Datasheet MC33076D, MC33076DR2, MC33076P1 Datasheet (MOTOROLA)

Page 1
Order this document by MC33076/D

           
The MC33076 operational amplifier employs bipolar technology with innovative high performance concepts for audio and industrial applications. This device uses high frequency PNP input transistors to improve frequency response. In addition, the amplifier provides high output current drive capability while minimizing the drain current. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink AC frequency performance.
The MC33076 is tested over the automotive temperature range and is available in an 8–pin SOIC package (D suffix) and in both the standard 8 pin DIP and 16–pin DIP packages for high power applications.
100 Output Drive Capability
Large Output Voltage Swing
Low Total Harmonic Distortion
High Gain Bandwidth: 7.4 MHz
High Slew Rate: 2.6 V/µs
Dual Supply Operation: ±2.0 V to ±18 V
High Output Current: ISC = 250 mA typ
Similar Performance to MC33178
DUAL HIGH OUTPUT
CURRENT OPERATIONAL
AMPLIFIER
SEMICONDUCTOR
TECHNICAL DATA
8
1
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
PIN CONNECTIONS
Output 1
Inputs 1
1 2
– +
3 4
V
EE
1
8
1
P1 SUFFIX
PLASTIC PACKAGE
CASE 626
V
8
CC
Output 2
7 6
2
Inputs 2
+
5
Equivalent Circuit Schematic
(Each Amplifier)
V
CC
16
1
P2 SUFFIX
PLASTIC PACKAGE
CASE 648C
DIP (12+2+2)
PIN CONNECTIONS
1
I
ref
I
ref
V
in–
V
in+
C
C
C
M
V
out
Inputs 1
V
EE
Inputs 2
NC
NC
1
+
2 3 4 5 6 7
+
2
8
(16 Pin Pkg, Top View)
16 15 14 13 12 11 10
9
Output 1 NC V
CC
V
EE
NC NC
Output 2
ORDERING INFORMATION
Operating
V
EE
Device
MC33076D MC33076P1 Plastic DIP MC33076P2 Power Plastic
Temperature Range
TA = –40° to +85°C
Package
SO–8
MOTOROLA ANALOG IC DEVICE DATA
Motorola, Inc. 1996 Rev 0
1
Page 2
MC33076
MAXIMUM RATINGS
Rating Symbol Value Unit
Power Supply Voltage (Note 2) VCC to
Input Differential Voltage Range V Input Voltage Range V Output Short Circuit Duration (Note 2) t Maximum Junction Temperature T Storage Temperature T Maximum Power Dissipation P
NOTES: 1. Either or both input voltages should not exceed VCC or VEE.
2.Power dissipation must be considered to ensure maximum junction temperature (TJ)
is not exceeded (see power dissipation performance characteristic, Figure 1).
See applications section for further information.
V
EE
IDR
IR
SC
J
stg
D
+36 V
(Note 1) V (Note 1) V
5.0 sec
+150 °C
–60 to +150 °C
(Note 2) mW
DC ELECTRICAL CHARACTERICISTICS (V
Characteristics Figure Symbol Min Typ Max Unit
Input Offset Voltage (RS = 50 , VCM = 0 V)
(VS = ±2.5 V to ±15 V) TA = +25°C TA = –40° to +85°C
Input Offset Voltage Temperature Coefficient
(RS = 50 , VCM = 0 V) TA = –40° to +85°C
Input Bias Current (VCM = 0 V)
TA = +25°C TA = –40° to +85°C
Input Offset Current (VCM = 0 V)
TA = +25°C TA = –40° to +85°C
Common Mode Input Voltage Range 5 V
Large Signal Voltage Gain (VO = –10 V to +10 V)
(TA = +25°C)
RL = 100 RL = 600
(TA = –40° to +85°C)
RL = 600
Output Voltage Swing (VID = ±1.0 V)
(VCC = +15 V, VEE = –15 V)
