Datasheet MC33204VP, MC33204VD, MC33204VDR2, MC33204P, MC33201VD Datasheet (MOTOROLA)

...
Page 1
Semiconductor Components Industries, LLC, 1999
November, 1999 – Rev. 3
1 Publication Order Number:
MC33201/D
MC33201 MC33202 MC33204
Rail-to-Rail Operational Amplifiers
Low Voltage, Single Supply Operation
(+1.8 V and Ground to +12 V and Ground)
Input Voltage Range Includes both Supply Rails
Output Voltage Swings within 50 mV of both Rails
No Phase Reversal on the Output for Over–driven Input Signals
High Output Current (I
SC
= 80 mA, Typ)
Low Supply Current (I
D
= 0.9 mA, Typ)
600 Output Drive Capability
Extended Operating Temperature Ranges
(–40° to +105°C and –55° to +125°C)
Typical Gain Bandwidth Product = 2.2 MHz
http://onsemi.com
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.
ORDERING INFORMATION
P SUFFIX
CASE 626
(Quad, Top View)
8
1
(SO–8) D SUFFIX CASE 751
8
1
P SUFFIX
CASE 646
14
1
(SO–14)
D SUFFIX
CASE 751A
14
1
Output 1
Inputs 1
V
EE
V
CC
Output 2
Inputs 2
1
2
6
7
8
5
3
2
1
4
Output 1
Inputs 1
V
CC
Output 4
Inputs 4
1
12
13
14
11
3
2
1
4
105
96
Output 2
8
7
Inputs 2
2
4
3
V
EE
Inputs 3
Output 3
(Dual, Top View)
6
7
8
5
3
2
1
4
NC
Inputs
V
EE
NC V
CC
NC
Output
(Single, T op View)
(TSSOP–14) DTB SUFFIX
CASE 948G
14
1
(Micro–8) DM SUFFIX CASE 846A
8
1
Page 2
MC33201 MC33202 MC33204
http://onsemi.com
2
V
in –
V
out
Figure 1. Circuit Schematic
(Each Amplifier)
V
EE
V
CC
V
CC
V
CC
V
CC
V
in +
V
EE
This device contains 70 active transistors (each amplifier).
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to VEE) V
S
+13 V
Input Differential Voltage Range V
IDR
(Note 1) V
Common Mode Input Voltage Range (Note 2) V
CM
VCC + 0.5 V to
VEE – 0.5 V
V
Output Short Circuit Duration t
s
(Note 3) sec
Maximum Junction Temperature T
J
+150 °C
Storage Temperature T
stg
– 65 to +150 °C
Maximum Power Dissipation P
D
(Note 3) mW
NOTES: 1.The differential input voltage of each amplifier is limited by two internal parallel back–to–back diodes. For additional differential input voltage
range, use current limiting resistors in series with the input pins.
2.The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV.
3.Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2)
Page 3
MC33201 MC33202 MC33204
http://onsemi.com
3
DC ELECTRICAL CHARACTERISTICS (T
A
= 25°C)
Characteristic
VCC = 2.0 V VCC = 3.3 V VCC = 5.0 V Unit
Input Offset Voltage
VIO
(max)
MC33201 MC33202 MC33204
± 8.0
±10 ±12
± 8.0
±10 ±12
± 6.0 ± 8.0
±10
mV
Output Voltage Swing
VOH (RL = 10 kΩ) VOL (RL = 10 kΩ)
1.9
0.10
3.15
0.15
4.85
0.15
V
min
V
max
Power Supply Current
per Amplifier (ID)
1.125 1.125 1.125
mA
Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = Gnd.
