Datasheet MC 33079 DG Datasheet

Page 1
MC33078, MC33079, NCV33078, NCV33079
Low Noise Dual/Quad Operational Amplifiers
The MC33078/9 family offers both dual and quad amplifier versions and is available in the plastic DIP and SOIC packages (P and D suffixes).
Features
Dual Supply Operation: $5.0 V to $18 V
Low Voltage Noise: 4.5 nV/ Hz
Low Input Offset Voltage: 0.15 mV
Low T.C. of Input Offset Voltage: 2.0 mV/°C
Low Total Harmonic Distortion: 0.002%
High Gain Bandwidth Product: 16 MHz
High Slew Rate: 7.0 V/ms
High Open Loop AC Gain: 800 @ 20 kHz
Excellent Frequency Stability
Large Output Voltage Swing: +14.1 V/ 14.6 V
ESD Diodes Provided on the Inputs
NCV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements
These Devices are PbFree, Halogen Free/BFR Free and are RoHS
Compliant
D1
Amplifier
J1
Biasing
Q2 D2
Z1
Q1
R1
Figure 1. Representative Schematic Diagram
Ǹ
Q3 Q5
Neg
R3
C1
(Each Amplifier)
R2
Q4
Q6
R4
Q7
Pos
Q8
D3
C2
R6
R5
Q10
V
Q9
EE
D4
R7
C3 R9
Q11
Q12
V
CC
Q3
V
out
http://onsemi.com
MARKING
DIAGRAMS
14
DUAL
PDIP8
P SUFFIX
8
1
8
1
1
14
1
CASE 626
SOIC8 D SUFFIX CASE 751
QUAD
PDIP14
P SUFFIX
CASE 646
SOIC14
D SUFFIX
CASE 751A
A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or G = PbFree Package
8
MC33078P
AWL
YYWWG
1
8
33078 ALYW
G
1
14
MC33079P
AWLYYWWG
1
14
MC33079DG
AWLYWW
1
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.
© Semiconductor Components Industries, LLC, 2011
November, 2011 Rev. 9
1 Publication Order Number:
MC33078/D
Page 2
MC33078, MC33079, NCV33078, NCV33079
PIN CONNECTIONS
Output 1
Inputs 1
2
4
V
EE
DUAL
CASE 626/751
1
­1
+
3
2
(Dual, Top View)
8
V
CC
7
Output 2
6
­Inputs 2
+
5
Output 1
Inputs 1
Inputs 2
V
CC
Output 2
QUAD
CASE 646/751A
1
2
*
1
)
3
4
5
)
23
*
6
7
*
4
)
) *
14
13
12
11
10
9
8
Output 4
Inputs 4
V
EE
Inputs 3
Output 3
(Quad, Top View)
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to V
EE)
Input Differential Voltage Range V
Input Voltage Range V
Output Short Circuit Duration (Note 2) t
Maximum Junction Temperature T
Storage Temperature T
ESD Protection at any Pin
MC33078/NCV33078 Human Body Model
Machine Model
MC33079/NCV33079 Human Body Model
Machine Model
Maximum Power Dissipation P
Operating Temperature Range T
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
1. Either or both input voltages must not exceed the magnitude of V
2. Power dissipation must be considered to ensure maximum junction temperature (T
or VEE.
CC
V
S
IDR
IR
SC
J
stg
V
esd
+36 V
Note 1 V
Note 1 V
Indefinite sec
+150 °C
60 to +150 °C
600 200 550 150
D
A
) is not exceeded (see Figure 2).
