Datasheet MC14053BFR1, MC14053BFR2, MC14052BFR1, MC14052BFR2, MC14053BFL1 Datasheet (MOTOROLA)

...
Page 1
Semiconductor Components Industries, LLC, 2000
March, 2000 – Rev. 3
1 Publication Order Number:
MC14051B/D
MC14051B, MC14052B, MC14053B
Analog Multiplexers/Demultiplexers
Triple Diode Protection on Control Inputs
Switch Function is Break Before Make
Supply Voltage Range = 3.0 Vdc to 18 Vdc
Analog Voltage Range (V
DD
– VEE) = 3.0 to 18 V
Note: VEE must be v V
SS
Linearized Transfer Characteristics
Low–noise – 12 nV/Cycle, f 1.0 kHz Typical
Pin–for–Pin Replacement for CD4051, CD4052, and CD4053
For 4PDT Switch, See MC14551B
For Lower R
ON
, Use the HC4051, HC4052, or HC4053 High–Speed
CMOS Devices
MAXIMUM RATINGS (Note 1.)
Symbol
Parameter Value Unit
V
DD
DC Supply Voltage (Referenced
to V
EE
, VSS VEE)
–0.5 to +18.0 V
Vin, V
out
Input or Output Voltage Range
(DC or Transient) (Referen– ced to V
SS
for Control Inputs
and V
EE
for Switch I/O)
–0.5 to VDD + 0.5 V
I
in
Input Current (DC or Transient)
per Control Pin
±10 mA
I
SW
Switch Through Current ±25 mA
P
D
Power Dissipation,
per Package (Note 2.)
500 mW
T
A
Ambient Temperature Range –55 to +125 °C
T
stg
Storage Temperature Range –65 to +150 °C
T
L
Lead Temperature
(8–Second Soldering)
260 °C
1. Maximum Ratings are those values beyond which damage to the device
may occur.
2. Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C T o 125_C
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V
in
and V
out
should be constrained
to the range V
SS
v (Vin or V
out
) v VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V
SS
, VEE or VDD). Unused outputs must be left open.
http://onsemi.com
XX = Specific Device Code A = Assembly Location WL or L = Wafer Lot YY or Y = Year WW or W = Work Week
MARKING
DIAGRAMS
1
16
PDIP–16
P SUFFIX
CASE 648
MC140XXBCP
AWLYYWW
SOIC–16
D SUFFIX
CASE 751B
1
16
140XXB
AWLYWW
SOEIAJ–16
F SUFFIX
CASE 966
1
16
MC140XXB
AWLYWW
TSSOP–16 DT SUFFIX
CASE 948F
14
0XXB
ALYW
1
16
See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.
ORDERING INFORMATION
Page 2
MC14051B, MC14052B, MC14053B
http://onsemi.com
2
MC14051B
8–Channel Analog
Multiplexer/Demultiplexer
MC14052B
Dual 4–Channel Analog
Multiplexer/Demultiplexer
MC14053B
Triple 2–Channel Analog
Multiplexer/Demultiplexer
VDD = PIN 16
V
SS
= PIN 8
V
EE
= PIN 7
Note: Control Inputs referenced to VSS, Analog Inputs and Outputs reference to VEE. VEE must be ≤ VSS.
INHIBIT A B C X0 X1 X2 X3 X4 X5 X6 X7
X
4
2
5
1
12
15
14
13
9
10
11
6
CONTROLS
SWITCHES
IN/OUT
COMMON
OUT/IN
3
4
2
5
1
11
15
14
12
9
10
6
CONTROLS
SWITCHES
IN/OUT
13
3
COMMONS
OUT/IN
X
Y
V
DD
= PIN 16
V
SS
= PIN 8
V
EE
= PIN 7
3
5
1
2
13
12
9
10
11
6
CONTROLS
SWITCHES
IN/OUT
14
15
4
X
Y
Z
COMMONS
OUT/IN
V
DD
= PIN 16
V
SS
= PIN 8
V
EE
= PIN 7
INHIBIT A B
X0 X1 X2 X3 Y0 Y1 Y2 Y3
INHIBIT A B
C X0
Y0 Y1 Z0 Z1
X1
PIN ASSIGMENT
MC14051B MC14052B MC14053B
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
X3
X0
X1
X2
V
DD
C
B
A
X7
X
X6
X4
V
SS
V
EE
INH
X5
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
X0
X
X1
X2
V
DD
B
A
X3
Y3
Y
Y2
Y0
V
SS
V
EE
INH
Y1
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
X0
X1
X
Y
V
DD
C
B
A
Z
Z1
Y0
Y1
V
SS
V
EE
INH
Z0
Page 3
MC14051B, MC14052B, MC14053B
http://onsemi.com
3
ELECTRICAL CHARACTERISTICS
– 55_C
25_C
125_C
Characteristic
Symbol
V
DD
Test Conditions
Min
Max
Min
Typ
(3.)
