Datasheet MC141543P Datasheet (Motorola)

Page 1
MC141543
1
MOTOROLA
   
CMOS
The MC141543 is a high performance HCMOS device designed to interface with a microcontroller unit to allow colored symbols or characters to be displayed on a color monitor. The on–chip PLL allows both multi–system operation and self–generation of system timing. It also minimizes the MCU’s burden through its built–in 493 bytes RAM. By storing a full screen of data and control information, this device has a capability to carry out ‘screen–refresh’ without MCU supervision.
Since there is no spacing between characters, special graphics–oriented characters can be generated by combining two or more character blocks. There are three different resolutions that users can choose. By changing the number of dots per horizontal line to 320 (CGA), 480 (EGA) or 640 (VGA), smaller characters with higher resolution can be easily achieved.
Special functions such as character bordering or shadowing, multi–level windows, double height and double width, and programmable vertical length of character can also be incorporated. Furthermore, neither massive information update nor extremely high data transmission rate are expected for normal on– screen display operation, and serial protocols are implemented in lieu of any parallel formats to achieve minimum pin count.
Three Selectable Resolutions: 320 (CGA), 480 (EGA) or 640 (VGA) Dots
per Line
Fully Programmable Character Array of 15 Rows by 30 Columns
493 Bytes Direct Mapping Display RAM Architecture
Internal PLL Generates a Wide–Ranged System Clock
For High–End Monitor Application, Maximum Horizontal Frequency is
1 10 kHz (70.4 MHz Dot Clock at 640 Mode)
Programmable Vertical Height of Character to Meet Multi–Sync
Requirement
Programmable Vertical and Horizontal Positioning for Display Center
128 Characters and Graphic Symbols ROM (Mask ROM is Optional)
10 x 16 Dot Matrix Character
Character–by–Character Color Selection
A Maximum of Four Selectable Colors per Row
Double Character Height and Double Character Width
Character Bordering or Shadowing
Three Fully Programmable Background Windows with Overlapping
Capability
Provides a Clock Output Synchronous to the Incoming H Sync for External
PWM
M_BUS (IIC) Interface with Address $7A
Single Positive 5 V Supply
Order this document
by MC141543/D

SEMICONDUCTOR TECHNICAL DATA
PIN ASSIGNMENT

P SUFFIX
PLASTIC DIP
CASE 648
ORDERING INFORMATION
MC141543P Plastic DIP
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
FBKG
B
G
R
V
SS
V
DD
VFLB
HTONE/
V
DD(A
)
RP
VCO
SCL(SCK)
SDA(MOSI)
SS
HFLB
V
SS(A)
PWMCK
Motorola, Inc. 1997
REV 2 2/97 TN97022700
Page 2
MC141543
MOTOROLA
2
BLOCK DIAGRAM
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ООООООООООООООООООООООООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
ОООООО
Î
DATA RECEIVER
BUS ARBITRATION
VERTICAL CONTROL
CIRCUIT
HORIZONTAL
CONTROL
BACKGROUND
GENERAT OR
COLOR ENCODER
10–BIT SHIFT
REGISTERS
CHARACTER ROMS
ROW
BUFFER
LOGIC
WADDR
WCOLOR
CCOLORS
CHS CWS
CRS
WCOLOR
AND CONTROL
CCOLORS AND SELECT
WADDR
SC
HORD
5
CCLK
DHOR
LP
4
BLACKEDGE
MCLK
SDA(MOSI)
RP
VCO
SCL(SCK)
DATA
RA,CA,DA
RFG
ADDRC
Y
9
3
8
7 8 6
10
3 2 5
54
1115 14 13 12
3
W
R
CHS
54
15
13
8
5
26
NROW
15
13
CWS
SHADOW
FBKG
HTONE/
B
G
R
CHAR
CRADDR
OSD_EN
VERD
HORD
RDATA
LUMINANCE
BSEN
SHADOW
BSEN
OSD_EN
5
CH
4
PWMCK
AND PLL
AND CONTROL
8
VERD
4
Z
26
8
AND SELECT
6
10
9
1
16
V
DD
VSS(A)
V
DD(A)
MCLK
V
SS
ОООООО
Î
ОООООО
Î
ОООООО
Î
MEMORY AND DATA
MANAGEMENT
HFLB
SS
VFLB
Page 3
MC141543
3
MOTOROLA
ABSOLUTE MAXIMUM RATINGS Voltage Referenced to V
SS
Symbol
Characteristic Value Unit
V
DD
Supply Voltage – 0.3 to + 7.0 V
V
in
Input Voltage VSS – 0.3 to
VDD + 0.3
V
Id Current Drain per Pin Excluding V
DD
and V
SS
25 mA
Ta
Operating Temperature Range 0 to 85 °C
T
stg
Storage Temperature Range – 65 to + 150 °C
NOTE: Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the limits in the Electrical Characteris­tics tables or Pin Description section.
