Datasheet MC145191F, MC145190F, MC145191DT, MC145190DT Datasheet (Motorola)

Page 1

SEMICONDUCTOR TECHNICAL DATA
1
REV 6
Motorola, Inc. 1995
10/95
  
The MC74HCU04 is identical in pinout to the LS04 and the MC14069UB. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.
This device consists of six single–stage inverters. These inverters are well suited for use as oscillators, pulse shapers, and in many other applications requiring a high–input impedance amplifier. For digital applications, the HC04 is recommended.
Output Drive Capability: 10 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS, and TTL
Operating Voltage Range: 2 to 6 V; 2.5 to 6 V in Oscillator
Configurations
Low Input Current: 1 µA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
Chip Complexity: 12 FETs or 3 Equivalent Gates
LOGIC DIAGRAM
Y1A1
A2
A3
A4
A5
A6
Y2
Y3
Y4
Y5
Y6
1
3
5
9
11
13
2
4
6
8
10
12
Y = A
PIN 14 = V
CC
PIN 7 = GND

FUNCTION TABLE
PIN ASSIGNMENT
Inputs
A
L H
11
12
13
14
8
9
105
4
3
2
1
7
6
Y5
A5
Y6
A6
V
CC
Y4
A4
Y2
A2
Y1
A1
GND
Y3
A3
Outputs
Y
H L
D SUFFIX
SOIC PACKAGE
CASE 751A–03
N SUFFIX
PLASTIC PACKAGE
CASE 646–06
ORDERING INFORMATION
MC74HCUXXN MC74HCUXXD
Plastic SOIC
1
14
1
14
Page 2
MC74HCU04
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
2
MAXIMUM RATINGS*
Symbol
Parameter
Value
Unit
V
CC
DC Supply Voltage (Referenced to GND)
– 0.5 to + 7.0
V
V
in
DC Input Voltage (Referenced to GND)
– 1.5 to VCC + 1.5
V
V
out
DC Output Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
I
in
DC Input Current, per Pin
± 20
mA
I
out
DC Output Current, per Pin
± 25
mA
I
CC
DC Supply Current, VCC and GND Pins
± 50
mA
P
D
Power Dissipation in Still Air Plastic DIP†
SOIC Package†
750 500
mW
T
stg
Storage Temperature
– 65 to + 150
_
C
T
L
Lead Temperature, 1 mm from case for 10 Seconds
(Plastic DIP or SOIC Package)
260
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: –10mW/_C from 65_ to 125_C
SOIC Package: –7mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
V
CC
DC Supply Voltage (Referenced to GND)
2.0
6.0
V
Vin, V
out
DC Input Voltage, Output Voltage (Referenced to GND)
0
V
CC
V
T
A
Operating Temperature, All Package Types
– 55
+ 125
_
C
tr, t
f
Input Rise and Fall Time (Figure 1)
No
Limit
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
Symbol
Parameter
Test Conditions
V
CC
V
– 55 to
25_C
v
85_Cv 125_C
Unit
V
IH
Minimum High–Level Input Voltage
V
out
= 0.5 V*
|I
out
| v 20 µA
2.0
4.5
6.0
1.7
3.6
4.8
1.7
3.6
4.8
l.7
3.6
4.8
V
V
IL
Maximum Low–Level Input Voltage
V
out
= VCC – 0.5 V*
|I
out
| v 20 µA
2.0
4.5
6.0
0.3
0.8
1.1
0.3
0.8
1.1
0.3
0.8
1.1
V
V
OH
Minimum High–Level Output Voltage
Vin = GND |I
out
| v 20 µA
2.0
4.5
6.0
1.8
4.0
5.5
1.8
4.0
5.5
1.8
4.0
5.5
V
Vin = GND |I
out
| v 4.0 mA
|I
out
| v 5.2 mA
4.5
6.0
3.86
5.36
3.76
5.26
3.70
5.20
V
OL
Maximum Low–Level Output Voltage
Vin = V
CC
|I
out
| v 20 µA
2.0
4.5
6.0
0.2
0.5
0.5
0.2
0.5
0.5
0.2
0.5
0.5
V
Vin = V
CC
|I
out
| v 4.0 mA
|I
out
| v 5.2 mA
4.5
6.0
0.32
0.32
0.37
0.37
0.40
0.40
I
in
Maximum Input Leakage Current
Vin = VCC or GND
6.0
± 0.1
± 1.0
± 1.0
µA
I
CC
Maximum Quiescent Supply Current (per Package)
Vin = VCC or GND I
out
= 0 µA