Max
Min
Max
Unit
SUPPLY REQUIREMENTS (Voltages Referenced to VEE)
Power Supply Voltage
Range
V
DD
VDD – 3.0 ≥ V
SS
V
EE
3.0
18
3.0
18
3.0
18
V
ОООООО
Î
ОООООО
Î
ОООООО
Î
Quiescent Current Per
Package
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
I
DD
5.0 10 15
ООООО
Î
ООООО
Î
ООООО
Î
Control Inputs:
V
in
= VSS or VDD,
Switch I/O: V
EE
v V
I/O
v
VDD, and ∆V
switch
v
500 mV
(4.)
Î
Î
Î
Î
Î
Î
— — —
Î
Î
Î
Î
Î
Î
5.0 10 20
— — —
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
0.005
0.010
0.015
Î
Î
Î
Î
Î
Î
5.0 10 20
Î
Î
Î
Î
Î
Î
— — —
Î
Î
Î
Î
Î
Î
150 300 600
µA
ОООООО
Î
ОООООО
Î
Total Supply Current
(Dynamic Plus Quiescent, Per Package
ÎÎ
Î
ÎÎ
Î
I
D(AV)
5.0 10 15
ООООО
Î
ООООО
Î
TA = 25_C only (The
channel component, (V
in
– V
out
)/Ron, is
not included.)
ООООООООООООО
Î
ООООООООООООО
Î
(0.07 µA/kHz) f + I
DD
Typical (0.20 µA/kHz) f + I
DD
(0.36 µA/kHz) f + I
DD
µA
CONTROL INPUTS — INHIBIT, A, B, C (Voltages Referenced to VSS)
ОООООО
Î
Low–Level Input Voltage
ÎÎ
Î
V
IL
5.0 10 15
ООООО
Î
Ron = per spec, I
off
= per spec
Î
Î
— — —
Î
Î
1.5
3.0
4.0
— — —
ÎÎ
Î
2.25
4.50
6.75
Î
Î
1.5
3.0
4.0
Î
Î
— — —
Î
Î
1.5
3.0
4.0
V
ОООООО
Î
ОООООО
Î
High–Level Input Voltage
ÎÎ
Î
ÎÎ
Î
V
IH
5.0 10 15
ООООО
Î
ООООО
Î
Ron = per spec, I
off
= per spec
Î
Î
Î
Î
3.5
7.0 11
Î
Î
Î
Î
— — —
3.5
7.0 11
ÎÎ
Î
ÎÎ
Î
2.75
5.50
8.25
Î
Î
Î
Î
— — —
Î
Î
Î
Î
3.5
7.0 11
Î
Î
Î
Î
— — —
V
Input Leakage Current
I
in
15
Vin = 0 or V
DD
± 0.1
±0.00001
± 0.1
1.0
µA
Input Capacitance
C
in
5.0
7.5
pF
SWITCHES IN/OUT AND COMMONS OUT/IN — X, Y, Z (Voltages Referenced to VEE)
ОООООО
Î
ОООООО
Î
Recommended
Peak–to–Peak Voltage Into or Out of the Switch
ÎÎ
Î
ÎÎ
Î
V
I/O
ООООО
Î
ООООО
Î
Channel On or Off
Î
Î
Î
Î
0
Î
Î
Î
Î
V
DD
0
ÎÎ
Î
ÎÎ
Î
Î
Î
Î
Î
V
DD
Î
Î
Î
Î
0
Î
Î
Î
Î
V
DDVPP
ОООООО
Î
Recommended Static or
Dynamic Voltage Across the Switch
(4.)
(Figure 5)
ÎÎ
Î
V
switch
ООООО
Î
Channel On
Î
Î
0
Î
Î
600
0
ÎÎ
Î
Î
Î
600
Î
Î
0
Î
Î
300
mV
Output Offset Voltage
V
OO
Vin = 0 V, No Load
10
µV
ОООООО
Î
ОООООО
Î
ON Resistance
ÎÎ
Î
ÎÎ
Î
R
on
5.0 10 15
ООООО
Î
ООООО
Î
V
switch
v 500 mV
(4.)