J
Note 2 mW
40 to +85 °C
V
http://onsemi.com
2
Page 3
MC33078, MC33079, NCV33078, NCV33079
DC ELECTRICAL CHARACTERISTICS (V
Characteristics
Input Offset Voltage (RS = 10 W, VCM = 0 V, VO = 0 V)
(MC33078) T
(MC33079) T
Average Temperature Coefficient of Input Offset Voltage
R
= 10 W, VCM = 0 V, VO = 0 V, TA = T
S
Input Bias Current (VCM = 0 V, VO = 0 V)
= +25°C
T
A
= 40° to +85°C
T
A
Input Offset Current (VCM = 0 V, VO = 0 V)
= +25°C
T
A
= 40° to +85°C
T
A
Common Mode Input Voltage Range (DVIO = 5.0 mV, VO = 0 V)
Large Signal Voltage Gain (VO = $10 V, RL = 2.0 kW)
= +25°C
T
A
= 40° to +85°C
T
A
= +25°C
A
= 40° to +85°C
T
A
= +25°C
A
= 40° to +85°C
T
A
low
= +15 V, VEE = 15 V, TA = 25°C, unless otherwise noted.)
CC
Symbol Min Typ Max Unit
|VIO|
DVIO/DT
to T
high
I
IB
I
IO
V
ICR
A
VOL
0.15
0.15
2.0
3.0
2.5
3.5
2.0
300
25
750 800
150 175
±13 ±14 V
90 85
110
Output Voltage Swing (VID = $1.0V)
R
= 600 W
L
R
= 600 W
L
R
= 2.0 kW
L
R
= 2.0 kW
L
R
= 10 kW
L
R
= 10 kW
L
VO+ V
O
V
O
V
O
V
O
V
O
+
+
+13.2
+13.5
+10.7
11.9 +13.8
13.7 +14.1
14.6
13.2
14
Common Mode Rejection (Vin = ±13V) CMR 80 100 dB
Power Supply Rejection (Note 3)
V
= +15 V/ 15 V to +5.0 V/ 5.0 V
CC/VEE
Output Short Circuit Current (VID = 1.0 V, Output to Ground)
Source Sink
Power Supply Current (VO = 0 V, All Amplifiers)
(MC33078) T
(MC33078) T
(MC33079) T
(MC33079) T
= +25°C
A
= 40° to +85°C
A
= +25°C
A
= 40° to +85°C
A
PSR 80 105 dB
I
SC
I
D
+15
20
+29
37
4.1
8.4
5.0
5.5 10 11
3. Measured with VCC and VEE differentially varied simultaneously.
mV
mV/°C
nA
nA
dB
V
mA
mA
http://onsemi.com
3
Page 4
MC33078, MC33079, NCV33078, NCV33079
AC ELECTRICAL CHARACTERISTICS (V
Characteristics
Slew Rate (Vin = 10 V to +10 V, RL = 2.0 kW, CL = 100 pF AV = +1.0)
= +15 V, VEE = 15 V, TA = 25°C, unless otherwise noted.)
CC
Symbol Min Typ Max Unit
SR 5.0 7.0
V/ms
Gain Bandwidth Product (f = 100 kHz) GBW 10 16 MHz
Unity Gain Bandwidth (Open Loop) BW 9.0 MHz
Gain Margin (RL = 2.0 kW)
= 0 pF
C
L
= 100 pF
C
L
Phase Margin (RL = 2.0 kW)
= 0 pF
C
L
= 100 pF
C
L
A
m
f
m
11
6.0
Deg
55 40
Channel Separation (f = 20 Hz to 20 kHz) CS 120 dB
Power Bandwidth (VO = 27 Vpp, RL = 2.0 kW, THD $ 1.0%)
Total Harmonic Distortion (R
= 2.0 kW, f = 20 Hz to 20 kHz, VO = 3.0 V
L
, AV = +1.0)
rms
BW
p
THD 0.002 %
120 kHz
Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) |ZO| 37
Differential Input Resistance (V
Differential Input Capacitance (V