DC ELECTRICAL CHARACTERISTICS (V
CC
= + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic Figure Symbol Min Typ Max Unit
Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V)
MC33201: TA = + 25°C
MC33201: TA = – 40° to +105°C MC33201: TA = – 55° to +125°C
MC33202: TA = + 25°C
MC33202: TA = – 40° to +105°C MC33202: TA = – 55° to +125°C
MC33204: TA = + 25°C
MC33204: TA = – 40° to +105°C MC33204: TA = – 55° to +125°C
3 VIO
– – – – – – – – –
– – – – – – – – –
6.0
9.0 13
8.0
11 14 10 13 17
mV
Input Offset Voltage Temperature Coefficient (RS = 50 Ω)
TA = – 40° to +105°C TA = – 55° to +125°C
4 VIO/T
– –
2.0
2.0
– –
µV/°C
Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C TA = – 40° to +105°C TA = – 55° to +125°C
5, 6 IIB
– – –
80
100
200 250 500
nA
Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C TA = – 40° to +105°C TA = – 55° to +125°C
IIO
– – –
5.0 10
50 100 200
nA
Common Mode Input Voltage Range V
ICR
V
EE
V
CC
V
Large Signal Voltage Gain (VCC = + 5.0 V, VEE = – 5.0 V)
RL = 10 k RL = 600
7 A
VOL
50 25
300 250
– –
kV/V
Output Voltage Swing (VID = ± 0.2 V)
RL = 10 k RL = 10 k RL = 600 RL = 600
8, 9, 10
V
OH
V
OL
V
OH
V
OL
4.85 –
4.75 –
4.95
0.05
4.85
0.15
0.15 –
0.25
V
Common Mode Rejection (Vin = 0 V to 5.0 V) 11 CMR 60 90 dB Power Supply Rejection Ratio
VCC/VEE = 5.0 V/Gnd to 3.0 V/Gnd
12 PSRR
500 25
µV/V
Output Short Circuit Current (Source and Sink) 13, 14 I
SC
50 80 mA
Power Supply Current per Amplifier (VO = 0 V)
TA = – 40° to +105°C TA = – 55° to +125°C
15 I
D
– –
0.9
0.9
1.125
1.125
mA
Page 4
MC33201 MC33202 MC33204
http://onsemi.com
4
AC ELECTRICAL CHARACTERISTICS (V
CC
= + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Figure Symbol Min Typ Max Unit
Slew Rate
(VS = ± 2.5 V, VO = – 2.0 V to + 2.0 V, RL = 2.0 kΩ, AV = +1.0)
16, 26 SR
0.5 1.0
V/µs
Gain Bandwidth Product (f = 100 kHz) 17 GBW 2.2 MHz Gain Margin (RL = 600 , CL = 0 pF) 20, 21, 22 A
M
12 dB
Phase Margin (RL = 600 , CL = 0 pF) 20, 21, 22
O
M
65 Deg Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100) 23 CS 90 dB Power Bandwidth (VO = 4.0 Vpp, RL = 600 , THD 1 %) BW
P
28 kHz Total Harmonic Distortion (RL = 600 , VO = 1.0 Vpp, AV = 1.0)
f = 1.0 kHz f = 10 kHz
24 THD
0.002
0.008
– –
%
Open Loop Output Impedance
(VO = 0 V, f = 2.0 MHz, AV = 10)
ZO
100
Differential Input Resistance (VCM = 0 V) R
in
200 k Differential Input Capacitance (VCM = 0 V) C
in
8.0 pF Equivalent Input Noise Voltage (RS = 100 Ω)
f = 10 Hz f = 1.0 kHz
25 e
n
25 20
– –
Hz
nV/
Equivalent Input Noise Current
f = 10 Hz f = 1.0 kHz
25 i
n
0.8
0.2
– –
pA/
Hz
Page 5
MC33201 MC33202 MC33204
http://onsemi.com
5
300
260
220
180
T
A
, AMBIENT TEMPERATURE (°C)
100
140
P
E
R
CEN
T
A
G
E
O
F
A
MPLIFI
E
RS
(
%
)
TC
V
IO
, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (µV/°C)
50
30
0
40
10
20
A
VOL
, OPEN LOOP VOLTAGE GAIN (kV/V)
Figure 2. Maximum Power Dissipation
versus Temperature
Figure 3. Input Offset Voltage Distribution
PERCENTAGE OF AMPLIFIERS (%)
40 35
VIO, INPUT OFFSET VOLTAGE (mV)
30 25
15
0
20
Figure 4. Input Offset Voltage