Vin = VIL or V
IH
(Control), and Vin = 0 to V
DD
(Switch)
Î
Î
Î
Î
— — —
Î
Î
Î
Î
800 400 220
— — —
ÎÎ
Î
ÎÎ
Î
250 120
80
Î
Î
Î
Î
1050
500 280
Î
Î
Î
Î
— — —
Î
Î
Î
Î
1200
520 300
ОООООО
Î
ON Resistance Between
Any Two Channels in the Same Package
ÎÎ
Î
R
on
5.0 10 15
ОООООÎÎ
Î
— — —
Î
Î
70 50 45
— — —
ÎÎ
Î
25 10 10
Î
Î
70 50 45
Î
Î
— — —
Î
Î
135
95 65
ОООООО
Î
ОООООО
Î
Off–Channel Leakage
Current (Figure 10)
ÎÎ
Î
ÎÎ
Î
I
off
15
ООООО
Î
ООООО
Î
Vin = VIL or V
IH
(Control) Channel to Channel or Any One Channel
Î
Î
Î
Î
Î
Î
Î
Î
± 100
ÎÎ
Î
ÎÎ
Î
± 0.05
Î
Î
Î
Î
± 100
Î
Î
Î
Î
Î
Î
Î
Î
±1000
nA
Capacitance, Switch I/O
C
I/O
Inhibit = V
DD
10
pF
ОООООО
Î
ОООООО
Î
Capacitance, Common O/I
ÎÎ
Î
ÎÎ
Î
C
O/I
ООООО
Î
ООООО
Î
Inhibit = V
DD
(MC14051B) (MC14052B) (MC14053B)
Î
Î
Î
Î
— — —
Î
Î
Î
Î
— — —
— — —
ÎÎ
Î
ÎÎ
Î
60 32 17
Î
Î
Î
Î
— — —
Î
Î
Î
Î
— — —
Î
Î
Î
Î
— — —
pF
ОООООО
Î
Capacitance, Feedthrough
(Channel Off)
ÎÎ
Î
C
I/O
— —
ООООО
Î
Pins Not Adjacent Pins Adjacent
Î
Î
— —
Î
Î
———
ÎÎ
Î
0.15
0.47
Î
Î
— —
Î
Î
— —
Î
Î
——pF
3. Data labeled “Typ” is not to be used for design purposes, but is intended as an indication of the IC’s potential performance.
4. For voltage drops across the switch (∆V
switch
) > 600 mV ( > 300 mV at high temperature), excessive VDD current may be drawn, i.e. the
current out of the switch may contain both V
DD
and switch input components. The reliability of the device will be unaffected unless the
Maximum Ratings are exceeded. (See first page of this data sheet.)
Page 4
MC14051B, MC14052B, MC14053B
http://onsemi.com
4
ELECTRICAL CHARACTERISTICS
(5.)
(C
L
= 50 pF, TA = 25_C) (VEE v VSS unless otherwise indicated)
Characteristic
Symbol
VDD – V
EE
Vdc
Typ
(6.)