CM = 0 V)
CM = 0 V)
Equivalent Input Noise Voltage (RS = 100 W, f = 1.0 kHz)
Equivalent Input Noise Current (f = 1.0 kHz) i
R
in
C
in
e
n
n
175
12 pF
4.5
nV/ Hz
0.5
dB
W
kW
pA/Hz
2400
2000
1600
1200
800
400
D
P, MAXIMUM POWER DISSIPATION (mW)
0
-55 -40
1000
800
600
400
IB
200
I, INPUT BIAS CURRENT (nA)
0
MC33078P & MC33079P
MC33079D
MC33078D
-20 0 20 40 60 80 100 120 140 160
, AMBIENT TEMPERATURE (°C)
T
A
Figure 2. Maximum Power Dissipation
versus Temperature
VCC = +15 V V
= -15 V
EE
V
= 0 V
CM
0 25 50 75 100 125-55 -25
TA, AMBIENT TEMPERATURE (°C)
800
VCM = 0 V T
= 25°C
A
600
400
200
IB
I, INPUT BIAS CURRENT (nA)
0
0101520
5.0 V
, | VEE |, SUPPLY VOLTAGE (V)
CC
Figure 3. Input Bias Current versus
Supply Voltage
2.0 VCC = +15 V
V
= -15 V
EE
= 10 W
R
S
V
= 0 V
1.0
CM
AV = +1
0
-1.0
IO
V, INPUT OFFSET VOLTAGE (mV)
-2.0
-55 -25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C)
Unit 1
Unit 2
Unit 3
Figure 4. Input Bias Current versus Temperature Figure 5. Input Offset Voltage versus Temperature
http://onsemi.com
4
Page 5
MC33078, MC33079, NCV33078, NCV33079
600
VCC = +15 V V
= -15 V
500
400
300
200
100
IB
I, INPUT BIAS CURRENT (nA)
0
-15 -10 -5.0 0 5.0 10 15
V
, COMMON MODE VOLTAGE (V)
CM
Figure 6. Input Bias Current versus
Common Mode Voltage
EE
T
= 25°C
A
V
-0
CC
V
-0.5
CC
-1.0
V
CC
V
-1.5
CC
+1.5
V
EE
V
+1.0
EE
+0.5
V
EE
V
+0
EE
, INPUT COMMON MODE VOLTAGE RANGE (V)
ICR
V
-55 -25 0 25 50 75 100 125
+V
CM
Voltage
V
= +3.0 V to +15 V
CC
VEE = -3.0 V to -15 V
= 5.0 mV
DV
IO
V
= 0 V
O
Range
-V
CM
T
, AMBIENT TEMPERATURE (°C)
A
Figure 7. Input Common Mode Voltage
Range versus Temperature
-1.0
V
CC
V
CC
V
CC
V
EE
-3.0
-5.0
+5.0
-55°C
125°C
125°C
25°C
VCC = +15 V V
EE
25°C
+3.0
V
EE
, OUTPUT SATURATION VOLTAGE (V)
VEE +1.0
sat
V
-55°C
0 1.0 2.0 3.0 4.0
RL, LOAD RESISTANCE TO GROUND (kW)
Figure 8. Output Saturation Voltage versus
Load Resistance to Ground
10
9.0
8.0
7.0
±15 V
±5.0 V
±10 V
6.0
5.0
4.0
3.0
CC
2.0
I, SUPPLY CURRENT (mA)
±15 V
±5.0 V ±4.0 V
±10 V
Supply Voltages
1.0
0
-55 -25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C)
VCM = 0 V R
=
L
V
= 0 V
O
MC33079
MC33078
= -15 V
50
V
= +15 V
Sink
40
30
Source
CC
V
EE
< 100 W
R
L
V
= 1.0 V
ID
= -15 V
20
10
SC
-55 -25 0 25 50 75 100 125
| I|, OUTPUT SHORT CIRCUIT CURRENT (mA)
TA, AMBIENT TEMPERATURE (°C)
Figure 9. Output Short Circuit Current
versus Temperature
160
D V
140
120
CM
