Datasheet MC33204VD, MC33204VDTB, MC33204P, MC33201D, MC33201P Datasheet (Motorola)

...
Page 1
  
LOW VOLTAGE
RAIL–TO–RAIL
OPERATIONAL AMPLIFIERS
Order this document by MC33201/D
P SUFFIX
PLASTIC PACKAGE
CASE 626
8
1
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
8
1
P SUFFIX
PLASTIC PACKAGE
CASE 646
14
1
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
14
1
Output 1
Inputs 1
V
EE
V
CC
Output 2
Inputs 2
1
2
6
7
8
5
3
2
1
4
Output 1
Inputs 1
V
CC
Output 4
Inputs 4
1
12
13
14
11
3
2
1
4
105
96
Output 2
8
7
Inputs 2
2
4
3
V
EE
Inputs 3
Output 3
(Dual, Top View)
6
7
8
5
3
2
1
4
NC
Inputs
V
EE
NC V
CC
NC
Output
(Single, Top View)
DTB SUFFIX
PLASTIC PACKAGE
CASE 948G
(TSSOP–14)
14
1
1
MOTOROLA ANALOG IC DEVICE DATA
  
The MC33201/2/4 family of operational amplifiers provide rail–to–rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail–to–rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages (± 0.9 V) yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications.
Low Voltage, Single Supply Operation
(+1.8 V and Ground to +12 V and Ground)
Input Voltage Range Includes both Supply Rails
Output Voltage Swings within 50 mV of both Rails
No Phase Reversal on the Output for Over–driven Input Signals
High Output Current (I
SC
= 80 mA, Typ)
Low Supply Current (I
D
= 0.9 mA, Typ)
600 Output Drive Capability
Extended Operating Temperature Ranges
(–40° to +105°C and –55° to +125°C)
Typical Gain Bandwidth Product = 2.2 MHz
Offered in New TSSOP Package Including Standard SOIC and
DIP Packages
ORDERING INFORMATION
Operational
Amplifier Function
Device
Operating
Temperature
Range
Package
MC33201D
°
°
SO–8
MC33201P
T
A
= –40 ° to +
105°C
Plastic DIP
Single
MC33201VD
TA = –55 ° to
SO–8
MC33201VP
A
+125°C
Plastic DIP
MC33202D
°
°
SO–8
MC33202P
T
A
= –
40 ° to +105°C
Plastic DIP
Dual
MC33202VD
TA = –55 ° to
SO–8
MC33202VP
A
+125°C
Plastic DIP
MC33204D
SO–14
MC33204DTB
TA= –40 ° to +105°C
TSSOP–14
MC33204P Plastic DIP
Quad
MC33204VD
SO–14
MC33204VDTB
TA = –55 ° to
+125°C
TSSOP–14
MC33204VP
+125 C
Plastic DIP
Motorola, Inc. 1996 Rev 2
Page 2
MC33201 MC33202 MC33204
2
MOTOROLA ANALOG IC DEVICE DATA
DC ELECTRICAL CHARACTERISTICS (T
A
= 25°C)
Characteristic VCC = 2.0 V VCC = 3.3 V VCC = 5.0 V Unit
Input Offset Voltage
VIO
(max)
MC33201 MC33202 MC33204
± 8.0
±10 ±12
± 8.0
±10 ±12
± 6.0 ± 8.0
±10
mV
Output Voltage Swing
VOH (RL = 10 k) VOL (RL = 10 k)
1.9
0.10
3.15
0.15
4.85
0.15
V
min
V
max
Power Supply Current
per Amplifier (ID)
1.125 1.125 1.125
mA
Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = Gnd.
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to VEE) V
S
+13 V
Input Differential Voltage Range V
IDR
(Note 1) V
Common Mode Input Voltage Range (Note 2) V
CM
VCC + 0.5 V to
VEE – 0.5 V
V
Output Short Circuit Duration t
s
(Note 3) sec
Maximum Junction Temperature T
J
+150 °C
Storage Temperature T
stg
– 65 to +150 °C
Maximum Power Dissipation P
D
(Note 3) mW
NOTES: 1.The differential input voltage of each amplifier is limited by two internal parallel back–to–back
diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins.