6.0
2
20
40
µA
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). *For VCC = 2.0 V, V
out
= 0.2 V or VCC – 0.2 V.
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance cir­cuit. For proper operation, Vin and V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open.
Page 3
MC74HCU04
High–Speed CMOS Logic Data DL129 — Rev 6
3 MOTOROLA
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tr = tf = 6 ns)
Guaranteed Limit
Symbol
Parameter
V
CC
V
– 55 to
25_C
v
85_Cv 125_C
Unit
t
PLH
,
t
PHL
Maximum Propagation Delay, Input A to Output Y
(Figures 1 and 2)
2.0
4.5
6.0
80 16 14
100
20 17
120
24 20
ns
t
TLH
,
t
THL
Maximum Output Transition Time, Any Output
(Figures 1 and 2)
2.0
4.5
6.0
75 15 13
95 19 16
110
22 19
ns
C
in
Maximum Input Capacitance
10
10
10
pF
NOTES:
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
2. Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Inverter)*
15
pF
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).
Figure 1. Switching Waveforms
t
r
V
CC
GND
90%
50%
10%
90%
50%
10%
INPUT A
OUTPUT Y
t
PHL
t
PLH
t
THL
t
TLH
*Includes all probe and jig capacitance
Figure 2. Test Circuit
CL*
TEST POINT
DEVICE UNDER
TEST
OUTPUT
LOGIC DETAIL
(1/6 of Device Shown)
t
f
A
V
CC
Y
Page 4
MC74HCU04
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
4
Crystal Oscillator Stable RC Oscillator
Schmitt Trigger High Input Impedance Single–Stage Amplifier
with a 2 to 6 V Supply Range
Multi–Stage Amplifier LED Driver
For reduced power supply current, use high–efficiency LEDs such as the Hewlett–Packard HLMP series or equivalent.
R
2
1/6 HCU04
C
1
R2 > > R
1
C1 < C
2
V
out
C
2
R
1
R
2
R
1
C
1/6 HCU041/6 HCU041/6 HCU04
V
out
R
2
R
1
V
in
V
out
1/6 HCU04 1/6 HCU04
R2 > 6R
1
V
CC
INPUT OUTPUT
1 M
1 M
1/6 HCU04
V
CC
INPUT OUTPUT
1/6 HCU04 1/6 HCU04 1/6 HCU04
+V
1/6 HCU04
TYPICAL APPLICATIONS
Page 5
MC74HCU04
High–Speed CMOS Logic Data DL129 — Rev 6
5 MOTOROLA
OUTLINE DIMENSIONS
N SUFFIX
PLASTIC DIP PACKAGE
CASE 646–06
ISSUE L
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
4. ROUNDED CORNERS OPTIONAL.
1 7
14 8
B
A F
H G D
K
C
N
L
J
M
SEATING PLANE
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.715 0.770 18.16 19.56 B 0.240 0.260 6.10 6.60 C 0.145 0.185 3.69 4.69 D 0.015 0.021 0.38 0.53 F 0.040 0.070 1.02 1.78 G 0.100 BSC 2.54 BSC H 0.052 0.095 1.32 2.41 J 0.008 0.015 0.20 0.38 K 0.115 0.135 2.92 3.43
L 0.300 BSC 7.62 BSC M 0 10 0 10 N 0.015 0.039 0.39 1.01
_ _ _ _
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751A–03
ISSUE F
MIN MINMAX MAX
MILLIMETERS INCHES
DIM
A B C D F G J K M P R
8.55
3.80
1.35
0.35
0.40
0.19
0.10 0
°
5.80
0.25
8.75
4.00
1.75
0.49
1.25
0.25
0.25 7
°
6.20
0.50
0.337
0.150
0.054
0.014
0.016
0.008
0.004 0
°
0.228
0.010
0.344
0.157
0.068
0.019
0.049
0.009
0.009 7
°
0.244
0.019
1.27 BSC 0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
–A–
–B–
P 7 PL
G
C
K
SEATING PLANE
D 14 PL
M
J
R
X 45°
1
7
814
0.25 (0.010) T B A
M
S S
B0.25 (0.010)
M M
F
How to reach us: USA/EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters can and do vary in different applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MC74HCU04/D
*MC74HCU04/D*
CODELINE
Loading...