AC ELECTRICAL CHARACTERISTICS (V
DD
= V
DD(A)
= 5.0 V , VSS = V
SS(A)
= 0 V , TA = 25°C, Voltage Referenced to VSS)
Symbol Characteristic Min Typ Max Unit
t
r
t
f
Output Signal (R, G, B, FBKG and HTONE/PWMCK) C
load
= 30 pF, see
Figure 1 Rise Time Fall Time
— —
— —
6 6
ns ns
F
HFLB
HFLB Input Frequency 110 kHz
DC CHARACTERISTICS V
DD
= V
DD(A)
= 5.0 V ± 10%, VSS = V
SS(A)
= 0 V , TA = 25°C, Voltage Referenced to V
SS
Symbol Characteristic Min Typ Max Unit
V
OH
High Level Output Voltage I
out
= – 5 mA
VDD – 0.8 V
V
OL
Low Level Output Voltage I
out
= 5 mA
VSS + 0.4 V
V
IL
V
IH
Digital Input Voltage (Not Including SDA and SCL) Logic Low Logic High
0.7 V
DD
— —
0.3 V
DD
V V
V
IL
V
IH
Input Voltage of Pin SDA and SCL in SPI Mode Logic Low Logic High
0.7 V
DD
— —
0.3 V
DD
V V
V
IL
V
IH
Input Voltage of Pin SDA and SCL in M_BUS Mode Logic Low Logic High
0.7 V
DD
— —
0.3 V
DD
V V
I
II
High–Z Leakage Current (R, G, B and FBKG) – 10 + 10 µA
I
II
Input Current (Not Including RP, VCO, R, G, B, FBKG and HTONE/PWMCK)
– 10 + 10 µA
I
DD
Supply Current (No Load on Any Output) + 15 mA
90%
10%
90%
10%
tf tr
Figure 1. Switching Characteristics
This device contains circuitry to protect the inputs against damage due to high static volt­ages or electric fields; however, it is advised that normal precautions be taken to avoid applica­tions of any voltage higher than the maximum rated voltages to this high impedance circuit.
For proper operation it is recommended that Vin and V
out
be constrained to the range VSS
(Vin or V
out
) VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.
Page 4
MC141543
MOTOROLA
4
PIN DESCRIPTIONS
V
SS(A)
(Pin 1)
This pin provides the signal ground to the PLL circuitry. Analog ground for PLL operation is separated from digital ground for optimal performance.
VCO (Pin 2)
Pin 2 is a control voltage input to regulate an internal oscil­lator frequency. See the Application Diagram for the applica­tion values used.
RP (Pin 3)
An external RC network is used to bias an internal VCO to resonate at the specific dot frequency. The maximum voltage at Pin 3 should not exceed 3.5 V at any condition. See the Application Diagram for the application values used.
V
DD(A)
(Pin 4)
Pin 4 is a positive 5 V supply for PLL circuitry. Analog pow­er for PLL is separated from digital power for optimal perfor­mance.
HFLB
(Pin 5)
This pin inputs a negative polarity horizontal synchronize signal pulse to phase lock an internal system clock gener­ated by the on–chip VCO circuit.
SS
(Pin 6)
This input pin is part of the SPI serial interface. An active low signal generated by the master device enables this slave device to accept data. This pin should be pulled high to termi­nate the SPI communication. If M_BUS is employed as the serial interface, this pin should be tied to either V
DD
or V
SS
.
SDA (MOSI) (Pin 7)
Data and control messages are being transmitted to this chip from a host MCU via one of the two serial bus systems. With either protocol, this wire is configured as a uni–direc­tional data line. (Detailed description of these two protocols will be discussed in the M_BUS and SPI sections).
SCL (SCK) (Pin 8)
A separate synchronizing clock input from the transmitter is required for either protocol. Data is read at the rising edge of each clock signal.
VDD (Pin 9)
This is the power pin for the digital logic of the chip.
VFLB
(Pin 10)
Similar to Pin 5, this pin inputs a negative polarity vertical
synchronize signal pulse.