RL = 100 RL = 100 RL = 600 RL = 600
(VCC = +2.5 V, VEE = –2.5 V)
RL = 100
RL = 100 Common Mode Rejection (Vin = ±13 V) 10 CMR 80 116 dB Power Supply Rejection
(VCC/VEE = +15 V/–15 V , +5.0 V/–15 V, +15 V/–5.0 V)
= +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
CC
2 |VIO|
— —
VIO/T
2.0
3, 4 I
6 A
7, 8, 9
11 PSR
IB
|IIO|
ICR
VOL
V
O+
V
O–
V
O+
V
O–
V
O+
V
O–
— —
— —
–13 –14
25 50
25
10 — 13 —
1.2 —
80 120
0.5
0.5
100
5.0 —
+14
200
+11.7 –11.7 +13.8 –13.8
+1.66 –1.74
4.0
5.0
500 600
70
100
13
— —
–10
–13
–1.2
mV
µV/°C
nA
nA
V
kV/V
V
dB
2
MOTOROLA ANALOG IC DEVICE DATA
Page 3
MC33076
DC ELECTRICAL CHARACTERICISTICS (V
Characteristics Figure Symbol Min Typ Max Unit
Output Short Circuit Current (VID = ±1.0 V Output to Gnd)
(VCC = +15 V, VEE = –15 V)
Source Sink
(VCC = +2.5 V, VEE = –2.5 V)
Source Sink
Power Supply Current per Amplifier (VO = 0 V)
(VS = ±2.5 V to ±15 V)
TA = +25°C TA = –40° to +85°C
AC ELECTRICAL CHARACTERICISTICS (V
Characteristics
Slew Rate (Vin = –10 V to +10 V, RL = 100 , CL = 100 pF, AV = +1) 15 SR 1.2 2.6 V/µs Gain Bandwidth Product (f = 20 kHz) 16 GBW 4.0 7.4 MHz Unity Gain Frequency (Open Loop) (RL = 600 , CL = 0 pF) f Gain Margin (RL = 600 , CL = 0 pF) 19, 20 A Phase Margin (RL = 600 , CL = 0 pF) 19, 20 Channel Separation (f = 100 Hz to 20 kHz) 21 CS –120 dB Power Bandwidth (VO = 20 Vpp, RL = 600 , THD 1%) BW Total Harmonic Distortion (RL = 600 , VO = 2.0 Vpp, AV = +1)
f = 1.0 kHz f = 10 kHz
f = 20 kHz Open Loop Output Impedance (VO = 0 V, f = 2.5 MHz, AV = 10) 23 |ZO| 75 Differential Input Resistance (VCM = 0 V) R Differential Input Capacitance (VCM = 0 V) C Equivalent Input Noise Voltage (RS = 100 )
f = 10 Hz
f = 1.0 kHz Equivalent Input Noise Current
f = 10 Hz
f = 1.0 kHz
= +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
CC
12, 13 I
14 I
= +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
CC
Figure Symbol Min Typ Max Unit
22 THD
24 e
i
SC
190
63 —
D
— —
U
m m
p
in in n
n
3.5 MHz — 15 dB — 52 Deg
32 kHz
— — —
200 k 10 pF
— —
— —
+250 –280
+94 –80
2.2 —
0.0027
0.011
0.022
7.5
5.0
0.33
0.15
–215
–46
2.8
3.3
— — —
nV/Hz
pA/Hz
— —
mA
mA
%
MOTOROLA ANALOG IC DEVICE DATA
3
Page 4
MC33076
4000 3500 3000 2500 2000 1500 1000
500
, MAXIMUM POWER DISSIPATION (mW)
D
P
0
–60 –30
250
225
200
Figure 1. Maximum Power Dissipation
versus T emperature
See Application Section
for Further Information
MC33076P2
MC33076P1
MC33076D
0 30 60 90 120 150 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0
°
TA, AMBIENT TEMPERATURE (
C)
Figure 3. Input Bias Current versus
Common Mode V oltage
VCC = +15 V VEE = –15 V
°
TA = 25
Figure 2. Distribution of Input
Offset Voltage
PERCENT AGE OF AMPLIFIERS (%)
25
20
15
10
5
0
VIO, INPUT OFFSET VOLTAGE (mV)
180 amplifiers tested from 3 wafer lots
±
15 V
VCC =
°
C
TA = 25 (Plastic DIP package)
2.5
Figure 4. Input Bias Current
versus T emperature
150
C
137
125
175
150
IB
125
I , INPUT BIAS CURRENT (nA)
100
–15 –10 –5.0 0 5.0 10 15 –55 –25 5.0 35 65 95 125
VCM, COMMON MODE VOLTAGE (V)