2.The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV.
3.Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2)
DC ELECTRICAL CHARACTERISTICS (V
CC
= + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Figure Symbol Min Typ Max Unit
Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V)
MC33201: TA = + 25°C
MC33201: TA = – 40° to +105°C MC33201: TA = – 55° to +125°C
MC33202: TA = + 25°C
MC33202: TA = – 40° to +105°C MC33202: TA = – 55° to +125°C
MC33204: TA = + 25°C
MC33204: TA = – 40° to +105°C MC33204: TA = – 55° to +125°C
3 VIO
– – – – – – – – –
– – – – – – – – –
6.0
9.0 13
8.0 11 14 10 13 17
mV
Input Offset Voltage Temperature Coefficient (RS = 50 )
TA = – 40° to +105°C TA = – 55° to +125°C
4 VIO/T
– –
2.0
2.0
– –
µV/°C
Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C TA = – 40° to +105°C TA = – 55° to +125°C
5, 6 IIB
– – –
80
100
200 250 500
nA
Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C TA = – 40° to +105°C TA = – 55° to +125°C
IIO
– – –
5.0 10
50 100 200
nA
Common Mode Input Voltage Range V
ICR
V
EE
V
CC
V
Page 3
MC33201 MC33202 MC33204
3
MOTOROLA ANALOG IC DEVICE DATA
DC ELECTRICAL CHARACTERISTICS (continued) (V
CC
= + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic UnitMaxTypMinSymbolFigure
Large Signal Voltage Gain (VCC = + 5.0 V, VEE = – 5.0 V)
RL = 10 k RL = 600
7 A
VOL
50 25
300 250
– –
kV/V
Output Voltage Swing (VID = ± 0.2 V)
RL = 10 k RL = 10 k RL = 600 RL = 600
8, 9, 10
V
OH
V
OL
V
OH
V
OL
4.85 –
4.75 –
4.95
0.05
4.85
0.15
0.15 –
0.25
V
Common Mode Rejection (Vin = 0 V to 5.0 V) 11 CMR 60 90 dB Power Supply Rejection Ratio
VCC/VEE = 5.0 V/Gnd to 3.0 V/Gnd
12 PSRR
500 25
µV/V
Output Short Circuit Current (Source and Sink) 13, 14 I
SC
50 80 mA
Power Supply Current per Amplifier (VO = 0 V)
TA = – 40° to +105°C TA = – 55° to +125°C
15 I
D
– –
0.9
0.9
1.125
1.125
mA
AC ELECTRICAL CHARACTERISTICS (V
CC
= + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic Figure Symbol Min Typ Max Unit
Slew Rate
(VS = ± 2.5 V, VO = – 2.0 V to + 2.0 V, RL = 2.0 k, AV = +1.0)
16, 26 SR
0.5 1.0
V/µs
Gain Bandwidth Product (f = 100 kHz) 17 GBW 2.2 MHz Gain Margin (RL = 600 , CL = 0 pF) 20, 21, 22 A
M
12 dB
Phase Margin (RL = 600 , CL = 0 pF) 20, 21, 22
O
M
65 Deg Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100) 23 CS 90 dB Power Bandwidth (VO = 4.0 Vpp, RL = 600 , THD 1 %) BW
P
28 kHz Total Harmonic Distortion (RL = 600 , VO = 1.0 Vpp, AV = 1.0)
f = 1.0 kHz f = 10 kHz
24 THD
0.002
0.008
– –
%
Open Loop Output Impedance
(VO = 0 V, f = 2.0 MHz, AV = 10)
ZO
100
Differential Input Resistance (VCM = 0 V) R
in
200 k Differential Input Capacitance (VCM = 0 V) C
in
8.0 pF Equivalent Input Noise Voltage (RS = 100 )
f = 10 Hz f = 1.0 kHz
25 e
n
25 20
– –
Hz
nV/
Equivalent Input Noise Current
f = 10 Hz f = 1.0 kHz
25 i
n
0.8
0.2
– –
pA/
Hz
Page 4
MC33201 MC33202 MC33204
4
MOTOROLA ANALOG IC DEVICE DATA
V
in –
V
out
Figure 1. Circuit Schematic
(Each Amplifier)
V
EE
V
CC
V
CC
V
CC
V
CC
V
in +
V
EE
This device contains 70 active transistors (each amplifier).
