE
VO/A
DM
V
EE
TA = –55°C
TA = 125°C
f, FREQUENCY (Hz)
VCC = ±1.5 V VCC = +15 V VEE = –15 V
Figure 17. Supply Current versus
Supply V oltage
11
10
9.0
8.0
7.0
6.0
5.0
CC
I , SUPPLY CURRENT (mA)
4.0
3.0 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20
TA = +125°C
°
C
TA = +25
°
C
TA = –55
VCC, |VEE| , SUPPLY VOLTAGE (V)
Figure 18. Normalized Slew Rate
versus T emperature
1.15
1.1
1.05
– +
V
in
V
O
100 pF2.0 k
1.0 VCC = +15 V
0.95
SR, SLEW RATE (NORMALIZED)
0.9
0.85 –55 –25 0 25 50 75 100 125
VEE = –15 V
Vin = 20 V
TA, AMBIENT TEMPERATURE (°C)
6
Figure 19. Gain Bandwidth Product
versus T emperature
50
40
30
20
10
GBW, GAIN BANDWIDTH PRODUCT (MHz)
0
–55 –25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V VEE = –15 V f = 100 kHz
RL = 2.0 k CL = 0 pF
MOTOROLA ANALOG IC DEVICE DATA
Page 7
MC33272A MC33274A
Figure 20. V oltage Gain and Phase
versus Frequency
25 20
15 10
5.0 0
–5.0
–10
V A , VOLTAGE GAIN (dB)
–15 –20
–25
100 k 1.0 M 10 M 100 M
VCC = +15 V VEE = –15 V RL = 2.0 k TA = 25°C
Gain
Phase
f, FREQUENCY (Hz)
Figure 22. Open Loop V oltage Gain and
Phase versus Frequency
20
10
0
VCC = +15 V VEE = –15 V V
–10
–20
VOL
A , OPEN LOOP VOLTAGE GAIN (dB)
–30
= 0 V
out
°
C
TA = 25 1A — Phase (RL = 2.0 k 2A — Phase (RL = 2.0 k 1B — Gain (RL = 2.0 k 2B — Gain (RL = 2.0 k
3.0 4.0 6.0 8.0 10 20 30 f, FREQUENCY (MHz)
2A
)
, CL = 300 pF)
)
, CL = 300 pF)
1A
1B
2B
80 100
120 140 160 180 200 220 240 260
280
25 20 15
TA = 25°C
10
CL = 0 pF
5.0 0
–5.0
–10
1A — Phase VCC = 18 V, VEE = –18 V
V
EXCESS PHASE (DEGREES)
φ,
2A — Phase VCC = 1.5 V, VEE = –1.5 V
A , VOLTAGE GAIN (dB)
–15
1B — Gain VCC = 18 V, VEE = –18 V
–20
2B — Gain VCC = 1.5 V, VEE = –1.5 V
–25
100 k 1.0 M 10 M 100 M
Figure 23. Open Loop Gain Margin and Phase
Margin versus Output Load Capacitance
100 120 140 160 180 200 220 240 260 280
12
10
VCC = +15 V VEE = –15 V
8.0
VO = 0 V
6.0
V
in
4.0
EXCESS PHASE (DEGREES)
2.0
φ
m
A , OPEN LOOP GAIN MARGIN (dB)
0
1.0 10 100 1000
Figure 21. Gain and Phase
versus Frequency
1A
2A
1B
2B
f, FREQUENCY (Hz)
Gain Margin
– +
2.0 k
CL, OUTPUT LOAD CAPACITANCE (pF)
V
O
C
L
Phase Margin
80 100 120 140 160 180 200
PHASE (DEGREES)
220
φ,
240
0
10
20
30
40
, PHASE MARGIN (DEGREES)
m
50
φ
Figure 24. Open Loop Gain Margin
versus T emperature
12
CL = 10 pF
10
8.0
CL = 100 pF
6.0
CL = 300 pF
4.0
2.0
m
A , OPEN LOOP GAIN MARGIN (dB)
0
–55 –25 0 25 50 75 100 125
CL = 500 pF
VCC = +15 V VEE = –15 V
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
Figure 25. Phase Margin versus T emperature