Figure 5. Input Common Mode V oltage
Range versus T emperature
V
CC VCC–0.25 VCC–0.50
VCC–0.75
VCC–1.0
VEE+0.25
VEE+0.125
V
EE
–55 –25 5.0 35 65 95 125
TA, TEMPERATURE (°C)
VCC = +5.0 V to +18 V VEE = –5.0 V to –18 V
VIO = 5.0 mV
112
100
IB
88
I , INPUT BIAS CURRENT (nA)
75
TA, AMBIENT TEMPERATURE (°C)
Figure 6. Open Loop Voltage Gain
versus T emperature
120
115
110
105
100
VCC = +
, OPEN LOOP VOL TAGE GAIN (dB)
95
VOL
A
90
–55 –25 5.0 35 65 95 125
15 V VEE = –15 V f = 10 Hz
VO = –10 to +10 V
TA, AMBIENT TEMPERATURE (°C)
RL = 2.0 k
RL = 100
VCC = +15 V VEE = –15 V VCM = 0 V
4
MOTOROLA ANALOG IC DEVICE DATA
Page 5
MC33076
Figure 7. Output Voltage Swing
versus Supply V oltage
40 35
pp
30 25
20 15 10
, OUTPUT VOL TAGE (V )
O
V
5.0
TA = 25°C
0
0 5.0 10 15 20 25 10 100 1.0 k 10 k
VCC, |VEE|, SUPPLY VOLTAGE (V)
RL = 10 k
RL = 100
, OUTPUT VOLTAGE SWING (Vpp) V
Figure 9. Output Voltage
versus Frequency
25
20
pp
Figure 8. Maximum Peak–to–Peak Output
V oltage Swing versus Load Resistance
30
5.0
O
25
20
15
10
0
TA = 25°C f = 1.0 kHz
RL, LOAD RESISTANCE T O GROUND (Ω)
VS = ±15 V
VS = ±5.0 V
Figure 10. Common Mode Rejection
versus Frequency Over T emperature
100
80
15
VCC = +15 V
10
VEE = –15 V
RL = 100 AV = +1.0
, OUTPUT VOL TAGE (V )
5.0
O
V
0
100 1.0 k 10 k 100 k 1.0 M 100 1.0 k 10 k 100 k 1.0 M10
THD = TA = 25
1.0%
°
C
f, FREQUENCY (Hz)
Figure 11. Power Supply Rejection
versus Frequency Over T emperature
100
80
+PSR
60
40
VCC = +15 V VEE = –15 V
20
VCC = ±1.5 V
°
TA = –55
PSR, POWER SUPPLY REJECTION (dB)
0
100 1.0 k 10 k 100 k 1.0 M10
to +125°C
f, FREQUENCY (Hz)
–PSR
10 M 0 3.0 6.0 9.0 12
60
40
VCC = +15 V VEE = –15 V VCM = 0 V
20
VCM = ±1.5 V
°
to +125°C
TA = –55
CMR, COMMON MODE REJECTION (dB)
0
f, FREQUENCY (Hz)
Figure 12. Output Short Circuit Current
versus Output Voltage
300
250
200
150
100
50
|, OUTPUT SHORT CIRCUIT CURRENT (mA)
SC
|I
0
VCC = +15 V VEE = –15 V
±
1.0 V
VID =
|VO|, OUTPUT VOLTAGE (V)
Source
Sink
15
MOTOROLA ANALOG IC DEVICE DATA
5
Page 6
MC33076
|, OUTPUT SHORT CIRCUIT CURRENT (mA)
SC
|I
S)
µ
320 300 280
260 240 220 200
180
3.0
2.5
2.0
Figure 13. Output Short Circuit Current
versus T emperature
Sink
Source
VCC = +15 V VEE = –15 V
±
1.0 V
VID =
RL < 10
TA, AMBIENT TEMPERATURE (°C)
Figure 15. Slew Rate
versus T emperature
Figure 14. Supply Current versus
Supply Voltage with No Load
5.0
4.0
3.0
2.0
1.0
, SUPPLY CURRENT/AMPLIFIER (mA)
D
I
0
0 3.0 6.0 9.0 12 15 18–55 –25 5.0 35 65 95 125
VCC |VEE|, SUPPLY VOLTAGE (V)
Figure 16. Gain Bandwidth Product
versus T emperature
8.5
8.0
7.5
TA = +125°C
TA = +25°C
TA = –55°C
1.5 –
V
+
1.0
SR, SLEW RATE (V/
VCC = +15 V
0.5
0
–55 –25 5.0 35 65 95 125
15
VEE = –
Vin = 20 Vpp
V
TA, AMBIENT TEMPERATURE (°C)
in
100
Figure 17. V oltage Gain and Phase
versus Frequency
50
30
10
–10
, VOLTAGE GAIN (dB) A
1A) Phase, VS = ±18 V
V
2A) Phase, VS =
–30
1B) Gain, VS = 2B) Gain, VS =
–50
2 B
±
1.5 V
±
18 V
±
1.5 V
f, FREQUENCY (Hz)
1 A
2
A
1 B
10 M1.0 M100 k
100pF
30 M
7.0
6.5
6.0
GBW, GAIN BANDWIDTH PRODUCT (MHz)
