Datasheet MC330078D, MC330078P, MC330079D, MC330079P Datasheet (Motorola)

Page 1
Device
Operating
Temperature Range
Package
 
DUAL/QUAD
LOW NOISE
OPERATIONAL AMPLIFIERS
MC33078D MC33078P
TA = –40° to +85°C
SO–8
Plastic DIP
Order this document by MC33078/D
) *
) *
* )
* )
(Dual, Top View)
4
V
EE
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
P SUFFIX
PLASTIC PACKAGE
CASE 646
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
P SUFFIX
PLASTIC PACKAGE
CASE 626
1
1
8
8
14
1
14
1
DUAL
1 2 3
5
6
7
8
V
CC
Output 2
Inputs 2
Inputs 1
– +
1
– +
2
Output 1
(Quad, Top View)
1 2 3 4 5 6 7
14
8
9
10
11
12
13
Output 1
V
CC
Output 4
Inputs 4
Output 2
V
EE Inputs 3
Output 3
1
4
23
Inputs 1
Inputs 2
PIN CONNECTIONS
PIN CONNECTIONS
QUAD
MC33079D MC33079P
SO–14
Plastic DIP
1
MOTOROLA ANALOG IC DEVICE DATA
    
The MC33078/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink AC frequency performance.
The MC33078/9 family offers both dual and quad amplifier versions, tested over the automotive temperature range and available in the plastic DIP and SOIC packages (P and D suffixes).
Dual Supply Operation: ±5.0 V to ±18 V
Low Voltage Noise: 4.5 nV/ Hz
Ǹ
Low Input Offset Voltage: 0.15 mV
Low T.C. of Input Offset Voltage: 2.0 µV/°C
Low Total Harmonic Distortion: 0.002%
High Gain Bandwidth Product: 16 MHz
High Slew Rate: 7.0 V/µs
High Open Loop AC Gain: 800 @ 20 kHz
Excellent Frequency Stability
Large Output Voltage Swing: +14.1 V/ –14.6 V
ESD Diodes Provided on the Inputs
Representative Schematic Diagram
(Each Amplifier)
V
CC
D1
Q4
Q9
Q3 Q5
Pos
D3
C2
R7
Q11
Neg
R2
Q8
D4
C3 R9
Q10
Q2 D2
Q6
R4
Q7
Q5
R6
Q12
R3
C1
R1
Q1
Z1
J1
Amplifier
Biasing
V
EE
Q3
V
out
Motorola, Inc. 1996 Rev 0
Page 2
MC33078 MC33079
2
MOTOROLA ANALOG IC DEVICE DATA
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to V
EE)
V
S
+36 V
Input Differential Voltage Range V
IDR
(Note 1) V
Input Voltage Range V
IR
(Note 1) V
Output Short Circuit Duration (Note 2) t
SC
Indefinite sec
Maximum Junction Temperature T
J
+150 °C
Storage Temperature T
stg
–60 to +150 °C
Maximum Power Dissipation P
D
(Note 2) mW
NOTES: 1. Either or both input voltages must not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 1).
DC ELECTRICAL CHARACTERISTICS (V
CC
= +15 V , VEE = –15 V , TA = 25°C, unless otherwise noted.)