Page 5
MC33201 MC33202 MC33204
5
MOTOROLA ANALOG IC DEVICE DATA
300
260
220
180
TA, AMBIENT TEMPERATURE (
°
C)
100
140
PERCENTAGE OF AMPLIFIERS (%)
TC
V
IO
, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (µV/°C)
50
30
0
40
10
20
A
VOL
, OPEN LOOP VOL TAGE GAIN (kV/V)
Figure 2. Maximum Power Dissipation
versus Temperature
Figure 3. Input Offset Voltage Distribution
PERCENTAGE OF AMPLIFIERS (%)
40 35
VIO, INPUT OFFSET VOLTAGE (mV)
30 25
15
0
20
Figure 4. Input Offset Voltage
Temperature Coefficient Distribution
2500
2000
1000
500
0
TA, AMBIENT TEMPERATURE (
°
C)
Figure 5. Input Bias Current
versus Temperature
Figure 6. Input Bias Current
versus Common Mode Voltage
Figure 7. Open Loop Voltage Gain versus
Temperature
150
50
0
–50
VCM, INPUT COMMON MODE VOLTAGE (V)
1500
P
D(max)
, MAXIMUM POWER DISSIPATION (mW)
200
160
120
80
TA, AMBIENT TEMPERATURE (
°
C)
0
I
IB
, INPUT BIAS CURRENT (nA)
40
5.0
10
VCC = + 5.0 V
VEE = Gnd
VCM > 1.0 V
VCM = 0 V to 0.5 V
I
IB
, INPUT BIAS CURRENT (nA)
100
–100
–150 – 200 – 250
– 55 – 40 – 25 0 25 70 85 125
– 50 0 20 40 50–10 10 30–30–40 –20
–10 0 4.0 8.0 10– 55 – 40 – 25 0 25 50 85 125
2.0 4.0
– 2.0 2.0 6.0– 6.0– 8.0 – 4.0
–55
– 40 – 25 0 25 70 85 125
0 6.0 8.0 10 12 105
8 and 14 Pin DIP Pkg
SO–14 Pkg
SO–8 Pkg
360 amplifiers tested from 3 (MC33204) wafer lots
VCC = + 5.0 V VEE = Gnd TA = 25
°
C
DIP Package
360 amplifiers tested from 3 (MC33204) wafer lots
VCC = + 5.0 V VEE = Gnd TA = 25
°
C
DIP Package
VCC = + 5.0 V VEE = Gnd RL = 600
VO = 0.5 V to 4.5 V
VCC = 12 V VEE = Gnd
TA = 25
°
C
TSSOP–14 Pkg
Page 6
MC33201 MC33202 MC33204
6
MOTOROLA ANALOG IC DEVICE DATA
V
O
, OUTPUT VOLTAGE (V )
pp
V
O
, OUTPUT VOLTAGE (V )
pp
40
20
100
80
60
V
out
, OUTPUT VOLTAGE (V)
0
f, FREQUENCY (Hz)
12
0
9.0
3.0
6.0 VCC = + 6.0 V
VEE = – 6.0 V
RL = 600
AV = +1.0 TA = 25
°
C
Figure 8. Output Voltage Swing
versus Supply Voltage
Figure 9. Output Saturation Voltage
versus Load Current
V
IL, LOAD CURRENT (mA)
V
EE
Figure 10. Output Voltage
versus Frequency
12
10
6.0
2.0
0
VCC,
VEE
SUPPLY VOLTAGE (V)
Figure 11. Common Mode Rejection
versus Frequency
Figure 12. Power Supply Rejection
versus Frequency
Figure 13. Output Short Circuit Current
versus Output Voltage
120
80
60
f, FREQUENCY (Hz)
8.0
100
80
60
40
f, FREQUENCY (Hz)
0
CMR, COMMON MODE REJECTION (dB)
20
VCC = + 6.0 V VEE = – 6.0 V TA = – 55
°
to +125°C