5.5 –55 –25 5.0 35 65 95 125
80
120
160
200
240
, EXCESS PHASE (DEGREES)
280
50
30
10
–10
1A) Phase, (R = 100 Ω)
, VOLTAGE GAIN (dB)
V
2A) Phase, (R = 100
A
–30
1B) Gain, (R = 100 2B) Gain, (R = 100
–50
VCC = +15 V
15
VEE = – f = 100 Hz RL = 100 CL = 0 pF
V
TA, AMBIENT TEMPERATURE (°C)
Figure 18. V oltage Gain and Phase
versus Frequency
, C = 300 pF)
)
, C = 300 pF)
f, FREQEUNCY (Hz)
80
120
160
1
1B
2B
2 A
200
A
240
, EXCESS PHASE (DEGREES)
280
30 M10 M1.0 M100 k
6
MOTOROLA ANALOG IC DEVICE DATA
Page 7
MC33076
Figure 19. Phase Margin and Gain Margin
versus Differential Source Resistance
20
16
12
8.0
, GAIN MARGIN (dB)
m
A
4.0
0
0 2.0 k 4.0 k 6.0 k 8.0 k 10 k 12 k
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
Gain Margin
Phase Margin
VCC = +15 V VEE = – RT = R1 + R VO = 0 V TA = 25
°
15
50
V
40
2
C
30
20
10
, PHASE MARGIN (DEGREES)
m
0
Figure 21. Channel Separation
versus Frequency
140 130 120 110 100
Drive Channel
90
CS, CHANNEL SEPARATION (dB)
80 70
100 1.0 k 10 k 100 k 1.0 M 10 100 1.0 k 10 k 100 k
VCC = +
15
VEE = – RL = 100 TA = 25°C
1
5 V
V
f, FREQUENCY (Hz)
Figure 20. Open Loop Gain Margin and Phase
Margin versus Output Load Capacitance
60
VCC = +15 V
15
50
40
30
20
, PHASE MARGIN (DEGREES)
10
m
0
0 400 800 1200 1600 2000
Gain Margin
CL, OUTPUT LOAD CAPACITANCE (pF)
Phase Margin
VEE = – VO = 0 V
V
Figure 22. T otal Harmonic Distortion
versus Frequency
3.0 VCC = +15 V
15
2.5
2.0
1.5
1.0
0.5
THD, TOT AL HARMONIC DISTORTION (%)
0
VEE = – RL = 100 VO = 2.0 Vpp TA = 25
V
°
C
AV = +1000
AV = +100
f, FREQUENCY (Hz)
AV = +10
AV = +1
16 14
12
10
8.0
6.0
4.0 , OPEN LOOP GAIN MARGIN (dB)
m
2.0
A
0
Figure 23. Output Impedance
versus Frequency
100
VCC = +15 V
15
, OUTPUT IMPEDANCE ( ) Z
VEE = –
80
VCM = 0 V VO = 0 V TA = 25
60
40
20
O
AV = 100
0
V
°
C
AV = 1000
AV = 10
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
AV = 1.0
Figure 24. Input Referred Noise V oltage
versus Frequency
Hz)
20
VCC = +15 V
15
VEE = –
16
TA = 25
12
8.0
4.0
, INPUT REFERRED NOISE VOL TAGE (NV/
0
10 M1.0 M100 k10 k 10 100 1.0 k 10 k 100 k
n
e
V
°
C
f, FREQUENCY (Hz)
+
Input Noise Voltage Test Circuit
V
O
7
Page 8
MC33076
Figure 25. Percent Overshoot
versus Load Capacitance
100
VCC = +15 V VEE = –15 V
os, PERCENT OVERSHOOT (%)
80
60
40
20
0
TA = 25
°
C
RL = 2.0 k
CL, LOAD CAPACITANCE (pF)
RL = 100
10 k100010010
APPLICATIONS INFORMATION
The MC33076 dual operational amplifier is available in the standard 8–pin plastic dual–in–line (DIP) and surface mount packages, and also in a 16–pin batwing power package. To enhance the power dissipation capability of the power package, Pins 4, 5, 12, and 13 are tied together on the leadframe, giving it an ambient thermal resistance of 52°C/W
Figure 26. PC Board Heatsink Example
Copper
Pad
Copper
Pad
typically, in still air. The junction–to–ambient thermal resistance (R
) can be decreased further by using a copper
θJA
padb on the printed circuit board (as shown in Figure 26) to draw the heat away from the package.