HTONE/PWMCK (Pin 11)
This is a multiplexed pin. When the PWMCK_EN bit is cleared after power–on or by the MCU, this pin is HTONE and outputs a logic high during windowing except when graphics or characters are being displayed. It is used to low­er the external R, G, and B amplifiers’ gain to achieve a transparent windowing effect. If the PWMCK_EN bit is set to 1 via M_BUS or SPI, this pin is changed to a mode–depen­dent clock output with 50/50 duty cycle and is synchronous with the input horizontal synchronization signal at Pin 5. The frequency is dependent on the mode in which the AMOSD is currently running. The exact frequencies in the different reso­lution modes are described in Table 1.
Table 1. PWM CLK Frequency
ООООО
Resolution
Frequency
Duty Cycle
ООООО
320 dots/line
32 x H
f
50/50
ООООО
480 dots/line
48 x H
f
50/50
ООООО
ÎÎÎÎ
640 dots/line
ÎÎÎÎ
64 x H
f
ÎÎÎÎ
50/50
NOTE: Hf is
the frequency of the input H sync on Pin 5.
Typically, this clock is fed into an external pulse width mod­ulation module as its clock source. Because of the synchro­nization between PWM clock and H sync, a better performance on the PWM controlled functions can be achieved.
FBKG (Pin 12)
This pin outputs a logic high while displaying characters or windows when the FBKGC bit in the frame control register is 0, and output a logic high only while displaying characters when the FBKGC bit is 1. It is defaulted to high–impedance state after power–on, or when there is no output. An external 10 k resistor pulled low is recommended to avoid level tog­gling caused by hand effect when there is no output.
B,G,R (Pins 13,14,15)
AMOSD color output is TTL level RGB to the host monitor. These three signals are active high output pins that are in a high–impedance state when AMOSD is disabled.
VSS (Pin 16)
This is the ground pin for the digital logic of the chip.
Page 5
MC141543
5
MOTOROLA
SYSTEM DESCRIPTION
MC141543 is a full–screen memory architecture. Refresh is performed by the built–in circuitry after a screenful of dis­play data has been loaded through the serial bus. Only changes to the display data need to be input afterward.
Serial data, which includes screen mapping address, dis­play information, and control messages, are transmitted via one of the two serial buses: M_BUS or SPI (mask option). These two sets of buses are multiplexed onto a single set of wires. Standard parts offer M_BUS transmission.
Data is received from the serial port and stored by the memory management circuit. Line data is stored in a row buffer for display and refreshing. During this storing and re­trieving cycle, bus arbitration logic patrols the internal traffic to make sure that no crashes occur between the slower seri­al bus receiver and the fast ‘screen–refresh’ circuitry. After the full–screen display data is received through one of the serial communication interfaces, the link can be terminated if a change of the display is not required.
The bottom half of the block diagram contains the hard­ware functions for the entire system. It performs all the AMOSD functions such as programmable vertical length (from 16 lines to 63 lines), display clock generation (which is phase locked to the incoming horizontal sync signal at Pin 5 HFLB
), bordering or shadowing, and multiple windowing.
COMMUNICATION PROTOCOLS
M_BUS Serial Communication
This is a two–wire serial communication link that is fully compatible with the IIC bus system. It consists of an SDA bi­directional data line and an SCL clock input line. Data is sent from a transmitter (master) to a receiver (slave) via the SDA line, and is synchronized with a transmitter clock on the SCL line at the receiving end. The maximum data rate is limited to 100 kbps and the default chip address is $7A.
Operating Procedure
Figure 2 shows the M_BUS transmission format. The mas­ter initiates a transmission routine by generating a start condition followed by a slave address byte. Once the ad­dress is properly identified, the slave will respond with an ac­knowledge signal by pulling the SDA line low during the ninth SCL clock. Each data byte that follows must be eight bits long, plus the acknowledge bit, for a total of nine bits. Ap­propriate row and column address information and display data can be downloaded sequentially in one of the three transmission formats described in the Data Transmission Formats section. In the cases of no acknowlege or comple­tion of data transfer, the master will generate a stop condition to terminate the transmission routine. Note that the OSD_EN bit must be set after all the display information has been sent, in order to activate the AMOSD circuitry of MC141543 so that the received information can be displayed.