Temperature Coefficient Distribution
2500
2000
1000
500
0
TA, AMBIENT TEMPERATURE (°C)
Figure 5. Input Bias Current
versus Temperature
Figure 6. Input Bias Current
versus Common Mode Voltage
Figure 7. Open Loop Voltage Gain versus
Temperature
150
50
0
–50
V
C
M
, INPUT COMMON MODE VOLTAGE (V)
1500
P
D(max)
,
M
A
XIMUM P
O
W
E
R
D
ISSIP
A
TI
ON
(
mW
)
200
160
120
80
TA, AMBIENT TEMPERATURE (°C)
0
I
IB
, INPUT BIAS CURRENT (nA)
40
5.0
10
VCC = + 5.0 V VEE = Gnd
VCM > 1.0 V
VCM = 0 V to 0.5 V
I
IB
,
I
N
PUT BI
A
S
C
URR
EN
T
(
n
A)
100
–100
–150 – 200 – 250
– 55 – 40 – 25 0 25 70 85 125
– 50 0 20 40 50–10 10 30–30–40 –20
–10 0 4.0 8.0 10– 55 – 40 –25 0 25 50 85 125
2.0 4.0
– 2.0 2.0 6.0– 6.0– 8.0 – 4.0
–55
– 40 –25 0 25 70 85 125
0 6.0 8.0 10 12 105
8 and 14 Pin DIP Pkg
SO–14 Pkg
SO–8 Pkg
360 amplifiers tested from 3 (MC33204) wafer lots
VCC = + 5.0 V VEE = Gnd TA = 25°C DIP Package
360 amplifiers tested from 3 (MC33204) wafer lots
VCC = + 5.0 V VEE = Gnd TA = 25°C DIP Package
VCC = + 5.0 V VEE = Gnd RL = 600 VO = 0.5 V to 4.5 V
VCC = 12 V VEE = Gnd TA = 25°C
TSSOP–14 Pkg
Page 6
MC33201 MC33202 MC33204
http://onsemi.com
6
V
O
, OUTPUT VOLTAGE (V )
pp
V
O
, OUTPUT VOLTAGE (V )
pp
40
20
100
80
60
V
out
, OUTPUT VOLTAGE (V)
0
f, FREQUENCY (Hz)
12
0
9.0
3.0
6.0 VCC = + 6.0 V
VEE = – 6.0 V RL = 600 AV = +1.0 TA = 25°C
Figure 8. Output Voltage Swing
versus Supply Voltage
Figure 9. Output Saturation Voltage
versus Load Current
V
IL, LOAD CURRENT (mA)
V
EE
Figure 10. Output Voltage
versus Frequency
12
10
6.0
2.0
0
VCC,VEE SUPPLY VOLTAGE (V)
Figure 11. Common Mode Rejection
versus Frequency
Figure 12. Power Supply Rejection
versus Frequency
Figure 13. Output Short Circuit Current
versus Output Voltage
120
80
60
f, FREQUENCY (Hz)
8.0
100
80
60
40
f, FREQUENCY (Hz)
0
CMR, COMMON MODE REJECTION (dB)
20
VCC = + 6.0 V VEE = – 6.0 V TA = – 55° to +125°C
PSR, POWER SUPPLY REJECTION (dB)
100
40
20
0
VCC = + 6.0 V VEE = – 6.0 V TA = – 55° to +125°C
VCC = + 6.0 V VEE = – 6.0 V TA = 25°C
4.0
SAT
, OUTPUT SATURATION VOLTAGE (V)
TA = 25°C
TA = – 55°C
PSR+
PSR–
I
SC
, OUTPUT SHORT CIRCUIT CURRENT (mA)
Source
Sink
VCC = + 5.0 V VEE = – 5.0 V
TA = 125°C
TA = 125°C
TA = – 55°C
TA = 25°C
10
100 1.0 k 10 k 100 k 1.0 M
0 1.0 2.0 3.0 4.0 5.0 6.0
1.0 k 100 k 1.0 M10 k
01520±1.0 ± 2.0 105.0
10
100 1.0 k 10 k 100 k 1.0 M
± 3.0 ± 4.0 ±5.0 ± 6.0
RL = 600 TA = 25°C
V
CC
VCC – 0.2 V
VCC – 0.4 V
VEE + 0.4 V
VEE + 0.2 V
Page 7
MC33201 MC33202 MC33204
http://onsemi.com
7
, EXCESS PHASE (DEGREES)
VCC, VEE, SUPPLY VOLTAGE (V)
I
SC
, OUTPUT SHORT CIRCUIT CURRENT (mA)SR, SLEW RATE (V/ s)µ
TA, AMBIENT TEMPERATURE (°C)
VCC = + 2.5 V VEE = – 2.5 V VO = ± 2.0 V
Figure 14. Output Short Circuit Current
versus Temperature
Figure 15. Supply Current per Amplifier
versus Supply Voltage with No Load
I
Figure 16. Slew Rate
versus Temperature
TA, AMBIENT TEMPERATURE (°C)
Figure 17. Gain Bandwidth Product
versus Temperature
Figure 18. Voltage Gain and Phase
versus Frequency
Figure 19. Voltage Gain and Phase
versus Frequency
f, FREQUENCY (Hz)