All Types
Max
Unit
ООООООООООООО
Î
ООООООООООООО
Î
ООООООООООООО
Î
Propagation Delay Times (Figure 6)
Switch Input to Switch Output (R
L
= 10 kΩ)
MC14051
t
PLH
, t
PHL
= (0.17 ns/pF) CL + 26.5 ns
t
PLH
, t
PHL
= (0.08 ns/pF) CL + 11 ns
t
PLH
, t
PHL
= (0.06 ns/pF) CL + 9.0 ns
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
t
PLH
, t
PHL
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
5.0 10 15
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
35 15 12
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
90 40 30
Î
Î
Î
Î
Î
Î
ns
ООООООООООООО
Î
ООООООООООООО
Î
MC14052
t
PLH
, t
PHL
= (0.17 ns/pF) CL + 21.5 ns
t
PLH
, t
PHL
= (0.08 ns/pF) CL + 8.0 ns
t
PLH
, t
PHL
= (0.06 ns/pF) CL + 7.0 ns
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
5.0 10 15
ÎÎÎ
Î
ÎÎÎ
Î
30 12 10
ÎÎÎ
Î
ÎÎÎ
Î
75 30 25
Î
Î
Î
Î
ns
ООООООООООООО
Î
ООООООООООООО
Î
MC14053
t
PLH
, t
PHL
= (0.17 ns/pF) CL + 16.5 ns
t
PLH
, t
PHL
= (0.08 ns/pF) CL + 4.0 ns
t
PLH
, t
PHL
= (0.06 ns/pF) CL + 3.0 ns
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
5.0 10 15
ÎÎÎ
Î
ÎÎÎ
Î
25
8.0
6.0
ÎÎÎ
Î
ÎÎÎ
Î
65 20 15
Î
Î
Î
Î
ns
ООООООООООООО
Î
ООООООООООООО
Î
ООООООООООООО
Î
Inhibit to Output (RL = 10 kΩ, VEE = VSS) Output “1” or “0” to High Impedance, or High Impedance to “1” or “0” Level
MC14051B
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
t
PHZ
, t
PLZ
,
t
PZH
, t
PZL
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
5.0 10 15
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
350 170 140
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
700 340 280
Î
Î
Î
Î
Î
Î
ns
ООООООООООООО
Î
MC14052B
ÎÎÎÎÎÎÎ
Î
5.0 10 15
ÎÎÎ
Î
300 155 125
ÎÎÎ
Î
600 310 250
Î
Î
ns
ООООООООООООО
Î
MC14053B
ÎÎÎÎÎÎÎ
Î
5.0 10 15
ÎÎÎ
Î
275 140 110
ÎÎÎ
Î
550 280 220
Î
Î
ns
ООООООООООООО
Î
ООООООООООООО
Î
Control Input to Output (RL = 10 kΩ, VEE = VSS)
MC14051B
ÎÎÎ
Î
ÎÎÎ
Î
t
PLH
, t
PHL
ÎÎÎ
Î
ÎÎÎ
Î
5.0 10 15
ÎÎÎ
Î
ÎÎÎ
Î
360 160 120
ÎÎÎ
Î
ÎÎÎ
Î
720 320 240
Î
Î
Î
Î
ns
ООООООООООООО
Î
MC14052B
ÎÎÎÎÎÎÎ
Î
5.0 10 15
ÎÎÎ
Î
325 130
90
ÎÎÎ
Î
650 260 180
Î
Î
ns
ООООООООООООО
Î
MC14053B
ÎÎÎÎÎÎÎ
Î
5.0 10 15
ÎÎÎ
Î
300 120
80
ÎÎÎ
Î
600 240 160
Î
Î
ns
ООООООООООООО
Î
Second Harmonic Distortion
(R
L
= 10K, f = 1 kHz) Vin = 5 V
PP
ÎÎÎ
Î
ÎÎÎ
Î
10
ÎÎÎ
Î
0.07
ÎÎÎ
Î
Î
Î
%
ООООООООООООО
Î
Bandwidth (Figure 7)
(R
L
= 1 kΩ, Vin = 1/2 (VDD–VEE) p–p, CL = 50pF
20 Log (V
out/Vin
) = – 3 dB)
ÎÎÎ
Î
BW
ÎÎÎ
Î
10
ÎÎÎ
Î
17
ÎÎÎ
Î
Î
Î
MHz
ООООООООООООО
Î
ООООООООООООО
Î
ООООООООООООО
Î
Off Channel Feedthrough Attenuation (Figure 7)
R
L
= 1K, Vin = 1/2 (VDD – VEE) p–p
f
in
= 4.5 MHz — MC14051B
f
in
= 30 MHz — MC14052B
f
in
= 55 MHz — MC14053B
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
10
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
– 50
ÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
dB
ООООООООООООО
Î
Channel Separation (Figure 8)
(R
L
= 1 kΩ, Vin = 1/2 (VDD–VEE) p–p,
f
in
= 3.0 MHz
ÎÎÎ
Î
ÎÎÎ
Î
10
ÎÎÎ
Î
– 50
ÎÎÎ
Î
Î
Î
dB
ООООООООООООО
Î
Crosstalk, Control Input to Common O/I (Figure 9)
(R
1
= 1 k, RL = 10 k
Control t
TLH
= t
THL
= 20 ns, Inhibit = VSS)
ÎÎÎ
Î
ÎÎÎ
Î
10
ÎÎÎ
Î
75
ÎÎÎ
Î
Î
Î
mV
5. The formulas given are for the typical characteristics only at 25_C.
6. Data labelled “Typ” is not lo be used for design purposes but In intended as an indication of the IC’s potential performance.