PSR, POWER SUPPLY REJECTION (dB)
100
40
20
0
VCC = + 6.0 V VEE = – 6.0 V TA = – 55
°
to +125°C
VCC = + 6.0 V VEE = – 6.0 V
TA = 25
°
C
4.0
SAT
, OUTPUT SA TURATION VOLTAGE (V)
TA = 25°C
TA = – 55°C
PSR+
PSR–
I
SC
, OUTPUT SHORT CIRCUIT CURRENT (mA)
Source
Sink
VCC = + 5.0 V
VEE = – 5.0 V
TA = 125°C
TA = 125°C
TA = – 55°C
TA = 25°C
10
100 1.0 k 10 k 100 k 1.0 M
0 1.0 2.0 3.0 4.0 5.0 6.0
1.0 k 100 k 1.0 M10 k
01520
±
1.0
±
2.0 105.0
10
100 1.0 k 10 k 100 k 1.0 M
±
3.0
±
4.0
±
5.0
±
6.0
RL = 600
TA = 25°C
V
CC
VCC – 0.2 V
VCC – 0.4 V
VEE + 0.4 V
VEE + 0.2 V
Page 7
MC33201 MC33202 MC33204
7
MOTOROLA ANALOG IC DEVICE DATA
, EXCESS PHASE (DEGREES)
VCC, VEE
, SUPPLY VOLTAGE (V)
I
SC
, OUTPUT SHORT CIRCUIT CURRENT (mA)SR, SLEW RATE (V/ s)
µ
TA, AMBIENT TEMPERATURE (°C)
VCC = + 2.5 V VEE = – 2.5 V VO =
±
2.0 V
Figure 14. Output Short Circuit Current
versus Temperature
Figure 15. Supply Current per Amplifier
versus Supply Voltage with No Load
I
Figure 16. Slew Rate
versus Temperature
TA, AMBIENT TEMPERATURE (°C)
Figure 17. Gain Bandwidth Product
versus Temperature
Figure 18. Voltage Gain and Phase
versus Frequency
Figure 19. Voltage Gain and Phase
versus Frequency
f, FREQUENCY (Hz)
GBW, GAIN BANDWIDTH PRODUCT (MHz)
A , OPEN LOOP VOLT AGE GAIN (dB)
VCC = + 5.0 V
VEE = Gnd
CC
, SUPPLY CURRENT PER AMPLIFIER (mA)
TA = 125°C
TA = – 55°C
Source
Sink
TA = 25°C
+Slew Rate
–Slew Rate
TA, AMBIENT TEMPERATURE (
°
C)
VCC = + 2.5 V
VEE = – 2.5 V
f = 100 kHz
VOL
, EXCESS PHASE (DEGREES)
f, FREQUENCY (Hz)
O
O
70
50
30
10
–10
–30
2.0
0
1.5
0.5
1.0
2.0
1.6
0
150
125
75
25
0
70
50
30
100
4.0
3.0
2.0
0
1.0
10
–10
–30
50
1.2
0.8
0.4
±
1.0
±
2.0
±
3.0
±
4.0
±
5.0±6.0
10 k 100 k 1.0 M 10 M
– 55 – 40 – 25 25 70 1250 85 105
±
0
– 55 – 40 – 25 25 70 1250 85 105 – 55 – 40 – 25 25 70 1250 85 105
10 k 100 k 1.0 M 10 M
240
40
80
120
160
200
40
80
120
160
200
240
A , OPEN LOOP VOLT AGE GAIN (dB)
VOL
1A – Phase, CL = 0 pF 1B – Gain, CL = 0 pF
2A – Phase, CL = 300 pF
2B – Gain, CL = 300 pF
1A – Phase, VS = ±6.0 V
1B – Gain, VS =
±
6.0 V
2A – Phase, VS =
±
1.0 V
2B – Gain, VS =
±
1.0 V
VS = ±6.0 V
TA = 25
°
C
RL = 600
CL = 0 pF
TA = 25
°
C
RL = 600
1 A
2 A
2 B
1 B
1
A
2
A
2 B
1 B
Page 8
MC33201 MC33202 MC33204
8
MOTOROLA ANALOG IC DEVICE DATA
M
, PHASE MARGIN (DEGREES)
i , INPUT REFERRED NOISE CURRENT (pA/ Hz)
n
50
40
30
e , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)
20
10
0
n