60
50
40
30
20
, PHASE MARGIN (DEGREES)
m
10
φ
0
–55 –25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (
CL = 10 pF
CL = 100 pF CL = 300 pF
CL = 500 pF
VCC = +15 V VEE =
°
C)
–15 V
7
Page 8
MC33272A MC33274A
Figure 26. Phase Margin and Gain Margin
versus Differential Source Resistance
15
12
Phase Margin
9.0 VCC = +15 V
VEE = –15 V
6.0 RT = R1+R
VO = 0 V
3.0
TA = 25
m
A , GAIN MARGIN (dB)
0
V
2
°
C
R
1
in
+
R
2
V
O
1.0 10 100 1.0 k 10 k RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
Gain Margin
Figure 28. T otal Harmonic Distortion
versus Frequency
1.0 AV = +1000
AV = +100
0.1
AV = +10
0.01 AV = +1.0
VO = 2.0 V TA = 25
THD, TOT AL HARMONIC DISTORTION (%)
0.001 10 100 1.0 k 10 k 100 k
°
f, FREQUENCY (Hz)
pp
C
VCC = +15 V VEE = –15 V
60
50
40
30
20
, PHASE MARGIN (DEGREES)
m
10
φ
0
160
150
140
130
120
110
CS, CHANNEL SEPERA TION (dB)
100
100 1.0 k 10 k 100 k 1.0 M
Figure 29. Output Impedance versus Frequency
50
VCC = +15 V VEE = –15 V
40
VO = 0 V TA = 25
30
AV = 1000
20
O
10
|Z |, OUTPUT IMPEDANCE ( )
0
10 k 100 k 1.0 M 10 M
Figure 27. Channel Separation
versus Frequency
Driver Channel VCC = +15 V VEE = –15 V RL = 2.0 k
TA = 25
f, FREQUENCY (Hz)
°
C
AV = 100
AV = 10
f, FREQUENCY (Hz)
VOD = 20 V
°
C
AV = 1.0
pp
Figure 30. Input Referred Noise V oltage
versus Frequency
50
nV/ Hz
40
30
+ –
Input Noise Voltage T est Circuit
20
10
n
e , INPUT REFERRED NOISE VOL TAGE ( )
VCC = +15 V VEE = –15 V
°
C
TA = 25
0
10 100 1.0 k 10 k 100 k
f, FREQUENCY (Hz)
8
Figure 31. Input Referred Noise Current
versus Frequency
2.0
1.8
V
O
pA/ Hz
1.6
1.4
1.2
1.0
0.8
0.6 VCC = +15 V
0.4 VEE = –15 V
0.2
0
10 100 1.0 k 10 k 100 k
n
i , INPUT REFERRED NOISE CURRENT ( )
TA = 25
°
C
f, FREQUENCY (Hz)
Input Noise Current Circuit
+
R
S
(RS = 10 k
V
Ω)
O
MOTOROLA ANALOG IC DEVICE DATA
Page 9
MC33272A MC33274A
Figure 32. Percent Overshoot versus
Load Capacitance
60
VCC = +15 V
VEE = –15 V
50
40
30
20
PERCENT OVERSHOOT (%)
10
0
10 100 1.0 k
RL = 2.0 k
TA = 25°C
CL, LOAD CAPACITANCE (pF)
Figure 33. Noninverting Amplifier Slew Rate
for the MC33274
VCC = +15 V VEE = –15 V AV = +1.0
RL = 2.0 k CL = 100 pF
°
C
TA = 25
O
V , OUTPUT VOLTAGE (5.0 V/DIV)
µ
t, TIME (2.0
s/DIV)
Figure 35. Small Signal Transient Response
for MC33274
VCC = +15 V VEE = –15 V AV = +1.0 RL = 2.0 k CL = 300 pF TA = 25
°
C
Figure 34. Noninverting Amplifier Overshoot
for the MC33274
VCC = +15 V VEE = –15 V AV = +1.0
RL = 2.0 k
O
V , OUTPUT VOLTAGE (5.0 V/DIV)
TA = 25°C
t, TIME (2.0 ns/DIV)