Page 5
MC14051B, MC14052B, MC14053B
http://onsemi.com
5
Figure 1. Switch Circuit Schematic
IN/OUT
LEVEL CONVERTED CONTROL
V
DD
V
EE
V
DD
V
DD
V
DD
OUT/IN
V
EE
IN/OUT OUT/IN
CONTROL
TRUTH TABLE
Control Inputs
Select
ON Switches
Inhibit
C* B A MC14051B MC14052B MC14053B
0 0 0 0 X0 Y0 X0 Z0 Y0 X0 0 0 01 X1 Y1 X1 Z0 Y0 X1 0 0 10 X2 Y2 X2 Z0 Y1 X0 0 0 11 X3 Y3 X3 Z0 Y1 X1
0 1 0 0 X4 Z1 Y0 X0 0 1 01 X5 Z1 Y0 X1 0 1 10 X6 Z1 Y1 X0 0 1 11 X7 Z1 Y1 X1
1 x x x None None None
*Not applicable for MC14052 x = Don’t Care
Figure 3. MC14052B Functional Diagram Figure 4. MC14053B Functional Diagram
16 V
DD
8VSS7V
EE
13 X
3Y
BINARY TO 1–OF–4
DECODER WITH
INHIBIT
LEVEL
CONVERTER
INH 6
A10 B9
X0 12 X1 14 X2 15 X3 11 Y0 1 Y1 5 Y2 2 Y3 4
BINARY TO 1–OF–2
DECODER WITH
INHIBIT
LEVEL
CONVERTER
16 V
DD
8VSS7V
EE
14 X
15 Y
4Z
INH 6
A11 B10 C9
X0 12 X1 13 Y0 2 Y1 1 Z0 5 Z1 3
Figure 2. MC14051B Functional Diagram
INH 6
A11 B10 C9
X0 13 X1 14 X2 15 X3 12 X4 1 X5 5 X6 2 X7 4
8VSS7V
EE
16 V
DD
3X
BINARY TO 1–OF–8
DECODER WITH
INHIBIT
LEVEL
CONVERTER
Page 6
MC14051B, MC14052B, MC14053B
http://onsemi.com
6
TEST CIRCUITS
Figure 5. V Across Switch Figure 6. Propagation Delay Times,
Control and Inhibit to Output
Figure 7. Bandwidth and Off–Channel
Feedthrough Attenuation
Figure 8. Channel Separation
(Adjacent Channels Used For Setup)
Figure 9. Crosstalk, Control Input to
Common O/I
Figure 10. Off Channel Leakage
CONTROL
SECTION
OF IC
SOURCE
V
ON SWITCH
PULSE
GENERATOR
INH
A B C
R
L
C
L
V
out
VDDVEEVEEV
DD
INH
A B C
V
SS
V
in
R
L
CL = 50 pF
V
out
VDD – V
EE
2
INH
A B C
OFF
ON
R
L
R
L
CL = 50 pF
V
out
V
in
VDD – V
EE
2
INH
A B C
R1
R
L
CL = 50 pF
V
out
CONTROL
SECTION
OF IC
OFF CHANNEL UNDER TEST
OTHER CHANNEL(S)
COMMON
V
DD
V
EE
V
EE
V
DD
V
EE
V
DD
NOTE: See also Figures 7 and 8 in the MC14016B
data sheet.
A, B, and C inputs used to turn ON or OFF the switch under test.