GBW, GAIN BANDWIDTH PRODUCT (MHz)
A , OPEN LOOP VOLTAGE GAIN (dB)
VCC = + 5.0 V VEE = Gnd
CC
, SUPPLY CURRENT PER AMPLIFIER (mA)
TA = 125°C
TA = – 55°C
Source
Sink
TA = 25°C
+Slew Rate
–Slew Rate
TA, AMBIENT TEMPERATURE (°C)
VCC = + 2.5 V VEE = – 2.5 V f = 100 kHz
VOL
, EXCESS PHASE (DEGREES)
f, FREQUENCY (Hz)
O
O
70
50
30
10
–10
–30
2.0
0
1.5
0.5
1.0
2.0
1.6
0
150
125
75
25
0
70
50
30
100
4.0
3.0
2.0
0
1.0
10
–10
–30
50
1.2
0.8
0.4
±1.0 ± 2.0 ± 3.0 ±4.0 ± 5.0 ± 6.0
10 k 100 k 1.0 M 10 M
– 55 –40 – 25 25 70 1250 85 105 ± 0
– 55 – 40 – 25 25 70 1250 85 105 – 55 – 40 – 25 25 70 1250 85 105
10 k 100 k 1.0 M 10 M
240
40
80
120
160
200
40
80
120
160
200
240
A , OPEN LOOP VOLTAGE GAIN (dB)
VOL
1A – Phase, CL = 0 pF 1B – Gain, CL = 0 pF 2A – Phase, CL = 300 pF 2B – Gain, CL = 300 pF
1A – Phase, VS = ± 6.0 V 1B – Gain, VS = ± 6.0 V 2A – Phase, VS = ± 1.0 V 2B – Gain, VS = ± 1.0 V
VS = ± 6.0 V TA = 25°C RL = 600
CL = 0 pF TA = 25°C RL = 600
1A
2A
2B
1B
1A
2A
2B
1B
Page 8
MC33201 MC33202 MC33204
http://onsemi.com
8
M
, PHASE MARGIN (DEGREES)
i , INPUT REFERRED NOISE CURRENT (pA/ Hz)
n
50
40
30
e , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)
20
10
0
n
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
CL, CAPACITIVE LOAD (pF)
80
0
70
40
Figure 20. Gain and Phase Margin
versus Temperature
Figure 21. Gain and Phase Margin
versus Differential Source Resistance
75
60
0
Figure 22. Gain and Phase Margin
versus Capacitive Load
70 60
40
10
0
TA, AMBIENT TEMPERATURE (°C)
Figure 23. Channel Separation
versus Frequency
Figure 24. Total Harmonic Distortion
versus Frequency
Figure 25. Equivalent Input Noise Voltage
and Current versus Frequency
10
1.0
0.1
f, FREQUENCY (Hz)
50
150
90
60
0
CS, CHANNEL SEPARATION (dB)
30
THD, TOTAL HARMONIC DISTORTION (%)
0.01
0.001
20
45
30
15
Phase Margin
Gain Margin
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
M
, PHASE MARGIN (DEGREES)
30
A
M
, GAIN MARGIN (dB)
A
M
, GAIN MARGIN (dB)
60
10
20
30
50
A
M
, GAIN MARGIN (dB)
AV = 10
120
AV = 100
AV = 10
AV = 1.0
AV = 100
M
, PHASE MARGIN (DEGREES)
O
O
O
100 1.0 k 10 k 100 k
10 100 1.0 k 100 k
– 55 – 40 – 25 25 70 1250 85 105 10
10 100 1.0 k 100 1.0 k 10 k
10
100 10 k 100 k10 k 1.0 k
5.0
4.0
3.0
2.0
1.0
0
70 60
40
10 0
50
20
30
75
60
0
45
30
15
16
0
14
8.0
12
2.0
4.0
6.0
10
VCC = + 6.0 V VEE = – 6.0 V RL = 600 CL = 100 pF
VCC = + 6.0 V VEE = – 6.0 V TA = 25°C
Phase Margin
Phase Margin
Gain Margin
VCC = + 6.0 V VEE = – 6.0 V RL = 600 AV = 100 TA = 25°C
Gain Margin
VCC = + 6.0 V VEE = – 6.0 V VO = 8.0 V
pp
TA = 25°C
VCC = + 5.0 V TA = 25°C VO = 2.0 V
pp
VEE = – 5.0 V RL = 600
VCC = + 6.0 V VEE = – 6.0 V TA = 25°C
Noise Voltage
Noise Current
AV = 1000
Page 9
MC33201 MC33202 MC33204
http://onsemi.com
9
DET AILED OPERATING DESCRIPTION
General Information
The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail–to–rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of 2.0 V , 3.3 V and
5.0 V and ground.
Since the common mode input voltage range extends from VCC to VEE, it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings.
