Datasheet MC14512BCP, MC14512BD, MC14512BCL Datasheet (Motorola)

Page 1
MOTOROLA CMOS LOGIC DATAMC14512B
370
  
The MC14512B is an 8–channel data selector constructed with MOS P–channel and N –channel e nhancement m ode d evices i n a single monolithic structure. This data selector finds primary application in signal multiplexing functions. It may also be used for data routing, digital signal switching, signal gating, and number sequence generation.
Single Supply Operation
3–State Output (Logic “1”, Logic “0”, High Impedance)
Supply Voltage Range = 3.0 Vdc to 18 Vdc
Capable of Driving Two Low–power TTL Loads or One Low–power
Schottky TTL Load Over the Rated Temperature Range
MAXIMUM RATINGS* (Voltages Referenced to V
SS
)
Symbol
Parameter Value Unit
V
DD
DC Supply Voltage – 0.5 to + 18.0 V
Vin, V
out
Input or Output Voltage (DC or Transient) – 0.5 to VDD + 0.5 V
Iin, I
out
Input or Output Current (DC or Transient), per Pin
± 10 mA
P
D
Power Dissipation, per Package† 500 mW
T
stg
Storage Temperature – 65 to + 150
_
C
T
L
Lead Temperature (8–Second Soldering) 260
_
C
*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C Ceramic “L” Packages: – 12 mW/_C From 100_C To 125_C
TRUTH TABLE
C B A Inhibit Disable Z
0 0 0 0 0 X0 0 0 1 0 0 X1 0 1 0 0 0 X2 0 1 1 0 0 X3
1 0 0 0 0 X4 1 0 1 0 0 X5 1 1 0 0 0 X6 1 1 1 0 0 X7
X X X 1 0 0 X X X X 1 High
Impedance
X = Don’t Care

SEMICONDUCTOR TECHNICAL DATA
Motorola, Inc. 1995
REV 3 1/94

L SUFFIX
CERAMIC
CASE 620
ORDERING INFORMATION
MC14XXXBCP Plastic MC14XXXBCL Ceramic MC14XXXBD SOIC
TA = – 55° to 125°C for all packages.
P SUFFIX
PLASTIC
CASE 648
D SUFFIX
SOIC
CASE 751B
PIN ASSIGNMENT
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, pre­cautions must be taken to avoid applications of any voltage higher than maximum rated volt­ages to this high–impedance circuit. For proper operation, Vin and V
out
should be constrained
to the range VSS v (Vin or V
out
) v VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V
SS
or VDD). Unused outputs must be left open.
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
B
C
Z
DIS
V
DD
X7
INH
A
X3
X2
X1
X0
V
SS
X6
X5
X4
Page 2
MOTOROLA CMOS LOGIC DATA
371
MC14512B
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V
SS
)
V
– 55_C 25_C 125_C
Characteristic
Symbol
V
DD
Vdc
Min Max Min Typ # Max Min Max
Unit
Output Voltage
“0” Level
Vin = VDD or 0
V
OL
5.0 10 15
— — —
0.05
0.05
0.05
— — —
0 0 0
0.05
0.05
0.05
— — —
0.05
0.05
0.05
Vdc
“1” Level
Vin = 0 or V
DD
V
OH
5.0 10 15
4.95
9.95
14.95
— — —
4.95
9.95
14.95
5.0 10 15
— — —
4.95
9.95
14.95
— — —
Vdc
Input Voltage
“0” Level (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc)
V
IL
5.0 10 15
— — —
1.5
3.0
4.0
— — —
2.25
4.50
6.75
1.5
3.0
4.0
— — —
1.5
3.0
4.0
Vdc
“1” Level (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc)
V
IH
5.0 10 15
3.5
7.0 11
— — —
3.5
7.0 11
2.75
5.50
8.25
— — —
3.5
7.0 11
— — —
Vdc
Output Drive Current
(VOH = 2.5 Vdc) Source (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)
I
OH
5.0
5.0 10 15
– 3.0
– 0.64
– 1.6 – 4.2
— — — —
– 2.4
– 0.51
– 1.3 – 3.4
– 4.2 – 0.88 – 2.25
– 8.8
— — — —
– 1.7
– 0.36
– 0.9 – 2.4
— — — —
mAdc
(VOL = 0.4 Vdc) Sink (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)
I
OL
5.0 10 15
0.64
1.6
4.2
— — —
0.51
1.3
3.4
0.88
2.25
8.8
— — —
0.36
0.9
2.4
— — —
mAdc
Input Current I
in
15 ± 0.1 ±0.00001 ± 0.1 ± 1.0 µAdc
Input Capacitance
(Vin = 0)
C
in
5.0 7.5 pF
Quiescent Current
(Per Package)
I
DD
5.0 10 15
— — —
5.0 10 20
— — —
0.005
0.010
0.015
5.0 10 20
— — —
150 300 600
µAdc
Total Supply Current**†
(Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)
I
T
5.0 10 15
IT = (0.8 µA/kHz) f + I
DD
IT = (1.6 µA/kHz) f + I
DD
IT = (2.4 µA/kHz) f + I
DD
µAdc
Three–State Leakage Current I
TL
15 ± 0.1 ± 0.0001 ± 0.1 ± 3.0 µAdc
#Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. **āThe formulas given are for the typical characteristics only at 25_C. †To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL – 50) Vfk
where: IT is in µA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001.