CMR = 20Log
100
VCC = +15 V
80
V
= -15 V
EE
V
= 0 V
CM
60
40
CMR, COMMON MODE REJECTION (dB)
20
100 1.0 k 10 k 100 k 1.0 M 10 M
DV T
A
= ±1.5 V
CM
= 25°C
f, FREQUENCY (Hz)
D V
­A
+
D V
DM
CM
× A
DM
O
D V
O
Figure 10. Supply Current versus
Temperature
Figure 11. Common Mode Rejection
versus Frequency
http://onsemi.com
5
Page 6
MC33078, MC33079, NCV33078, NCV33079
S
O
S
C
O
G
G
O
C
140
+PSR = 20Log
120
N (dB) TI
100
80
60
UPPLY REJE
40
WER
20
R, P P
0
-PSR
V
= +15 V
CC
V
= -15 V
EE
T
= 25°C
A
100 1.0 k 10 k 100 k 1.0 M
+PSR
DVO/A
DM
DV
CC
f, FREQUENCY (Hz)
-PSR = 20Log
-
A
+
DVO/A
DM
DV
DV
V
DM
CC
CC
DV
O
EE
10 M
Figure 12. Power Supply Rejection
versus Frequency
30
RL = 10 kW
= 0 pF
C
L
20
f = 100 kHz T
= 25°C
A
10
GWB, GAIN BANDWIDTH PRODUCT (MHz)
0
0101520
5.0
VCC |VEE| , SUPPLY VOLTAGE (V)
Figure 13. Gain Bandwidth Product
versus Supply Voltage
20
T (MHz)
15
DU
20
TA = 25°C
15
10
R
L
= 10 kW
RL = 2.0 kW
VO +
5.0
10
VCC = +15 V V
= -15 V
5.0
AIN BANDWIDTH PR
WB,
0
-55 -25 0 50 75 10025 125
EE
f = 100 kHz
= 10 kW
R
L
C
= 0 pF
L
, AMBIENT TEMPERATURE (°C)
T
A
0
-5.0
-10
O
V , OUTPUT VOLTAGE (Vp)
-15
-20 0101520
5.0
R
L
= 10 kW
RL = 2.0 kW
-
V
O
VCC |VEE| , SUPPLY VOLTAGE (V)
Figure 14. Gain Bandwidth Product
versus Temperature
Figure 15. Maximum Output Voltage
versus Supply Voltage
35
30
pp
25
110
R
2.0 kW
L =
f 10 Hz DVO = 2/3 (VCC -VEE) T
= 25°C
A
100
20
VCC = +15 V
15
V
= -15 V
CC
= 2.0 kW
R
10
, OUTPUT VOLTAGE (V )
O
V
5.0
L
AV = +1.0 THD 1.0% T
= 25°C
A
0
10 100 1.0 k 10 k 100 k 1.0 M 10 M
f, FREQUENCY (Hz)
90
VOL
A, OPEN LOOP VOLTAGE GAIN (dB)
80
0101520
5.0 VCC |VEE| , SUPPLY VOLTAGE (V)
Figure 16. Output Voltage versus Frequency Figure 17. Open Loop Voltage Gain
versus Supply Voltage
http://onsemi.com
6
Page 7
MC33078, MC33079, NCV33078, NCV33079
110
V
= +15 V
CC
V
= -15 V
EE
= 2.0 kW
R
105
L
f 10 Hz DVO = -10 V to +10 V
100
95
VOL
A, OPEN LOOP VOLTAGE GAIN (dB)
90
-55 -25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C)
Figure 18. Open Loop Voltage Gain
versus Temperature
160
MC33078
150
140
130
120
110
CS, CHANNEL SEPARATION (dB)
100
100 W
10 kW
-
+
100 W
Measurement Channel
MC33079
V
OM
10 100 1.0 k 100 k10 k
f, FREQUENCY (Hz)
Drive Channel V V R DV TA = 25°C
CS = 20 Log
= +15 V
CC
= -15 V
EE
= 2.0 KW
L
= 20 V
OD
DV
DV
OM
50
VCC = +15 V V
= -15 V
EE
40
VO = 0 V T
= 25°C
A
30
20
10
O
| Z|, OUTPUT IMPEDANCE ()Ω
0
1.0 k 10 k 100 k 1.0 M 10 M