Circuit Information
Rail–to–rail performance is achieved at the input of the amplifiers by using parallel NPN–PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than VEE, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross–coupling techniques have been used to keep this change to a minimum.
In addition to its rail–to–rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600 loads. Because of this high output current capability, care should be taken not to exceed the 150°C maximum junction temperature.
O
, OUTPUT VOLTAGE (50 mV/DIV)V
t, TIME (10 µs/DIV)
Figure 26. Noninverting Amplifier Slew Rate Figure 27. Small Signal Transient Response
t, TIME (5.0 µs/DIV)
Figure 28. Large Signal Transient Response
VCC = + 6.0 V VEE = – 6.0 V RL = 600 CL = 100 pF TA = 25°C
O
, OUTPUT VOLTAGE (2.0 mV/DIV)
VCC = + 6.0 V VEE = – 6.0 V RL = 600 CL = 100 pF AV = 1.0 TA = 25°C
V
VCC = + 6.0 V VEE = – 6.0 V RL = 600 CL = 100 pF TA = 25°C
t, TIME (10 µs/DIV)
O
, OUTPUT VOLTAGE (2.0 V/DIV)V
Page 10
MC33201 MC33202 MC33204
http://onsemi.com
10
ORDERING INFORMATION
Operational
Amplifier Function
Device
Operating
Temperature Range
Package Shipping
MC33201D SO–8 98 Units / Rail MC33201DR2
TA= –40 ° to +105°C
SO–8 2500 Units / Tape & Reel
MC33201P Plastic DIP 50 Units / Rail
Single
MC33201VD SO–8 98 Units / Rail MC33201VDR2
TA = –40 ° to +125°C
SO–8 2500 Units / Tape & Reel MC33201VP Plastic DIP 50 Units / Rail MC33202D SO–8 98 Units / Rail MC33202DR2
°
°
SO–8 2500 Units / Tape & Reel MC33202DMR2
T
A
= –40 ° to
+105°C
Micro–8 4000 Units / Tape & Reel
Dual
MC33202P Plastic DIP 50 Units / Rail MC33202VD SO–8 98 Units / Rail MC33202VDR2
TA = –40 ° to +125°C
SO–8 2500 Units / Tape & Reel MC33202VP Plastic DIP 50 Units / Rail MC33204D SO–14 55 Units / Rail MC33204DR2 SO–14 2500 Units / Tape & Reel MC33204DTB
TA= –40 ° to +105°C
TSSOP–14 96 Units / Rail
MC33204DTBR2 TSSOP–14 2500 Units / Tape & Reel
Quad
MC33204P Plastic DIP 25 Units / Rail MC33204VD SO–14 55 Units / Rail MC33204VDR2
TA = –40 ° to +125°C
SO–14 2500 Units / Tape & Reel
MC33204VP Plastic DIP 25 Units / Rail
Page 11
MC33201 MC33202 MC33204
http://onsemi.com
11
P ACKAGE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
14
58
F
NOTE 2
–A–
–B–
–T–
SEATING PLANE
H
J
G
D
K
N
C
L
M
M
A
M
0.13 (0.005) B
M
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 9.40 10.16 0.370 0.400 B 6.10 6.60 0.240 0.260 C 3.94 4.45 0.155 0.175 D 0.38 0.51 0.015 0.020 F 1.02 1.78 0.040 0.070
G 2.54 BSC 0.100 BSC
H 0.76 1.27 0.030 0.050 J 0.20 0.30 0.008 0.012 K 2.92 3.43 0.115 0.135 L 7.62 BSC 0.300 BSC
M ––– 10 ––– 10
N 0.76 1.01 0.030 0.040
__
(SO–8)
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
ISSUE R
SEATING PLANE
1
4
58
A0.25MCB
SS
0.25MB
M
h
q
C
X 45
_
L
DIM MIN MAX
MILLIMETERS
A 1.35 1.75
A1 0.10 0.25
B 0.35 0.49 C 0.18 0.25 D 4.80 5.00 E
1.27 BSCe
3.80 4.00
H 5.80 6.20 h
0 7
L 0.40 1.25
q
0.25 0.50
__
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.