Page 3
MOTOROLA CMOS LOGIC DATAMC14512B
372
SWITCHING CHARACTERISTICS (C
L
= 50 pF, TA = 25_C, See Figure 1)
All Types
Characteristic
Symbol
V
DD
Typ # Max
Unit
Output Rise and Fall Time
t
TLH
, t
THL
= (1.5 ns/pF) CL + 25 ns
t
TLH
, t
THL
= (0.75 ns/pF) CL + 12.5 ns
t
TLH
, t
THL
= (0.55 ns/pF) CL + 9.5 ns
t
TLH
,
t
THL
5.0 10 15
100
50 40
200 100
80
ns
Propagation Delay Time (Figure 2)
Inhibit, Control, or Data to Z
t
PLH
5.0 10 15
330 125
85
650 250 170
ns
Propagation Delay Time (Figure 2)
Inhibit, Control, or Data to Z
t
PHL
5.0 10 15
330 125
85
650 250 170
ns
3–State Output Delay Times (Figure 3)
“1” or “0” to High Z, and High Z to “1” or “0”
t
PHZ
, t
PLZ
,
t
PZH
, t
PZL
5.0 10 15
60 35 30
150 100
75
ns
*The formulas given are for the typical characteristics only at 25_C. #Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
Figure 1. Power Dissipation Test Circuit and Waveform
V
DD
I
D
C
L
Z
DISABLE INHIBIT A B C X0 X1 X2 X3 X4 X5 X6 X7
V
SS
PULSE
GENERATOR
50%V
in
50%
DUTY
CYCLE
Parameter Test Conditions
Inhibit to Z A, B, C = VSS, XO = V
DD
A, B, C to Z Inh = VSS, XO = V
DD
Figure 2. AC Test Circuit and Waveforms
V
DD
V
SS
V
OH
V
OL
V
DD
V
SS
V
OH
V
OL
V
DD
C
L
Z
DISABLE INHIBIT A B C X0 X1 X2 X3 X4 X5 X6 X7
V
SS
PULSE
GENERATOR
20 ns
20 ns
90%
50%
10%
t
PLH
t
PHL
90%
10%
50%
DATA
Z
t
TLH
t
THL TEST CONDITIONS: INHIBIT = V
SS
A, B, C = V
SS
20 ns 20 ns
t
PHL
t
PLH
50%
90%
10%
t
THL
t
TLH
Z
INHIBIT, A, B, OR C
90%
50%
10%
Page 4
MOTOROLA CMOS LOGIC DATA
373
MC14512B
Figure 3. 3–State AC Test Circuit and Waveform
Test S1 S2 S3 S4
t
PHZ
Open Closed Closed Open
t
PLZ
Closed Open Open Closed
t
PZL
Closed Open Open Closed
t
PZH
Open Closed Closed Open
Switch Positions for 3–State Test
Z
DISABLE INHIBIT A B C X0 X1 X2 X3 X4 X5 X6 X7
V
SS
PULSE
GENERATOR
V
DD
V
DD
C
L
1 k
S1
S2
V
SS
V
DD
S3
S4
V
SS
V
DD
V
OH
V
OL
20 ns
90%
50%
10%
t
PLZ
t
PZL
20 ns
DISABLE
INPUT
OUTPUT
OUTPUT
V
SS
V
OH
V
OL
10%
90%
90%
10%
t
PHZ
t
PZH
2.5 V @ VDD = 5 V, 10 V, AND 15 V
2 V @ VDD = 5 V
6 V @ VDD = 10 V
10 V @ VDD = 15 V
LOGIC DIAGRAM
13 12
11
1
2
3
4
5
6
7
9
X7
X6
X5
X4
X3
X2
X1
X0
B
C
A
15
10
14
DISABLE
INHIBIT
V
DD
Z
V
SS
1
1
IN
OUT
IN
2
OUT
2
TRANSMISSION
GATE
SELECTED
DEVICE
MC14512B
MC14512B
MC14512B
I
OD
I
TL
I
TL
I
L
LOAD
DATA
BUS
3–STATE MODE OF OPERATION