LOAD
Page 7
MC14051B, MC14052B, MC14053B
http://onsemi.com
7
Figure 11. Channel Resistance (RON) Test Circuit
V
DD
VEE = V
SS
10 k
V
DD
KEITHLEY 160
DIGITAL
MULTIMETER
1 k
RANGE
X–Y
PLOTTER
TYPICAL RESISTANCE CHARACTERISTICS
Figure 12. V
DD
= 7.5 V, VEE = – 7.5 V Figure 13. VDD = 5.0 V, VEE = – 5.0 V
R
ON
, “ON” RESISTANCE (OHMS)
350 300
250
200
150
100
0
50
–8.0–10 –6.0 –4.0 –2.0 0 0.2 4.0 6.0 8.0 10
V
in
, INPUT VOLTAGE (VOLTS)
TA = 125°C
25°C
–55°C
R
ON
, “ON” RESISTANCE (OHMS)
350 300
250
200
150
100
0
50
–8.0–10 –6.0 –4.0 –2.0 0 0.2 4.0 6.0 8.0 10
V
in
, INPUT VOLTAGE (VOLTS)
TA = 125°C
25°C
–55°C
Figure 14. VDD = 2.5 V, VEE = – 2.5 V
R
ON
, “ON” RESISTANCE (OHMS)
700 600
500
400
300
200
0
100
–8.0–10 –6.0 –4.0 –2.0 0 0.2 4.0 6.0 8.0 10
V
in
, INPUT VOLTAGE (VOLTS)
TA = 125°C
25°C –55°C
Figure 15. Comparison at 25°C, VDD = –V
EE
R
ON
, “ON” RESISTANCE (OHMS)
350 300
250
200
150
100
0
50
–8.0–10 –6.0 –4.0 –2.0 0 0.2 4.0 6.0 8.0 10
V
in
, INPUT VOLTAGE (VOLTS)
TA = 25°C
VDD = 2.5 V
5.0 V
7.5 V
Page 8
MC14051B, MC14052B, MC14053B
http://onsemi.com
8
APPLICATIONS INFORMATION
Figure A illustrates use of the on–chip level converter detailed in Figures 2, 3, and 4. The 0–to–5 V Digital Control signal is used to directly control a 9 V
p–p
analog signal.
The digital control logic levels are determined by V
DD
and VSS. The VDD voltage is the logic high voltage; the V
SS
voltage is logic low . For the example, VDD = + 5 V = logic high at the control inputs; VSS = GND = 0 V = logic low.
The maximum analog signal level is determined by V
DD
and VEE. The VDD voltage determines the maximum recommended peak above VSS. The VEE voltage determines the maximum swing below V
SS
. For the example, VDD – VSS = 5 V maximum swing above VSS; VSS – VEE = 5 V maximum swing below VSS. The example shows a ± 4.5 V signal which allows a 1/2 volt margin at each
peak. If voltage transients above V
DD
and/or below VEE are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.
The absolute maximum potential difference between
V
DD
and VEE is 18.0 V . Most parameters are specified up to 15 V which is the recommended maximum difference between VDD and VEE.
Balanced supplies are not required. However, VSS must
be greater than or equal to V
EE
. For example, VDD = + 10 V, VSS = + 5 V, and VEE – 3 V is acceptable. See the Table below.
Figure A. Application Example
+5 V –5 V
V
DD
V
SS
V
EE
9 V
p–p
ANALOG SIGNAL
0–TO–5 V DIGITAL
CONTROL SIGNALS
SWITCH
I/O
INHIBIT ,
A, B, C
COMMON
O/I
9 V
p–p
ANALOG SIGNAL
+4.5 V
4.5 V
GND
+5 V
EXTERNAL
CMOS
DIGITAL
CIRCUITRY
MC14051B MC14052B MC14053B
Figure B. External Germanium or Schottky Clipping Diodes
V
DD
V
DD
V
EE
V
EE
D
X
D
X
D
X
D
X
ANALOG
I/O
COMMON
O/I
POSSIBLE SUPPLY CONNECTIONS
ÎÎ
Î
ÎÎ
Î
V
DD
In Volts
ÎÎÎ
Î
ÎÎÎ
Î
V
SS
In Volts
ÎÎ
Î
ÎÎ
Î
V
EE
In Volts
ООООО
Î
ООООО
Î
Control Inputs
Logic High/Logic Low
In Volts
ООООООО
Î
ООООООО
Î
Maximum Analog Signal Range
In Volts
+ 8
0
– 8
+ 8/0
+ 8 to – 8 = 16 V
p–p
+ 5
0
– 12
+ 5/0
+ 5 to – 12 = 17 V
p–p
+ 5
0
0
+ 5/0
+ 5 to 0 = 5 V
p–p
+ 5
0
– 5
+ 5/0
+ 5 to – 5 = 10 V
p–p
+ 10
+ 5