A
V
= 1000
A
= 100
V
A
= 10
V
A
= 1.0
V
f, FREQUENCY (Hz)
Figure 19. Output Impedance
versus Frequency
1.0 VCC = +15 V V
= -15 V
EE
V
= 1.0 Vrms
O
T
= 25°C
pp
0.1
A
0.01
OA
THD, TOTAL HARMONIC DISTORTION (%)
0.001 10 100 1.0 k 10 k 100 k
f, FREQUENCY (Hz)
-
+
V
2.0 kW
O
Figure 20. Channel Separation
versus Frequency
1.0 V
= +15 V
CC
VEE = -15 V
0.5
f = 2.0 kHz T
= 25°C
A
0.1
0.05
0.01
0.005
THD, TOTAL HARMONIC DISTORTION (%)
0.001 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
A
A
V
= 1.0
V
A
A
= 10
= 1000
V
= 100
V
R
A
V
in
VO, OUTPUT VOLTAGE (Vrms)
Figure 22. Total Harmonic Distortion
versus Output Voltage
­+
10 kW
V
O
2.0 kW
Figure 21. Total Harmonic Distortion
versus Frequency
10
Vin = 2/3 (VCC -VEE)
9.0 T
= 25°C
8.0
7.0
A
Falling
Rising
6.0
5.0
4.0
3.0
SR, SLEW RATE (V/ s)μ
2.0
DV
-
+
in
2.0 kW
V
O
1.0
0
6 8 10 14 18
4121620
VCC |VEE| , SUPPLY VOLTAGE (V)
Figure 23. Slew Rate versus Supply Voltage
http://onsemi.com
7
Page 8
MC33078, MC33079, NCV33078, NCV33079
,
(
)
φ
10
VCC = +15 V V
= -15 V
EE
= 20 V
DV
in
8.0 Falling
Rising
6.0
-
+
DV
4.0
SR, SLEW RATE (V/s)μ
2.0
-55 -25 0 25 50 75 100 125
in
T
, AMBIENT TEMPERATURE (°C)
A
2.0 kW
V
O
Figure 24. Slew Rate versus Temperature Figure 25. Voltage Gain and Phase
14
12
10
8.0
6.0
4.0
m
2.0
A, OPEN LOOP GAIN MARGIN (dB)
0
-
V
+
in
2.0 kW
V
O
C
L
25°C
Phase
-55°C
125°C
125°C
VCC = +15 V V
= -15 V
EE
V
= 0 V
O
-55°C25°C
Gain
1 10 100 1000
C
, OUTPUT LOAD CAPACITANCE (pF) CL, OUTPUT LOAD CAPACITANCE (pF)
L
Figure 26. Open Loop Gain Margin and
Phase Margin versus Load Capacitance
120
100
80
60
40
20
VOL
A, OPEN LOOP VOLTAGE GAIN (dB)
0
1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M
0
10
100
80
20
30
40
50
, PHASE MARGIN (DEGREES)
60
φ
70
60
40
os, OVERSHOOT (%)
20
m
0
10 100 1.0 k 10 k
VCC = +15 V V
= -15 V
EE
= 2.0 kW
R
L
T
= 25°C
A
Phase
Gain
f, FREQUENCY (Hz)
versus Frequency
-
+
DV
in
V
O
C
L
125°C
25°C
-55°C
VCC = +15 V VEE = -15 V
= 100 mV
DV
in
Figure 27. Overshoot versus Output
Load Capacitance
0
45
DEGREES
90
135
EXCESS PHASE
180
100
80
nV/ Hz
50
30
VCC = +15 V V
= -15 V
EE
TA = 25°C
20
10
8.0
5.0
Voltage
3.0
2.0
1.0 10 100 1.0 k 10 k 100 k
n
e, INPUT REFERRED NOISE VOLTAGE ()
f, FREQUENCY (Hz)
Current
Figure 28. Input Referred Noise Voltage and
Current versus Frequency
10
1000
pA/ Hz
nV/ Hz
100
10
, REFERRED NOISE VOLTAGE (
n
1.0
0.1
V)
, INPUT REFERRED NOISE CURRENT ( )
n
i