DATA BYTES
ACK
STOP CONDITION
ACK
CHIP ADDRESS
SDA
SCL
STAR T CONDITION
1
9 82–7
Figure 2. M_BUS Format
DA TA TRANSMISSION FORMATS
After the proper identification by the receiving device, a data train of arbitrary length is transmitted from the master. There are three transmission formats from (a) to (c) as stated below. The data train in each sequence consists of row ad­dress (R), column address (C), and display information (I), as shown in Figure 3. In format (a), display information data must be preceded with the corresponding row address and column address. This format is particularly suitable for updat­ing small amounts of data between different rows. However, if the current information byte has the same row address as the one before, format (b) is recommended.
row addr col addr info
Figure 3. Data Packet
For a full–screen pattern change that requires a massive information update, or during power–up, most of the row and column addresses of either (a) or (b) formats will be consec­utive. Therefore, a more efficient data transmission format (c) should be applied. This sends the RAM starting row and col­umn addresses once only, and then treats all subsequent data as display information. The row and column addresses will be automatically incremented internally for each display information data from the starting location.
The data transmission formats are:
(a) R – > C – > I – > R – > C – > I – > . . . . . . . . .
(b) R – > C – > I – > C – > I – > C – > I. . . . . . .
(c) R – > C – > I – > I – > I – > . . . . . . . . . . . . .
T o dif ferentiate the row and column addresses when trans­ferring data from master, the MSB (most significant bit) is set, as in Figure 4: ‘1’ to represent row, and ‘0’ for column ad­dress. Furthermore, to distinguish the column address be­tween formats (a), (b), and (c), the sixth bit of the column address is set to ‘1’ which represents format (c), and ‘0’ for format (a) or (b). However, there is some limitation on using mixed formats during a single transmission. It is permissible to change the format from (a) to (b), or from (a) to (c), or from (b) to (a), but not from (c) back to (a) or (b).
Page 6
MC141543
MOTOROLA
6
ООООООООООО
Î
ООООООООООО
Î
ADDRESS
ROW COLUMN
COLUMN
X: don’t care D: valid data
FORMATBIT 01234567 DDDDXXX1 DDDDDX00 DDDDDX10
a, b
a, b, c
c
Figure 4. Row & Column Address Bit Patterns
MEMORY MANAGEMENT
Internal RAM is addressed with row and column (coln) numbers in sequence. The spaces between Row 0 and Coln 0 to Row 14 and Coln 29 are called display registers, and each contains a character ROM address corresponding to a display location on the monitor screen. Every data row is associated with two control registers, which are located at Coln 30 and 31 of their respective rows, to control the char­acter display format of that row. In addition, three window control registers for each of the three windows, together with three frame control registers, occupy the first 13 columns of Row 15.
The user should handle the internal RAM address location with care, especially those rows with double length alphanu­meric symbols. For example, if Row n is destined to be double height on the memory map, the data displayed on screen Rows n and n+1 will be represented by the data con­tained in the memory address of Row n only. The data of the
next Row n+1 on the memory map will appear on the screen as n+2 and n+3 row space, and so on. Hence, it is not neces­sary to load a row of blank data to compensate for the double row. The user should minimize excessive rows of data in memory in order to avoid overrunning the limited amount of row space on the screen.
For rows with double width alphanumeric symbols, only the data contained in the even numbered columns of the memory map are shown. Odd numbered columns are treated in the same manner as double height rows.
ООООООООООООО
Î
ООООООООООООО
Î
ООООООООООООО
Î
ООООООООООООО
Î
ООООООООООООО
Î
ООООООООООООО
Î
DISPLAY REGISTERS
COLUMN
29 30 310
0
14
ROW
ROW CONTROL REGISTERS
WINDOW 1 WINDOW 2 FRAME CRTL REGWINDOW 3
15
0 235689 12
27 28
WINDOW AND FRAME CONTROL REGISTERS
Figure 5. Memory Map
Page 7
MC141543
7
MOTOROLA
REGISTERS
Display Register
01234567
CCS0
CRADDR
Bit 7 CCS0 — This bit defines a specific character color out of the two preset colors. Color 1 is selected if this bit is cleared, and Color 2 otherwise.
Bit 6–0 CRADDR — These seven bits address the 128 characters or symbols residing in the character ROM.
Row Control Registers
Coln 30
01234567
CWSCHSB2G2R2B1G1R1
COLN 30
Bits 7–2 — Color 1 is determined by R1, G1, and B1; Color 2 by R2, G2, and B2.
Bit 1 CHS — This bit determines the height of a display symbol. When it is set, the symbol is displayed in double height.
Bit 0 CWS — Bit 0 is similar to Bit 1; when this bit is set, the character is displayed in double width.
Coln 31
ОООООООООООО
Î
01234567
B4G4R4B3G3R3
COLN 31
Bits 7–2 — Color 3 is determined by R3, G3, and B3; Color 4 by R4, G4, and B4.