Output terminals of several MC14512B 8–Bit Data Selec­tors can be connected to a single date bus as shown. One MC14512B is selected by the 3–state control, and the re­maining devices are disabled into a high–impedance “off” state. The number of 8–bit data selectors, N, that may be connected to a bus line is determined from the output drive current, IOD, 3–state or disable output leakage current, ITL,
and the load current, IL, required to drive the bus line (includ­ing fanout to other device inputs), and can be calculated by:
I
TL
N = + 1
IOD – I
L
N must be calculated for both high and low logic state of the bus line.
Page 5
MOTOROLA CMOS LOGIC DATAMC14512B
374
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC DIP PACKAGE
CASE 648–08
ISSUE R
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
–A–
B
F
C
S
H
G
D
J
L
M
16 PL
SEATING
1 8
916
K
PLANE
–T–
M
A
M
0.25 (0.010) T
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.740 0.770 18.80 19.55 B 0.250 0.270 6.35 6.85 C 0.145 0.175 3.69 4.44 D 0.015 0.021 0.39 0.53 F 0.040 0.70 1.02 1.77 G 0.100 BSC 2.54 BSC H 0.050 BSC 1.27 BSC J 0.008 0.015 0.21 0.38 K 0.110 0.130 2.80 3.30 L 0.295 0.305 7.50 7.74 M 0 10 0 10 S 0.020 0.040 0.51 1.01
____
L SUFFIX
CERAMIC DIP PACKAGE
CASE 620–10
ISSUE V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
4. DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
–A–
–B–
–T–
F
E
G
N
K
C
SEATING PLANE
16 PLD
S
A
M
0.25 (0.010) T
16 PLJ
S
B
M
0.25 (0.010) T
M
L
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.750 0.785 19.05 19.93 B 0.240 0.295 6.10 7.49 C ––– 0.200 ––– 5.08 D 0.015 0.020 0.39 0.50 E 0.050 BSC 1.27 BSC F 0.055 0.065 1.40 1.65 G 0.100 BSC 2.54 BSC H 0.008 0.015 0.21 0.38 K 0.125 0.170 3.18 4.31 L 0.300 BSC 7.62 BSC M 0 15 0 15 N 0.020 0.040 0.51 1.01
_ _ _ _
16 9
1 8
Page 6
MOTOROLA CMOS LOGIC DATA
375
MC14512B
OUTLINE DIMENSIONS
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
1 8
16 9
SEATING
PLANE
F
J
M
R
X 45
_
G
8 PLP
–B–
–A–
M
0.25 (0.010) B
S
–T–
D
K
C
16 PL
S
B
M
0.25 (0.010) A
S
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 9.80 10.00 0.386 0.393 B 3.80 4.00 0.150 0.157 C 1.35 1.75 0.054 0.068 D 0.35 0.49 0.014 0.019
F 0.40 1.25 0.016 0.049
G 1.27 BSC 0.050 BSC
J 0.19 0.25 0.008 0.009 K 0.10 0.25 0.004 0.009 M 0 7 0 7
P 5.80 6.20 0.229 0.244 R 0.25 0.50 0.010 0.019
_ _ _ _
How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer .
MC14512B/D
*MC14512B/D*
Loading...