10 100 1.0 k 10 k 100 k 1.0 M
http://onsemi.com
8
VCC = +15 V V
= -15 V
EE
f = 1.0 kHz T
= 25°C
A
V
(total) =
n
Ǹ
(inRs)2 )e
2
 )4KTR
n
S
RS, SOURCE RESISTANCE (W)
Figure 29. Total Input Referred Noise Voltage
versus Source Resistance
Page 9
MC33078, MC33079, NCV33078, NCV33079
= +15 V
V
CC
V
= -15 V
EE
AV = -1.0
= 2.0 kW
R
L
C
= 100 pF
L
T
= 25°C
A
14
12
10
R
1
8.0
6.0
4.0
m A , GAIN MARGIN (dB)
2.0
0
-
+
R
2
VCC = +15 V V
= -15 V
EE
R
= R1 +R
T
AV = +100 V
= 0 V
O
T
= 25°C
A
Phase
V
O
2
10 100 1.0 k 10 k 100 k
Gain
RT, DIFFERENTIAL SOURCE RESISTANCE (W)
Figure 30. Phase Margin and Gain Margin versus
Differential Source Resistance
= +15 V
V
CC
V
= -15 V
EE
AV = +1.0
= 2.0 kW
R
L
C
= 100 pF
L
T
= 25°C
A
70
60
50
40
30
20
, PHASE MARGIN (DEGREES)
m
10
φ
0
O
V, OUTPUT VOLTAGE (5.0 V/DIV)
t, TIME (2.0 ms/DIV)
O
V, OUTPUT VOLTAGE (5.0 V/DIV)
t, TIME (2.0 ms/DIV)
Figure 31. Inverting Amplifier Slew Rate Figure 32. Non−inverting Amplifier Slew Rate
V
= +15 V
CC
V
= -15 V
EE
= 2.0 kW
R
L
C
= 100 pF
L
A
= +1.0
V
T
= 25°C
A
O
V, OUTPUT VOLTAGE (5.0 V/DIV)
t, TIME (200 ms/DIV)
VCC = +15 V V
= -15 V
EE
BW = 0.1 Hz to 10 Hz T
= 25°C
A
n
e, INPUT NOISE VOLTAGE (100 nV/DIV)
t, TIME (1.0 sec/DIV)
Figure 33. Noninverting Amplifier Overshoot Figure 34. Low Frequency Noise Voltage
versus Time
http://onsemi.com
9
Page 10
MC33078, MC33079, NCV33078, NCV33079
p−p
0.1 mF
10 W
Note: All capacitors are non−polarized.
100 kW
-
D.U.T.
+
Voltage Gain = 50,000
2.0 kW
4.7 mF
24.3 kW
+
1/2
MC33078
­100 kW
0.1 mF
4.3 kW
2.2 mF
22 mF
R
110 kW
Scope
× 1
= 1.0 MW
in
Figure 35. Voltage Noise Test Circuit
(0.1 Hz to 10 Hz
)
ORDERING INFORMATION
Device Package Shipping
MC33078DG
MC33078DR2G
NCV33078DR2G*
MC33078P PDIP8
MC33078PG PDIP8
MC33079DG SOIC14
MC33079DR2G
NCV33079DR2G*
MC33079P PDIP14
MC33079PG
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NCV devices are qualified for automotive use.
SOIC8
(PbFree)
(PbFree)
(PbFree)
SOIC14
(PbFree)
PDIP14
(PbFree)
98 Units / Rail
2500 / Tape & Reel
50 Units / Rail
55 Units / Rail
2500 / Tape & Reel
25 Units / Rail
http://onsemi.com
10
Page 11
MC33078, MC33079, NCV33078, NCV33079
PACKAGE DIMENSIONS
PDIP8
N SUFFIX
CASE 62605
ISSUE M
NOTE 5
D
D1
14
TOP VIEW
e/2
A1
e
SIDE VIEW
NOTES:
A
58
E
E1
F
c
E2
END VIEW
NOTE 3
A
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. DIMENSION E IS MEASURED WITH THE LEADS RE­STRAINED PARALLEL AT WIDTH E2.
4. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
DIM MIN NOM MAX
A −−−− −−−− 0.210
A1 0.015 −−−− −−−−
b 0.014 0.018 0.022 C 0.008 0.010 0.014 D 0.355 0.365 0.400
D1 0.005 −−−− −−−−
E 0.300 0.310 0.325
E1 0.240 0.250 0.280 6.10 6.35 7.11 E2 E3 −−−− −−−− 0.430 −−−− −−−− 10.92
e 0.100 BSC
L 0.115 0.130 0.150
INCHES
0.300 BSC 7.62 BSC
MILLIMETERS
MIN NOM MAX
−−−− −−−− 5.33
0.38 −−−− −−−−
0.35 0.46 0.56
0.20 0.25 0.36
9.02 9.27 10.02
0.13 −−−− −−−−
7.62 7.87 8.26
2.54 BSC
2.92 3.30 3.81
L
SEATING
C
PLANE
E3
8X
b
M
0.010 CA
END VIEW
http://onsemi.com
11
Page 12
Y
Z
MC33078, MC33079, NCV33078, NCV33079
PACKAGE DIMENSIONS
SOIC8 NB
CASE 75107
ISSUE AK
NOTES:
X A
58
B
1
S
0.25 (0.010)
4
M
M
Y
K
G
C
SEATING PLANE
0.10 (0.004)
H
D
0.25 (0.010) Z
M
Y
SXS
N
X 45
_
M
SOLDERING FOOTPRINT*
J
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 75101 THRU 75106 ARE OBSOLETE. NEW STANDARD IS 75107.
MILLIMETERS
DIMAMIN MAX MIN MAX
4.80 5.00 0.189 0.197
B 3.80 4.00 0.150 0.157 C 1.35 1.75 0.053 0.069 D 0.33 0.51 0.013 0.020
G 1.27 BSC 0.050 BSC
H 0.10 0.25 0.004 0.010 J 0.19 0.25 0.007 0.010 K 0.40 1.27 0.016 0.050
M 0 8 0 8
____
N 0.25 0.50 0.010 0.020 S 5.80 6.20 0.228 0.244
INCHES
1.52
0.060
7.0
0.275
0.6
0.024
4.0
0.155
1.270
0.050
SCALE 6:1
ǒ
inches
mm
Ǔ
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
12
Page 13
T
SEATING PLANE
14 8
17
N
HG
MC33078, MC33079, NCV33078, NCV33079
PACKAGE DIMENSIONS
PDIP14
CASE 646−06
ISSUE P
B
A
F
C
D
14 PL
0.13 (0.005)
K
J
M
L
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
DIM MIN MAX MIN MAX
A 0.715 0.770 18.16 19.56 B 0.240 0.260 6.10 6.60 C 0.145 0.185 3.69 4.69 D 0.015 0.021 0.38 0.53 F 0.040 0.070 1.02 1.78 G 0.100 BSC 2.54 BSC H 0.052 0.095 1.32 2.41 J 0.008 0.015 0.20 0.38 K 0.115 0.135 2.92 3.43 L
0.290 0.310 7.37 7.87
M −−− 10 −−− 10 N 0.015 0.039 0.38 1.01
MILLIMETERSINCHES
__
http://onsemi.com
13
Page 14
MC33078, MC33079, NCV33078, NCV33079
PACKAGE DIMENSIONS
SOIC14 NB
CASE 751A03
ISSUE K
14
H
M
0.25 B
D
A B
8
A3
E
L
71
b
M
13X
M
0.25 B
S
A
C
S
A
e
A1
C
SEATING PLANE
DETAIL A
h
X 45
_
M
DETAIL A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
DIM MIN MAX MIN MAX
A 1.35 1.75 0.054 0.068 A1 0.10 0.25 0.004 0.010 A3 0.19 0.25 0.008 0.010
b 0.35 0.49 0.014 0.019
D 8.55 8.75 0.337 0.344
E 3.80 4.00 0.150 0.157 e 1.27 BSC 0.050 BSC
H 5.80 6.20 0.228 0.244
h 0.25 0.50 0.010 0.019 L 0.40 1.25 0.016 0.049
M 0 7 0 7
__ __
INCHESMILLIMETERS
SOLDERING FOOTPRINT*
6.50
1
14X
1.18
1.27
PITCH
14X
0.58
DIMENSIONS: MILLIMETERS
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada Fax: 3036752176 or 8003443867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−58171050
http://onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative
MC33078/D
14
Loading...