Window 1 Registers
Row 15 Coln 0
0
1234567
ROW END ADDR
MSB
LSB
ROW START ADDR
MSB
LSB
COLN 0
ROW 15
Row 15 Coln 1
WEN CCS1
COL START ADDR
MSB
LSB
COLN 1
0
1234567
ROW 15
Bit 2 WEN — This bit enables the background Window 1 generation when it is set.
Bit 1 CCS1 — This additional color select bit provides the characters residing within Window 1 with two extra color selections, making a total of four selections for that row.
Row 15 Coln 2
ОООООООООООО
RG
COL END ADDR
MSB LSB
COLN 2
0
1234567
B
ROW 15
Bits 2–0 R, G and B — These bits control the color of Win­dow 1. Window 1 occupies Columns 0–2 of Row 15; Window 2 occupies Columns 3–5; and Window 3 occupies Columns 6–8. Window 1 has the highest priority, and Window 3 the least. If window overlapping occurs, the higher priority win­dow will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be dis­played.
Window 2 Registers
Row 15 Coln 3
0
1234567
ROW END ADDR
MSB LSB
ROW START ADDR
MSB
LSB
COLN 3
ROW 15
Row 15 Coln 4
ООООООООООО
Î
WEN CCS1
COL START ADDR
MSB LSB
COLN 4
0
1234567
ROW 15
Bit 2 WEN — This bit enables the background Window 2 generation when it is set.
Bit 1 CCS1 — This additional color select bit provides the characters residing within Window 2 with two extra color selections, making a total of four selections for that row.
Row 15 Coln 5
RG
COL END ADDR
MSB LSB
COLN 5
0
1234567
B
ROW 15
Bit 2–0 R, G and B — These bits control the color of Win­dow 2. Window 1 occupies Columns 0–2 of Row 15; Window 2 occupies Columns 3–5; and Window 3 occupies Columns 6–8. Window 1 has the highest priority, and Window 3 the least. If window overlapping occurs, the higher priority win­dow will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be dis­played.
Window 3 Registers
Row 15 Coln 6
ООООООООООО
Î
0
1234567
ROW END ADDR
MSB
LSB
ROW START ADDR
MSB
LSB
COLN 6
ROW 15
Row 15 Coln 7
ОООООООООООООО
WEN CCS1
COL START ADDR
MSB
LSB
COLN 7
0
1234567
ROW 15
PWMCK_EN
Bit 2 WEN — This bit enables the background Window 3 generation when it is set.
Page 8
MC141543
MOTOROLA
8
Bit 1 CCS1 — This additional color select bit provides the characters residing within Window 3 with two extra color selections, making a total of four selections for that row.
Bit 0 PWMCK_EN — When this bit is set to 1, the HTONE/ PWMCK pin will be switched to a clock output which is syn­chronous to the H sync and used as an external PWM (pulse width modulation) clock source. Refer to the pin description of HTONE/PWMCK for more information. After power–on, the default value is 0.
Row 15 Coln 8
RG
COL END ADDR
MSB
LSB
COLN 8
0
1234567
B
ROW 15
Bit 2–0 R, G and B — These bits control the color of Win­dow 3. Window 1 occupies Columns 0–2 of Row 15; Window 2 occupies Columns 3–5; and Window 3 occupies 6–8. Win­dow 1 has the highest priority, and Window 3 the least. If win­dow overlapping occurs, the higher priority window will cover the lower one, and the higher priority color will take over on the overlap window area. If the start address is greater than the end address, this window will not be displayed.
Frame Control Registers
Frame Control Register Row 15 Coln 9
0
1234567
LSB
COLN 9
MSB
VERTD
Bit 7–0 VERTD — These eight bits define the vertical start­ing position. There are a total of 256 steps, with an increment of four horizontal lines per step for each field. The value can­not be zero anytime, and the default value is 4.
Frame Control Register Row 15 Coln 10
ООООООООООО
Î
01234567
LSB
COLN 10
MSB
HORD
Bit 6–0 HORD — These bits define the horizontal starting position for character display. Seven bits give a total of 128 steps and each increment represents a five–dot shift to the right on the monitor screen. The value cannot be zero any­time, the default value is 15.
Frame Control Register Row 15 Coln 11
7
COLN 11
6543 210
CH5 CH4 CH3 CH2 CH1 CH0
Bit 5–0 CH5–CH0 — These six bits determine the dis­played character height. It is possible to have a proper char­acter height by setting a value greater than or equal to 16 on a different horizontal frequency monitor. Setting a value be­low 16 will not have a predictable result. Figure 6 illustrates how this chip expands the built–in character font to the de­sired height.