Care must be taken not to exceed the maximum junction temperature or damage to the device may occur.
8
MOTOROLA ANALOG IC DEVICE DATA
Page 9
MC33076
OUTLINE DIMENSIONS
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
A
E
B
C
A1
NOTE 2
–T–
SEATING PLANE
H
D
58
1
H
4
e
A
B
SS
58
14
F
–A–
N
D
G
0.13 (0.005) B
0.25MB
SEATING PLANE
0.10
A0.25MCB
–B–
C
K
M
M
h
X 45
_
P1 SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
L
M
A
T
M
NOTES:
C
q
L
J
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.
MILLIMETERS
DIM MIN MAX
A 1.35 1.75
A1 0.10 0.25
B 0.35 0.49 C 0.18 0.25 D 4.80 5.00 E
3.80 4.00
1.27 BSCe
H 5.80 6.20 h
0.25 0.50
L 0.40 1.25
0 7
q
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
DIM MIN MAX MIN MAX
A 9.40 10.16 0.370 0.400 B 6.10 6.60 0.240 0.260 C 3.94 4.45 0.155 0.175 D 0.38 0.51 0.015 0.020
F 1.02 1.78 0.040 0.070 G 2.54 BSC 0.100 BSC H 0.76 1.27 0.030 0.050
J 0.20 0.30 0.008 0.012 K 2.92 3.43 0.115 0.135
L 7.62 BSC 0.300 BSC M ––– 10 ––– 10 N 0.76 1.01 0.030 0.040
__
INCHESMILLIMETERS
__
M
MOTOROLA ANALOG IC DEVICE DATA
9
Page 10
–T–
SEATING PLANE
MC33076
OUTLINE DIMENSIONS
P2 SUFFIX
PLASTIC PACKAGE
CASE 648C–03
(DIP (12+2+2))
ISSUE C
–A–
16 9
–B–
18
NOTE 5
C
N
F
D
0.13 (0.005) T
E
G
16 PL
M
S
A
L
J 16 PL
0.13 (0.005) T
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. INTERNAL LEAD CONNECTION BETWEEN 4 AND 5, 12 AND 13.
DIM MIN MAX MIN MAX
A 0.740 0.840 18.80 21.34 B 0.240 0.260 6.10 6.60 C 0.145 0.185 3.69 4.69 D 0.015 0.021 0.38 0.53 E 0.050 BSC 1.27 BSC F 0.040 0.70 1.02 1.78 G 0.100 BSC 2.54 BSC
M
M
S
B
J 0.008 0.015 0.20 0.38 K 0.115 0.135 2.92 3.43
L 0.300 BSC 7.62 BSC M 0 10 0 10 N 0.015 0.040 0.39 1.01
MILLIMETERSINCHES
____
10
MOTOROLA ANALOG IC DEVICE DATA
Page 11
MC33076
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MOTOROLA ANALOG IC DEVICE DATA
11
Page 12
MC33076
How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T ., Hong Kong. 852–26629298
12
MOTOROLA ANALOG IC DEVICE DATA
MC33076/D
*MC33076/D*
Loading...