D
E
H
A
B
e
B
A1
C
A
0.10
Page 12
MC33201 MC33202 MC33204
http://onsemi.com
12
P ACKAGE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
4. ROUNDED CORNERS OPTIONAL.
17
14 8
B
A F
HG D
K
C
N
L
J
M
SEATING PLANE
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.715 0.770 18.16 19.56 B 0.240 0.260 6.10 6.60 C 0.145 0.185 3.69 4.69 D 0.015 0.021 0.38 0.53
F 0.040 0.070 1.02 1.78 G 0.100 BSC 2.54 BSC H 0.052 0.095 1.32 2.41 J 0.008 0.015 0.20 0.38 K 0.115 0.135 2.92 3.43 L 0.300 BSC 7.62 BSC
M 0 10 0 10
N 0.015 0.039 0.39 1.01
____
(SO–14)
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
–A–
–B–
G
P
7 PL
14 8
71
M
0.25 (0.010) B
M
S
B
M
0.25 (0.010) A
S
T
–T–
F
R
X 45
SEATING PLANE
D 14 PL
K
C
J
M
_
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 8.55 8.75 0.337 0.344 B 3.80 4.00 0.150 0.157 C 1.35 1.75 0.054 0.068 D 0.35 0.49 0.014 0.019 F 0.40 1.25 0.016 0.049
G 1.27 BSC 0.050 BSC
J 0.19 0.25 0.008 0.009 K 0.10 0.25 0.004 0.009
M 0 7 0 7
P 5.80 6.20 0.228 0.244 R 0.25 0.50 0.010 0.019
____
Page 13
MC33201 MC33202 MC33204
http://onsemi.com
13
P ACKAGE DIMENSIONS
(TSSOP–14)
DTB SUFFIX
PLASTIC PACKAGE
CASE 948G–01
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 4.90 5.10 0.193 0.200 B 4.30 4.50 0.169 0.177 C ––– 1.20 ––– 0.047 D 0.05 0.15 0.002 0.006 F 0.50 0.75 0.020 0.030 G 0.65 BSC 0.026 BSC H 0.50 0.60 0.020 0.024 J 0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K 0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L 6.40 BSC 0.252 BSC M 0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED
0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.
____
S
U0.15 (0.006) T
2X L/2
S
U
M
0.10 (0.004) V
S
T
L
–U–
SEATING PLANE
0.10 (0.004)
–T–
ÇÇ
SECTION N–N
DETAIL E
J
J1
K
K1
DETAIL E
F
M
–W–
0.25 (0.010)
8
14
7
1
PIN 1 IDENT.
H
G
A
D
C
B
S
U0.15 (0.006) T
–V–
14X REFK
N
N
Page 14
MC33201 MC33202 MC33204
http://onsemi.com
14
P ACKAGE DIMENSIONS
(Micro–8)
DM SUFFIX
PLASTIC PACKAGE
CASE 846A–02
ISSUE D
S
B
M
0.08 (0.003) A
S
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 2.90 3.10 0.114 0.122 B 2.90 3.10 0.114 0.122 C ––– 1.10 ––– 0.043 D 0.25 0.40 0.010 0.016 G 0.65 BSC 0.026 BSC H 0.05 0.15 0.002 0.006 J 0.13 0.23 0.005 0.009 K 4.75 5.05 0.187 0.199 L 0.40 0.70 0.016 0.028
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
–B–
–A–
D
K
G
PIN 1 ID
8 PL
0.038 (0.0015)
–T–
SEATING PLANE
C
H
J
L
Page 15
MC33201 MC33202 MC33204
http://onsemi.com
15
Notes
Page 16
MC33201 MC33202 MC33204
http://onsemi.com
16
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability , including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly , any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer .
PUBLICATION ORDERING INFORMATION
ASIA/PACIFIC: LDC for ON Semiconductor — Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong T ime)
T oll Free from Hong Kong 800–4422–3781
Email: ONlit–asia@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, T okyo, Japan 141–8549
Phone: 81–3–5487–8345 Email: r14153@onsemi.com
Fax Response Line: 303–675–2167
800–344–3810 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.
MC33201/D
North America Literature Fulfillment:
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 T oll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com
N. American Technical Support: 800–282–9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor — European Support
German Phone: 303–308–7140 (Mon–Fri 2:30pm to 5:00pm Munich Time) German Email: ONlit–german@hibbertco.com French Phone: 303–308–7141 (Mon–Fri 2:30pm to 5:00pm T oulouse T ime) French Email: ONlit–french@hibbertco.com English Phone: 303–308–7142 (Mon–Fri 1:30pm to 5:00pm UK Time) English Email: ONlit@hibbertco.com
Loading...