Figure 36. Large Signal Transient Response
for MC33274
VCC = +15 V VEE = –15 V AV = +1.0 RL = 2.0 k CL = 300 pF
°
C
TA = 25
CL = 100 pF
φ
CL =
O
V , OUTPUT VOLTAGE (50 mV/DIV)
t, TIME (2.0
µ
s/DIV) t, TIME (1.0 µs/DIV)
MOTOROLA ANALOG IC DEVICE DATA
O
V , OUTPUT VOLTAGE (5.0 V/DIV)
9
Page 10
NOTE 2
–T–
SEATING PLANE
H
MC33272A MC33274A
OUTLINE DIMENSIONS
58
–B–
14
F
–A–
C
N
D
G
0.13 (0.005) B
K
M
T
P SUFFIX
CASE 626–05
ISSUE K
L
J
M
M
A
M
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
DIM MIN MAX MIN MAX
A 9.40 10.16 0.370 0.400 B 6.10 6.60 0.240 0.260 C 3.94 4.45 0.155 0.175 D 0.38 0.51 0.015 0.020 F 1.02 1.78 0.040 0.070
G 2.54 BSC 0.100 BSC
H 0.76 1.27 0.030 0.050 J 0.20 0.30 0.008 0.012 K 2.92 3.43 0.115 0.135 L 7.62 BSC 0.300 BSC
M ––– 10 ––– 10
N 0.76 1.01 0.030 0.040
INCHESMILLIMETERS
__
A
C
E
B
A1
D SUFFIX
CASE 751–05
(SO–8)
ISSUE R
D
58
0.25MB
1
H
4
e
M
h
X 45
_
q
C
A
SEATING PLANE
0.10
L
B
SS
A0.25MCB
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.
MILLIMETERS
DIM MIN MAX
A 1.35 1.75
A1 0.10 0.25
B 0.35 0.49 C 0.18 0.25 D 4.80 5.00 E
3.80 4.00
1.27 BSCe
H 5.80 6.20 h
0.25 0.50
L 0.40 1.25
0 7
q
__
10
MOTOROLA ANALOG IC DEVICE DATA
Page 11
MC33272A MC33274A
OUTLINE DIMENSIONS
P SUFFIX
CASE 646–06
ISSUE L
14 8
B
17
A F
N
SEATING
HG D
PLANE
C
K
L
J
M
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
4. ROUNDED CORNERS OPTIONAL.
DIM MIN MAX MIN MAX
A 0.715 0.770 18.16 19.56 B 0.240 0.260 6.10 6.60 C 0.145 0.185 3.69 4.69 D 0.015 0.021 0.38 0.53 F 0.040 0.070 1.02 1.78 G 0.100 BSC 2.54 BSC H 0.052 0.095 1.32 2.41 J 0.008 0.015 0.20 0.38 K 0.115 0.135 2.92 3.43 L 0.300 BSC 7.62 BSC M 0 10 0 10
____
N 0.015 0.039 0.39 1.01
MILLIMETERSINCHES
–T–
SEATING PLANE
–A–
14 8
G
D 14 PL
0.25 (0.010) A
D SUFFIX
CASE 751A–03
(SO–14) ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
–B–
71
M
7 PL
P
M
0.25 (0.010) B
C
R X 45
K
S
B
T
S
M
_
M
F
J
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
DIM MIN MAX MIN MAX
A 8.55 8.75 0.337 0.344 B 3.80 4.00 0.150 0.157 C 1.35 1.75 0.054 0.068 D 0.35 0.49 0.014 0.019 F 0.40 1.25 0.016 0.049 G 1.27 BSC 0.050 BSC J 0.19 0.25 0.008 0.009 K 0.10 0.25 0.004 0.009 M 0 7 0 7
____
P 5.80 6.20 0.228 0.244 R 0.25 0.50 0.010 0.019
INCHESMILLIMETERS
MOTOROLA ANALOG IC DEVICE DATA
11
Page 12
MC33272A MC33274A
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us: USA/EUROPE /Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T ., Hong Kong. 852–26629298
12
MOTOROLA ANALOG IC DEVICE DATA
MC33272A/D
*MC33272A/D*
Loading...