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
CL, CAPACITIVE LOAD (pF)
80
0
70
40
Figure 20. Gain and Phase Margin
versus Temperature
Figure 21. Gain and Phase Margin
versus Differential Source Resistance
75
60
0
Figure 22. Gain and Phase Margin
versus Capacitive Load
70 60
40
10
0
TA, AMBIENT TEMPERATURE (
°
C)
Figure 23. Channel Separation
versus Frequency
Figure 24. Total Harmonic Distortion
versus Frequency
Figure 25. Equivalent Input Noise Voltage
and Current versus Frequency
10
1.0
0.1
f, FREQUENCY (Hz)
50
150
90
60
0
CS, CHANNEL SEPARATION (dB)
30
THD, TOT AL HARMONIC DISTORTION (%)
0.01
0.001
20
45
30
15
Phase Margin
Gain Margin
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
M
, PHASE MARGIN (DEGREES)
30
A
M
, GAIN MARGIN (dB)
A
M
, GAIN MARGIN (dB)
60
10
20
30
50
A
M
, GAIN MARGIN (dB)
AV = 10
120
AV = 100
AV = 10
AV = 1.0
AV = 100
M
, PHASE MARGIN (DEGREES)
O
O
O
100 1.0 k 10 k 100 k
10 100 1.0 k 100 k
– 55 – 40 – 25 25 70 1250 85 105 10
10 100 1.0 k 100 1.0 k 10 k
10
100 10 k 100 k10 k 1.0 k
5.0
4.0
3.0
2.0
1.0
0
70 60
40
10 0
50
20
30
75
60
0
45
30
15
16
0
14
8.0
12
2.0
4.0
6.0
10
VCC = + 6.0 V
VEE = – 6.0 V
RL = 600
CL = 100 pF
VCC = + 6.0 V
VEE = – 6.0 V
TA = 25
°
C
Phase Margin
Phase Margin
Gain Margin
VCC = + 6.0 V VEE = – 6.0 V
RL = 600
AV = 100 TA = 25
°
C
Gain Margin
VCC = + 6.0 V VEE = – 6.0 V
VO = 8.0 V
pp
TA = 25
°
C
VCC = + 5.0 V
TA = 25
°
C
VO = 2.0 V
pp
VEE = – 5.0 V
RL = 600
VCC = + 6.0 V VEE = – 6.0 V
TA = 25
°
C
Noise Voltage
Noise Current
AV = 1000
Page 9
MC33201 MC33202 MC33204
9
MOTOROLA ANALOG IC DEVICE DATA
General Information
The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail–to–rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and ground.
Since the common mode input voltage range extends from VCC to VEE, it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings.
Circuit Information
Rail–to–rail performance is achieved at the input of the amplifiers by using parallel NPN–PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than VEE, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross–coupling techniques have been used to keep this change to a minimum.
In addition to its rail–to–rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600 loads. Because of this high output current capability, care should be taken not to exceed the 150°C maximum junction temperature.