Frame Control Register Row 15 Coln 12
ОООООООООООО
ООООООООООО
Î
7
OSD_EN
COLN 12
65
43
2
1
0
BSEN
SHADOW
FBKGC
X32BX64
Bit 7 OSD_EN — The OSD circuit is activated when this bit
is set.
Bit 6 BSEN — This bit enables the character bordering or
shadowing function when it is set.
Bit 5 SHADOW — Characters with black–edge shadowing
are selected if this bit is set; otherwise bordering prevails.
Bit 4 X64, Bit 3 X32B — This bit determines the number of dots per horizontal line. There are 320 dots per horizontal line if Bit X32B is clear, which is also the default power–on state. Otherwise, 480 dots per horizontal sync line is chosen when Bit X64 is clear, and 640 dots per horizontal sync line when Bit X64 is set to 1. Refer to Table 2 for details.
Bit 0 FBKGC — Bit 0 determines the configuration of the FBKG output pin. When it is clear, the FBKG pin outputs high while displaying characters or windows; otherwise, the FBKG pin outputs high only while displaying characters.
Table 2. Resolution Setting
ООООО
(X64, X32B)
( 0 , 0 )
( 1 , 0 )
( 0 , 1 )
( 1 , 1 )
ООООО
ÎÎÎÎ
Dots / Line
ÎÎ
320
Î
320
ÎÎ
480
ÎÎ
640
ООООО
ÎÎÎÎ
Î
Resolution
ÎÎ
Î
CGA
Î
Î
CGA
ÎÎ
Î
EGA
ÎÎ
Î
VGA
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
0
14
13
12
11
10
9
8
7
6
5
4
3
2
1
15
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
16 lines 22 lines
34 lines25 lines
Built–in font Display character
when CH=22
Display character
when CH=34when CH=25
Display character
(10x16 matrix)
when CH=16
Figure 6. Variable Character Height
An IBM PC program called “AMOSD Font Editor” was writ­ten for MC141543 editing purposes. This program generates a set of S–Record or Binary record for the desired display patterns to be masked onto the character ROM of the MC141543.
Page 9
MC141543
9
MOTOROLA
In order to have better character display within windows, it is suggested that the designed character font be placed in the center of the 10 x 16 matrix with equal space on all four sides. The character $00 is predefined for blank characters, the character $7F is predefined for full–filled characters, and the character $7E is a random dot pattern reserved for test­ing.
In order to avoid submersion of displayed symbols or char­acters into a background of comparable colors, a feature of bordering which encircles all four sides, or shadowing which encircles only the right and bottom sides of an individual dis­play character, are provided. Figure 7 shows how a character is jacketed differently. To make sure that a character is bor­dered or shadowed correctly, at least one blank dot should be reserved on each side of the character font.
ÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎ
Î
Ï
Ï
0
14
13
12
11
10
9
8
7
6
5
4
3
2
1
15
Bordering
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
0
14
13
12
11
10
9
8
7
6
5
4
3
2
1
15
Shadowing
Figure 7. Character Bordering and Shadowing
Frame Format and Timing
Figure 8 illustrates the positions of all display characters on the screen relative to the leading edge of horizontal and vertical flyback signals. The shaded area indicates the area outside “safe viewing area” for the display characters. Notice that there are two components in the equations stated in Fig­ure 8 for horizontal and vertical delays: fixed delays from the leading edge of HFLB
and VFLB signals, regardless of the values of HORD and VERTD (47 dots + phase detection pulse width) and one H scan line for horizontal and vertical delays, respectively; and variable delays determined by the values of HORD and VERTD. Refer to Frame Control Reg- isters Coln 9 and 10 for the definitions of VERTD and HORD.
Phase detection pulse width is a function of the external charge–up resistor, which is the 330 k resistor in a series with 2 k to VCO pin in the Application Diagram. Dot fre­quency is determined by the equation
H freq x 320
if Bit
X32B is clear, and
H freq x 480
if Bit X32B is set to 1 and Bit
X64 is 0, and
H freq x 640
if both Bit X32B and Bit X64 are set to 1. For example, dot frequency is 10.24 MHz if H freq is 32 kHz while Bit X32B is 0. If Bit X32B is 1 and Bit X64 is 0, the dot frequency will be 15.36 MHz (one and a half of the original one). If Bit X32B is 1 and Bit X64 is also 1, the dot frequency will be 20.48 MHz (double of the original one).
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ППППППППППП
Ï
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
VFLB
HFLB
1
ROW
COLUMN
234
5
6
. . . . . .