Characteristics
Symbol Min Typ Max Unit
Input Offset Voltage (RS = 10 , VCM = 0 V, VO = 0 V)
(MC33078)TA = +25°C
TA = –40° to +85°C
(MC33079)TA = +25°C
TA = –40° to +85°C
|VIO|
— — — —
0.15 —
0.15 —
2.0
3.0
2.5
3.5
mV
Average Temperature Coefficient of Input Of fset Voltage
RS = 10 , VCM = 0 V, VO = 0 V, TA = T
low
to T
high
VIO/T 2.0 µV/°C
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C TA = –40° to +85°C
I
IB
— —
300
750 800
nA
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = +25°C TA = –40° to +85°C
I
IO
— —
25 —
150 175
nA
Common Mode Input Voltage Range (VIO = 5.0 mV, VO = 0 V) V
ICR
±13 ±14 V
Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 k)
TA = +25°C TA = –40° to +85°C
A
VOL
90 85
110
— —
dB
Output Voltage Swing (VID = ±1.0V)
RL = 600 RL = 600 RL = 2.0 k RL = 2.0 k RL = 10 k RL = 10 k
VO+ VO– VO+ VO– VO+ VO–
— —
+13.2
+13.5
+10.7 –11.9 +13.8 –13.7 +14.1 –14.6
— — —
–13.2
–14
V
Common Mode Rejection (Vin = ±13V) CMR 80 100 dB Power Supply Rejection (Note 3)
VCC/VEE = +15 V/ –15 V to +5.0 V/ –5.0 V
PSR 80 105 dB
Output Short Circuit Current (VID = 1.0 V , Output to Ground)
Source Sink
I
SC
+15 –20
+29
–37
— —
mA
Power Supply Current (VO = 0 V, All Amplifiers)
(MC33078) TA = +25°C
(MC33078) TA = –40° to +85°C
(MC33079) TA = +25°C
(MC33079) TA = –40° to +85°C
I
D
— — — —
4.1 —
8.4 —
5.0
5.5 10 11
mA
NOTE: 3. Measured with VCC and VEE differentially varied simultaneously.
Page 3
MC33078 MC33079
3
MOTOROLA ANALOG IC DEVICE DATA
AC ELECTRICAL CHARACTERISTICS (V
CC
= +15 V , VEE = –15 V , TA = 25°C, unless otherwise noted.)
Characteristics Symbol Min Typ Max Unit
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 k, CL = 100 pF AV = +1.0) SR 5.0 7.0 V/µs Gain Bandwidth Product (f = 100 kHz) GBW 10 16 MHz Unity Gain Frequency (Open Loop) f
U
9.0 MHz
Gain Margin (RL = 2.0 k)C
L
= 0 pF
CL = 100 pF
A
m
— —
–11
–6.0
dB
Phase Margin (RL = 2.0 k)C
L
= 0 pF
CL = 100 pF
φ
m
— —
55 40
Degree
s Channel Separation (f = 20 Hz to 20 kHz) CS –120 dB Power Bandwidth (VO = 27 Vpp, RL = 2.0 k, THD 1.0%) BW
p
120 kHz
Distortion (RL = 2.0 k, f = 20 Hz to 20 kHz, VO = 3.0 V
rms
, AV = +1.0) THD 0.002 % Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) |ZO| 37 Differential Input Resistance (VCM = 0
V)
R
IN
175 k
Differential Input Capacitance (VCM = 0
V)
C
IN
12 pF
Equivalent Input Noise Voltage (RS = 100 , f = 1.0 kHz) e
n
4.5
nV/ Hz
Equivalent Input Noise Current (f = 1.0 kHz) i
n
0.5
pA/ Hz
VCM = 0 V
TA = 25
°
C
Figure 1. Maximum Power Dissipation
versus Temperature
Figure 2. Input Bias Current versus
Supply Voltage
Figure 3. Input Bias Current versus Temperature Figure 4. Input Offset Voltage versus Temperature