O
, OUTPUT VOLTAGE (50 mV/DIV)V
t, TIME (10 µs/DIV)
Figure 26. Noninverting Amplifier Slew Rate Figure 27. Small Signal Transient Response
t, TIME (5.0 µs/DIV)
Figure 28. Large Signal Transient Response
VCC = + 6.0 V VEE = – 6.0 V
RL = 600
CL = 100 pF TA = 25
°
C
O
, OUTPUT VOLTAGE (2.0 mV/DIV)
VCC = + 6.0 V VEE = – 6.0 V
RL = 600
CL = 100 pF AV = 1.0 TA = 25
°
C
V
VCC = + 6.0 V VEE = – 6.0 V
RL = 600
CL = 100 pF TA = 25
°
C
t, TIME (10
µ
s/DIV)
O
, OUTPUT VOLTAGE (2.0 V/DIV)V
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Page 10
MC33201 MC33202 MC33204
10
MOTOROLA ANALOG IC DEVICE DATA
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
14
58
F
NOTE 2
–A–
–B–
–T–
SEATING PLANE
H
J
G
D
K
N
C
L
M
M
A
M
0.13 (0.005) B
M
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 9.40 10.16 0.370 0.400 B 6.10 6.60 0.240 0.260 C 3.94 4.45 0.155 0.175 D 0.38 0.51 0.015 0.020 F 1.02 1.78 0.040 0.070 G 2.54 BSC 0.100 BSC H 0.76 1.27 0.030 0.050 J 0.20 0.30 0.008 0.012 K 2.92 3.43 0.115 0.135 L 7.62 BSC 0.300 BSC
M ––– 10 ––– 10
N 0.76 1.01 0.030 0.040
__
SEATING PLANE
1
4
58
A0.25MCB
SS
0.25MB
M
h
q
C
X 45
_
L
DIM MIN MAX
MILLIMETERS
A 1.35 1.75
A1 0.10 0.25
B 0.35 0.49 C 0.18 0.25 D 4.80 5.00 E
1.27 BSCe
3.80 4.00
H 5.80 6.20 h
0 7
L 0.40 1.25
q
0.25 0.50
__
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.
D
E
H
A
B
e
B
A1
C
A
0.10
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
4. ROUNDED CORNERS OPTIONAL.
17
14 8
B
A F
HG D
K
C
N
L
J
M
SEATING PLANE
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.715 0.770 18.16 19.56 B 0.240 0.260 6.10 6.60 C 0.145 0.185 3.69 4.69 D 0.015 0.021 0.38 0.53 F 0.040 0.070 1.02 1.78 G 0.100 BSC 2.54 BSC H 0.052 0.095 1.32 2.41 J 0.008 0.015 0.20 0.38 K 0.115 0.135 2.92 3.43 L 0.300 BSC 7.62 BSC
M 0 10 0 10
N 0.015 0.039 0.39 1.01
____
Page 11
MC33201 MC33202 MC33204
11
MOTOROLA ANALOG IC DEVICE DATA
OUTLINE DIMENSIONS
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
–A–
–B–
G
P
7 PL
14 8
71
M
0.25 (0.010) B
M
S
B
M
0.25 (0.010) A
S
T
–T–
F
R
X 45
SEATING PLANE
D 14 PL
K
C
J
M
_
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 8.55 8.75 0.337 0.344 B 3.80 4.00 0.150 0.157 C 1.35 1.75 0.054 0.068 D 0.35 0.49 0.014 0.019 F 0.40 1.25 0.016 0.049 G 1.27 BSC 0.050 BSC J 0.19 0.25 0.008 0.009 K 0.10 0.25 0.004 0.009 M 0 7 0 7 P 5.80 6.20 0.228 0.244 R 0.25 0.50 0.010 0.019
____
DTB SUFFIX
PLASTIC PACKAGE
CASE 948G–01
(TSSOP–14)
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 4.90 5.10 0.193 0.200 B 4.30 4.50 0.169 0.177 C ––– 1.20 ––– 0.047 D 0.05 0.15 0.002 0.006 F 0.50 0.75 0.020 0.030 G 0.65 BSC 0.026 BSC H 0.50 0.60 0.020 0.024 J 0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K 0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L 6.40 BSC 0.252 BSC M 0 8 0 8
NOTES:
1 DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982. 2 CONTROLLING DIMENSION: MILLIMETER. 3 DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE. 4 DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5 DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION. 6 TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY. 7 DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE –W–.
____
S
U0.15 (0.006) T
2X L/2
S
U
M
0.10 (0.004) V
S
T
L
–U–
SEATING PLANE
0.10 (0.004)
–T–
SECTION N–N
DETAIL E
J
J1
K
K1
DETAIL E
F
M
–W–
0.25 (0.010)
8
14
7
1
PIN 1 IDENT.
H
G
A
D
C
B
S
U0.15 (0.006) T
–V–
14X REFK
N
N
How to reach us:
USA/EUROPE /Locations Not Listed: Motorola Literature Distribution; JAP AN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/ PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Ko k Road, Tai Po, N.T., Hong Kong. 852–26629298
MC33201/D
*MC33201/D*
Loading...