14
123
0
0
29282726
double height
double width
CH5–0 = 0x21
CH5–0 = 0x21
& double height
standard size 10x16
& double width
col 0 col 2 col 4 col 6 col 8 col 10 col 12 col 14
col 28
10x30 dots fixed
variable number of H scan lines
vertical delay = VERTD x 4 + 1 H scan lines
horizontal delay =
(HORD x 5 + 47) dots + phase detection pulse width
Display Frame Format
area not interfered by display characters
display character
. . . . . . . . . . . . . . . .
HFLB
Figure 8. Display Frame Format
When double character width is selected for a row, only the even–numbered characters will be displayed, as shown in Row 2. Notice that the total number of horizontal scan lines in the display frame is variable, depending on the chosen char­acter height of each row. Care should be taken while config­uring each row character height so that the last horizontal scan line in the display frame always comes out before the leading edge of VFLB
of the next frame, to avoid wrapping display characters of the last few rows in the current frame into the next frame. The number of display dots in a horizon­tal scan line is always fixed at 300, regardless of row charac­ter width and the setting of Bits X32B and X64.
Page 10
MC141543
MOTOROLA
10
Although there are 30 character display registers that can be programmed for each row, not every programmed charac­ter can be shown on the screen in 320–dot resolution. Usual­ly only 24 characters can be shown in this resolution at most. This is induced by the time that is required to retrace the H scan line. In other resolutions, 480–dot and 640–dot, a total of 30 characters can be displayed on the screen if the hori­zontal delay register is set properly.
Figure 9 illustrates the timing of all output signals as a function of window and fast–blanking features. Line 3 of all three characters is used to illustrate the timing signals. The shaded area depicts the window area. The characters on the left and right appear identical except for the FBKGC bit. The middle character does not have a window as its background. Notice that signal HTONE/PWMCK is active only in the win­dow area. Timing of the signal FBKG depends on the config­uration of the FBKGC bit. The configuration of the FBKGC bit affects only the FBKG signal timing; it has no effect on the timing of HTONE/PWMCK. Waveform ‘R, G, or B’, which is the actual waveform at R, G, or B pin, is the logical OR of waveform ‘character R, G, or B’ and waveform ‘window R, G, or B’. ‘Character R, G, or B’ and ‘window R, G, or B’ are inter­nal signals for illustration purpose only. Also notice that HTONE/PWMCK has exactly the same waveform as ‘win­dow R, G, or B’.
МММММ
Ì
МММММ
Ì
МММММ
Ì
МММММ
Ì
МММММ
Ì
FBKG
FBKGC Bit = 0
Character Inside a Window Character Outside a Window
HTONE/PWMCK
МММММ
Ì
МММММ
Ì
МММММ
Ì
МММММ
Ì
МММММ
Ì
FBKGC Bit = 1
Character Inside a Window
3
Line 3
Window R, G, or B
Character R, G, or B
R, G, or B
Figure 9. Timing of Output Signals as a Function
of Window and FBKGC Bit Features
FONT
Icon Combination
MC141543 contains 128–character ROM. The user can create an on–screen menu based on those characters and icons. Refer to Table 3 for icon combinations. Addresses $00 and $7F are predefined characters, and $7E is for testing. They cannot be modified in any AMOSDs.
Table 3. Combination Map
ОООООООО
ICON
ROM ADDRESS (HEX)
ОООООООО
ООООООО
Î
Volume Bar I
ООООООО
Î
01, 02, 03, 04, 05, 06, 4A
ОООООООО
Volume Bar II
48, 49, 57
ОООООООО
Volume Bar III
47
ОООООООО
Size
4F, 50
ОООООООО
Position
51, 52
ОООООООО
Geometry
53, 54, 55, 56
ОООООООО
Contrast
58,59
ОООООООО
Brightness
5A, 5B
ОООООООО
Horizontal Position
5C, 5D
ОООООООО
Horizontal Sizing
5E, 5F
ОООООООО
Vertical Position
60, 61
ОООООООО
ООООООО
Vertical Sizing
ООООООО
62, 63
ОООООООО
ООООООО
Î
Pin Cushion
ООООООО
Î
64, 65
ОООООООО
ООООООО
Î
Deguassing
ООООООО
Î
66, 67
ОООООООО
Video Mode
68, 69
ОООООООО
Trapezoid
6A, 6B
ОООООООО
Parallelogram
6C, 6D
ОООООООО
Rotation
6E, 6F
ОООООООО
Color Select
70, 71
ОООООООО
Video Level
72, 73
ОООООООО
Input Select
74, 75
ОООООООО
Recall
76,77
ОООООООО
Save
78, 79
ОООООООО
Left/Right Arrows
7A, 7B
ОООООООО
INC/DEC sign
7C, 7D
ОООООООО
Speaker
07, 08
ROM CONTENT
Figures 10 – 13 show the ROM content of MC141543. Mask ROM is optional for custom parts.