P , MAXIMUM POWER DISSIPATION (mW)
D
–20 0 20 40 60 80 100 120 140 160
TA, AMBIENT TEMPERATURE (
°
C)
–55 –40
MC33078P & MC33079P
MC33079D
MC33078D
5.0 10 15 20 VCC, | VEE |, SUPPLY VOLT AGE (V)
I , INPUT BIAS CURRENT (nA)
IB
TA, AMBIENT TEMPERATURE (°C)
0 25 50 75 100 125–55 –25
VCC = +15 V VEE = –15 V
VCM = 0 V
V , INPUT OFFSET VOLTAGE (mV)
IO
TA, AMBIENT TEMPERATURE (°C)
–55 –25 0 25 50 75 100 125
Unit 1
Unit 2
Unit 3
VCC = +15 V
VEE = –15 V
RS = 10
VCM = 0 V AV = +1
I , INPUT BIAS CURRENT (nA)
IB
2400
2000
1600
1200
800
400
0
800
600
400
200
0
1000
800
600
400
200
0
2.0
1.0
0
–1.0
–2.0
Page 4
MC33078 MC33079
4
MOTOROLA ANALOG IC DEVICE DATA
Sink
Source
VCC = +15 V
VEE = –15 V
RL < 100
VID = 1.0 V
–55°C
25°C
VCC = +15 V
VEE = –15 V
125°C
–55°C
125°C
25°C
Figure 5. Input Bias Current versus
Common Mode Voltage
Figure 6. Input Common Mode Voltage
Range versus Temperature
Figure 7. Output Saturation Voltage versus
Load Resistance to Ground
Figure 8. Output Short Circuit Current
versus Temperature
Figure 9. Supply Current versus Temperature
Figure 10. Common Mode Rejection
versus Frequency
I , INPUT BIAS CURRENT (nA)
IB
–15 –10 –5.0 0 5.0 10 15
VCM, COMMON MODE VOLTAGE (V)
VCC = +15 V
VEE = –15 V
TA = 25
°
C
V
ICR
Voltage
Range
–V
CM
–55 – 25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (
°
C)
+V
CM
VCC = +3.0 V to +15 V
VEE = –3.0 V to –15 V
VIO = 5.0 mV
VO = 0 V
| I |, OUTPUT SHORT CIRCUIT CURRENT (mA)
SC
TA, AMBIENT TEMPERATURE (°C)
–55 –25 0 25 50 75 100 125
I , SUPPLY CURRENT (mA)
CC
TA, AMBIENT TEMPERATURE (°C)
–55 –25 0 25 50 75 100 125
±
10 V
±
15 V
±
15 V
±
10 V
±
5.0 V
±
5.0 V
VCM = 0 V
RL =
VO = 0 V
MC33078
MC33079
Supply Voltages
CMR, COMMON MODE REJECTION (dB)
100 1.0 k 10 k 100 k 1.0 M 10 M
f, FREQUENCY (Hz)
VCC = +15 V VEE = –15 V VCM = 0 V
VCM = ±1.5 V
TA = 25
°
C
, OUTPUT SA TURATION VOLTAGE (V)
sat
RL, LOAD RESISTANCE T O GROUND (kΩ)
0 1.0 2.0 3.0 4.0
, INPUT COMMON MODE VOL TAGE RANGE (V)
V
600
500
400
300
200
100
0
VCC –0
VCC –0.5 VCC –1.0 VCC –1.5
VEE +1.5 VEE +1.0
VEE +0.5
VEE +0
50
30
20
10
40
10
8.0
6.0
4.0
2.0
0
160 140
120 100
80
60 40
20
VCC –1.0
VCC –3.0
VCC –5.0
VEE +5.0
VEE +3.0
VEE +1.0
CMR = 20Log
– +
V
CM
A
DM
V
CM
V
O
×
A
DM
V
O
Page 5
MC33078 MC33079
5
MOTOROLA ANALOG IC DEVICE DATA
V
O
, OUTPUT VOL TAGE (V )
pp
RL = 2.0 k
f ≤ 10 Hz
VO = 2/3 (VCC –VEE)
TA = 25
°
C
RL = 10 k
CL = 0 pF
f = 100 kHz
TA = 25
°
C
Figure 11. Power Supply Rejection
versus Frequency
Figure 12. Gain Bandwidth Product
versus Supply Voltage
Figure 13. Gain Bandwidth Product
versus Temperature
Figure 14. Maximum Output Voltage
versus Supply Voltage
Figure 15. Output Voltage versus Frequency
Figure 16. Open Loop Voltage Gain
versus Supply Voltage
f, FREQUENCY (Hz)
PSR, POWER SUPPLY REJECTION (dB)
100 1.0 k 10 k 100 k 1.0 M
10 M
+PSR
–PSR
VCC = +15 V
VEE = –15 V
TA = 25
°
C
VCC |VEE| , SUPPLY VOLT AGE (V)
GWB, GAIN BANDWIDTH PRODUCT (MHz)
5.0 10 15 20
TA, AMBIENT TEMPERATURE (
°
C)
GWB, GAIN BANDWIDTH PRODUCT (MHz)
–55 –25 0 50 75 10025 125
VCC = +15 V VEE = –15 V
f = 100 kHz RL = 10 k
CL = 0 pF
VCC |VEE| , SUPPLY VOLT AGE (V)
V , OUTPUT VOL TAGE (Vp)
O
5.0 10 15 20
VO –
VO +
TA = 25°C
RL = 10 k
RL = 10 k
RL = 2.0 k
RL = 2.0 k
f, FREQUENCY (Hz)
10 100 1.0 k 10 k 100 k 1.0 M 10 M
VCC = +15 V
VCC = –15 V
RL = 2.0 k
AV = +1.0
THD
1.0%
TA = 25
°
C
VCC |VEE| , SUPPLY VOLT AGE (V)
VOL
A , OPEN LOOP VOL TAGE GAIN (dB)
5.0 10 15 20
140
120 100
80 60 40
20
0
30
20
10
0
20
15
10
5.0
0
20 15 10
5.0 0
–5.0
–10 –15 –20
35 30 25 20 15 10
5.0 0
110
100
90
80
+PSR = 20Log
VO/A
DM
V
CC
A
DM
– +
V
O
V
EE
–PSR = 20Log
VO/A
DM
V
CC
V
CC
Page 6
MC33078 MC33079
6
MOTOROLA ANALOG IC DEVICE DATA
VOL
A , OPEN LOOP VOL TAGE GAIN (dB)
Figure 17. Open Loop Voltage Gain
versus Temperature
Figure 18. Output Impedance
versus Frequency
Figure 19. Channel Separation
versus Frequency
Figure 20. Total Harmonic Distortion
versus Frequency
Figure 21. Total Harmonic Distortion
versus Output Voltage
Figure 22. Slew Rate versus Supply Voltage
TA, AMBIENT TEMPERATURE (°C)
–55 –25 0 25 50 75 100 125
VCC = +15 V VEE = –15 V RL = 2.0 k
f ≤ 10 Hz
VO = –10 V to +10 V
f, FREQUENCY (Hz)
| Z |, OUTPUT IMPEDANCE ( )
1.0 k 10 k 100 k 1.0 M 10 M
O
VCC = +15 V
VEE = –15 V VO = 0 V TA = 25
°
C
AV = 1000
AV = 100
AV = 10
AV = 1.0
f, FREQUENCY (Hz)
CS, CHANNEL SEPARATION (dB)
CS = 20 Log
V
OA
V
OM
10 100 1.0 k 100 k10 k
Drive Channel VCC = +15 V VEE = –15 V RL = 2.0 K
VOD = 20 V
pp
TA = 25
°
C
MC33078
MC33079
f, FREQUENCY (Hz)
THD, TOT AL HARMONIC DISTORTION (%)
10 100 1.0 k 10 k 100 k
VCC = +15 V
VEE = –15 V
VO = 1.0 Vrms
TA = 25
°
C
VO, OUTPUT VOLTAGE (Vrms)
THD, TOT AL HARMONIC DISTORTION (%)
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
VCC = +15 V
VEE = –15 V
f = 2.0 kHz TA = 25
°
C
AV = 1000
AV = 100
AV = 10
AV = 1.0
VCC |VEE| , SUPPLY VOLT AGE (V)
Falling
5.0 10 15 20
SR, SLEW RATE (V/ s)
µ
Vin = 2/3 (VCC –VEE)
TA = 25
°
C
Rising
110
105
100
95
90
50
40
30
20
10
0
160
150
140
130
120
110
100
1.0
0.1
0.01
0.001
1.0
0.5
0.1
0.05
0.01
0.005
0.001
10
8.0
6.0
4.0
2.0
0
10 k
V
OM
Measurement Channel
– +
100
100
V
O
2.0 k
+
V
in
V
O
2.0 k
– +
R
A V
in
2.0 k
V
O
+
10 k
Page 7
MC33078 MC33079
7
MOTOROLA ANALOG IC DEVICE DATA
25°C
–55°C
125°C
VCC = +15 V VEE = –15 V
Vin = 100 mV
V
in
V
O
C
L
– +
VCC = +15 V VEE = –15 V
VO = 0 V
Phase
Gain
125°C
–55°C25°C
25°C
–55°C
125°C
V
in
V
O
C
L
2.0 k
– +
Gain
Phase
VCC = +15 V VEE = –15 V RL = 2.0 k