Page 11
MC141543
11
MOTOROLA
Figure 10. ROM Address ($00 – $1F) Figure 11. ROM Address ($20 – $3F)
Page 12
MC141543
MOTOROLA
12
Figure 12. ROM Address ($40 – $5F) Figure 13. ROM Address ($60 – $7F)
Page 13
MC141543
13
MOTOROLA
DESIGN CONSIDERA TIONS
Distortion
Motorola’s MC141543P has a built–in PLL for multi–sys­tem application. Pin 2 voltage is dc–based for the internal VCO in the PLL. When the input frequency (HFLB) to Pin 5 increases, the VCO frequency will increase accordingly. This forces the PLL to a higher locked frequency output. The fre­quency should be equal to 320/480/640 x HFLB (depending on resolution). This is the pixel dot clock.
Display distortion is caused by noise on Pin 2. Positive noise increases the VCO frequency above normal. The cor­responding scan line will be shorter accordingly. In contrast, negative noise causes the scan line to be longer. The net re­sult will be distortion on the display, especially on the right hand side of the display window.
In order to have distortion–free display, the following rec­ommendations should be considered:
Only analog part grounds (Pin 2 to Pin 4) can be con-
nected to Pin 1(V
SS(A)
). VSS and other grounds should be
connected to PCB common ground. The V
SS(A)
and V
SS
grounds should be totally separated (i.e. V
SS(A)
is float­ing). Refer to the Application Diagram for the ground con­nections.
The dc supply path for Pin 9 (V
DD
) should be separated
from other switching devices.
The LC filter should be connected between Pin 9 and Pin
4. Refer to the values used in the Application Diagram.
Biasing and filter networks should be connected to Pin 2
and Pin 3. Refer to the recommended networks in the Ap­plication Diagram.
Two small capacitors can be connected between Pins 2
and 3, and between Pins 3 and 4.
Jittering
Most display jittering is caused by HFLB jittering on Pin 5. Care must be taken if the HFLB signal comes from the fly­back transformer. A short path and shielded cable are rec­ommended for a clean signal. A small capacitor can be added between Pin 5 and Pin 16 to smooth the signal. Refer to the value used in the Application Diagram.
Display Dancing
Most display dancing is caused by interference of the seri­al bus. It can be avoided by adding series resistors to the se­rial bus.
APPLICATION DIAGRAM
MPS2369
100 µH
0.1 µF
100
µ
F
ANALOG GROUND – FLOATING
3.3 k
100
100
100
240
240
240
V
CC
V
CC
1 k
1 k
1 k
0.1
µ
F
10
µ
F
9
16
15
14
13
12
11
10
1
2
3
4
5
6
7
8
0.01
µ
F
2 k
0.047
µ
F
33 pF
33 pF
100
100
100
V
DD
V
SS
R
G
B
FBKG
HTONE
VFLB
V
SS(A)
VCO
RP
HFLB
SS
SDA(MOSI)
SCL(SCK)
V
DD(A)
HFLB
330 pF
2 k
VFLB
HTONE
FBKG
B
G
R
330 k
DIGITAL GROUND – COMMON GROUND
ANALOG GROUND DIGITAL GROUND
AMOSD
IIC(SPI) BUS
330 pF
Page 14
MC141543
MOTOROLA
14
P ACKAGE DIMENSIONS
P SUFFIX
PLASTIC DIP
CASE 648–08
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
–A–
B
F
C
S
H
G
D
J
L
M
16 PL
SEATING
18
916
K
PLANE
–T–
M
A
M
0.25 (0.010) T
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.740 0.770 18.80 19.55 B 0.250 0.270 6.35 6.85 C 0.145 0.175 3.69 4.44 D 0.015 0.021 0.39 0.53
F 0.040 0.70 1.02 1.77 G 0.100 BSC 2.54 BSC H 0.050 BSC 1.27 BSC
J 0.008 0.015 0.21 0.38 K 0.110 0.130 2.80 3.30
L 0.295 0.305 7.50 7.74 M 0 10 0 10 S 0.020 0.040 0.51 1.01
____
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315 Mfax: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/ PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, T a i Po, N.T., Hong Kong. 852–26629298
INTERNET: http://www.mot.com/SPS/
MC141543/D
Loading...