TA = 25°C
Figure 23. Slew Rate versus Temperature
Figure 24. Voltage Gain and Phase
versus Frequency
Figure 25. Open Loop Gain Margin and
Phase Margin versus Load Capacitance
Figure 26. Overshoot versus Output
Load Capacitance
Figure 27. Input Referred Noise Voltage and
Current versus Frequency
Figure 28. Total Input Referred Noise Voltage
versus Source Resistance
SR, SLEW RATE (V/ s)
µ
VCC = +15 V VEE = –15 V
Vin = 20 V
TA, AMBIENT TEMPERATURE (
°
C)
Falling
Rising
–55 –25 0 25 50 75 100 125
f, FREQUENCY (Hz)
VOL
A , OPEN LOOP VOLTAGE GAIN (dB)
1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M
0
45
90
135
180
, EXCESS PHASE (DEGREES)
φ
A , OPEN LOOP GAIN MARGIN (dB)
m
1 10 100 1000
0 10
20 30 40 50 60
φ
, PHASE MARGIN (DEGREES)
m
70
CL, OUTPUT LOAD CAPACITANCE (pF) CL, OUTPUT LOAD CAPACITANCE (pF)
10 100 1.0 k 10 k
os, OVERSHOOT (%)
10 100 1.0 k 10 k 100 k
10
0.1
f, FREQUENCY (Hz)
e , INPUT REFERRED NOISE VOLTAGE ( )
n
nV/ Hz
VCC = +15 V VEE = –15 V
TA = 25
°
C
Voltage
Current
pA/ Hz
nV/ Hz
RS, SOURCE RESISTANCE (Ω)
i
, REFERRED NOISE VOLTAGE (
n
VCC = +15 V
VEE = –15 V
f = 1.0 kHz TA = 25
°
C
Vn(total) =
10 100 1.0 k 10 k 100 k 1.0 M
, INPUT REFERRED NOISE CURRENT ( )
n
V)
10
8.0
6.0
4.0
2.0
120
100
80
60
40
20
0
14 12 10
8.0
6.0
4.0
2.0 0
100
80
60
40
20
0
100
80 50 30
20
10
8.0
5.0
3.0
2.0
1.0
1000
100
10
1.0
V
in
V
O
2.0 k
– +
(inRs)2)
e
n
2
)
4KTR
S
Ǹ
Page 8
MC33078 MC33079
8
MOTOROLA ANALOG IC DEVICE DATA
+
Phase
Gain
R
1
R
2
V
O
VCC = +15 V
VEE = –15 V
RT = R1 +R
2
AV = +100 VO = 0 V TA = 25
°
C
Figure 29. Phase Margin and Gain Margin versus
Differential Source Resistance
Figure 30. Inverting Amplifier Slew Rate Figure 31. Noninverting Amplifier Slew Rate
Figure 32. Noninverting Amplifier Overshoot
Figure 33. Low Frequency Noise Voltage
versus Time
, PHASE MARGIN (DEGREES)
A , GAIN MARGIN (dB)
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
φ
m
10 100 1.0 k 10 k 100 k
VCC = +15 V
VEE = –15 V
AV = –1.0
RL = 2.0 k
CL = 100 pF
TA = 25
°
C
V , OUTPUT VOLTAGE (5.0 V/DIV)
O
t, TIME (2.0 µs/DIV)
VCC = +15 V VEE = –15 V
AV = +1.0
RL = 2.0 k
CL = 100 pF
TA = 25
°
C
V , OUTPUT VOLTAGE (5.0 V/DIV)
O
t, TIME (2.0 µs/DIV)
VCC = +15 V VEE = –15 V
RL = 2.0 k
CL = 100 pF
AV = +1.0 TA = 25
°
C
V , OUTPUT VOLTAGE (5.0 V/DIV)
O
t, TIME (200 µs/DIV)
e , INPUT NOISE VOLTAGE (100 nV/DIV)
n
t, TIME (1.0 sec/DIV)
m
14 12 10
8.0
6.0
4.0
2.0 0
70 60
50 40 30 20 10
0
VCC = +15 V VEE = –15 V
BW = 0.1 Hz to 10 Hz
TA = 25
°
C
Page 9
MC33078 MC33079
9
MOTOROLA ANALOG IC DEVICE DATA
Figure 34. Voltage Noise Test Circuit
(0.1 Hz to 10 Hz
p–p
)
+
0.1
µ
F
10
100 k
2.0 k
4.7 µF
Voltage Gain = 50,000
Scope
×
1
Rin = 1.0 M
1/2
MC33078
+
D.U.T.
100 k
0.1 µF
2.2
µ
F
22
µ
F
24.3 k
4.3 k
110 k
Note: All capacitors are non–polarized.
Page 10
MC33078 MC33079
10
MOTOROLA ANALOG IC DEVICE DATA
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
OUTLINE DIMENSIONS
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
14
58
F
NOTE 2
–A–
–B–
–T–
SEATING PLANE
H
J
G
D
K
N
C
L
M
M
A
M
0.13 (0.005) B
M
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 9.40 10.16 0.370 0.400 B 6.10 6.60 0.240 0.260 C 3.94 4.45 0.155 0.175 D 0.38 0.51 0.015 0.020 F 1.02 1.78 0.040 0.070 G 2.54 BSC 0.100 BSC H 0.76 1.27 0.030 0.050 J 0.20 0.30 0.008 0.012 K 2.92 3.43 0.115 0.135 L 7.62 BSC 0.300 BSC M ––– 10 ––– 10 N 0.76 1.01 0.030 0.040
__
SEATING PLANE
1
4
58
A0.25MCB
SS
0.25MB
M
h
q
C
X 45
_
L
DIM MIN MAX
MILLIMETERS
A 1.35 1.75
A1 0.10 0.25
B 0.35 0.49 C 0.18 0.25 D 4.80 5.00
E
1.27 BSCe
3.80 4.00
H 5.80 6.20
h
0 7
L 0.40 1.25
q
0.25 0.50
__
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.
D
E
H
A
B
e
B
A1
C
A
0.10
Page 11
MC33078 MC33079
11
MOTOROLA ANALOG IC DEVICE DATA
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14) ISSUE F
OUTLINE DIMENSIONS
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
4. ROUNDED CORNERS OPTIONAL.
17
14 8
B
A
F
HG D
K
C
N
L
J
M
SEATING PLANE
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.715 0.770 18.16 19.56 B 0.240 0.260 6.10 6.60 C 0.145 0.185 3.69 4.69 D 0.015 0.021 0.38 0.53
F 0.040 0.070 1.02 1.78 G 0.100 BSC 2.54 BSC H 0.052 0.095 1.32 2.41
J 0.008 0.015 0.20 0.38 K 0.115 0.135 2.92 3.43
L 0.300 BSC 7.62 BSC M 0 10 0 10 N 0.015 0.039 0.39 1.01
____
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
–A–
–B–
G
P 7 PL
14 8
71
M
0.25 (0.010) B
M
S
B
M
0.25 (0.010) A
S
T
–T–
F
R
X 45
SEATING PLANE
D 14 PL
K
C
J
M
_
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 8.55 8.75 0.337 0.344 B 3.80 4.00 0.150 0.157 C 1.35 1.75 0.054 0.068 D 0.35 0.49 0.014 0.019 F 0.40 1.25 0.016 0.049 G 1.27 BSC 0.050 BSC J 0.19 0.25 0.008 0.009 K 0.10 0.25 0.004 0.009 M 0 7 0 7 P 5.80 6.20 0.228 0.244 R 0.25 0.50 0.010 0.019
____
Page 12
MC33078 MC33079
12
MOTOROLA ANALOG IC DEVICE DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Ta tsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/ PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Ko k Road, Tai Po, N.T., Hong Kong. 852–26629298
MC33078/D
*MC33078/D*
Loading...