– 5
+ 10/ + 5
+ 10 to – 5 = 15 V
p–p
Page 9
MC14051B, MC14052B, MC14053B
http://onsemi.com
9
P ACKAGE DIMENSIONS
PDIP–16
P SUFFIX
PLASTIC DIP PACKAGE
CASE 648–08
ISSUE R
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
–A–
B
F
C
S
H
G
D
J
L
M
16 PL
SEATING
18
916
K
PLANE
–T–
M
A
M
0.25 (0.010) T
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.740 0.770 18.80 19.55 B 0.250 0.270 6.35 6.85 C 0.145 0.175 3.69 4.44 D 0.015 0.021 0.39 0.53
F 0.040 0.70 1.02 1.77 G 0.100 BSC 2.54 BSC H 0.050 BSC 1.27 BSC
J 0.008 0.015 0.21 0.38 K 0.110 0.130 2.80 3.30
L 0.295 0.305 7.50 7.74 M 0 10 0 10
S 0.020 0.040 0.51 1.01
____
SOIC–16
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
18
16 9
SEATING
PLANE
F
J
M
R
X 45
_
G
8 PLP
–B–
–A–
M
0.25 (0.010) B
S
–T–
D
K
C
16 PL
S
B
M
0.25 (0.010) A
S
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 9.80 10.00 0.386 0.393 B 3.80 4.00 0.150 0.157 C 1.35 1.75 0.054 0.068 D 0.35 0.49 0.014 0.019 F 0.40 1.25 0.016 0.049 G 1.27 BSC 0.050 BSC J 0.19 0.25 0.008 0.009 K 0.10 0.25 0.004 0.009 M 0 7 0 7 P 5.80 6.20 0.229 0.244 R 0.25 0.50 0.010 0.019
____
Page 10
MC14051B, MC14052B, MC14053B
http://onsemi.com
10
P ACKAGE DIMENSIONS
TSSOP–16
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948F–01
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 4.90 5.10 0.193 0.200 B 4.30 4.50 0.169 0.177 C ––– 1.20 ––– 0.047 D 0.05 0.15 0.002 0.006 F 0.50 0.75 0.020 0.030 G 0.65 BSC 0.026 BSC H 0.18 0.28 0.007 0.011 J 0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K 0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L 6.40 BSC 0.252 BSC M 0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.
____
SECTION N–N
SEATING PLANE
IDENT.
PIN 1
1
8
16
9
DETAIL E
J
J1
B
C
D
A
K
K1
H
G
DETAIL E
F
M
L
2X L/2
–U–
S
U0.15 (0.006) T
S
U0.15 (0.006) T
S
U
M
0.10 (0.004) V
S
T
0.10 (0.004)
–T–
–V–
–W–
0.25 (0.010)
16X REFK
N
N
Page 11
MC14051B, MC14052B, MC14053B
http://onsemi.com
11
P ACKAGE DIMENSIONS
H
E
A
1
DIM MIN MAX MIN MAX
INCHES
––– 2.05 ––– 0.081
MILLIMETERS
0.05 0.20 0.002 0.008
0.35 0.50 0.014 0.020
0.18 0.27 0.007 0.011
9.90 10.50 0.390 0.413
5.10 5.45 0.201 0.215
1.27 BSC 0.050 BSC
7.40 8.20 0.291 0.323
0.50 0.85 0.020 0.033
1.10 1.50 0.043 0.059 0
0.70 0.90 0.028 0.035
––– 0.78 ––– 0.031
A
1
H
E
Q
1
L
E
_
10
_
0
_
10
_
L
E
Q
1
_
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018).
M
L
DETAIL P
VIEW P
c
A
b
e
M
0.13 (0.005)
0.10 (0.004)
1
16 9
8
D
Z
E
A
b c D E e
L
M
Z
SOEIAJ–16
F SUFFIX
PLASTIC EIAJ SOIC PACKAGE
CASE 966–01
ISSUE O
Page 12
MC14051B, MC14052B, MC14053B
http://onsemi.com
12
ORDERING & SHIPPING INFORMATION:
Device Package Shipping
MC14051BCP PDIP–16 2000 Units per Box MC14051BD SOIC–16 48 Units per Rail MC14051BDR2 SOIC–16 2500 Units / Tape & Reel MC14051BDT TSSOP–16 96 Units per Rail MC14051BDTEL TSSOP–16 2000 Units / Tape & Reel MC14051BDTR2 TSSOP–16 2500 Units / T ape & Reel MC14051BF SOEIAJ–16 See Note 7. MC14051BFEL SOEIAJ–16 See Note 7.
MC14052BCP PDIP–16 2000 Units per Box MC14052BD SOIC–16 48 Units per Rail MC14052BDR2 SOIC–16 2500 Units / Tape & Reel MC14052BDT TSSOP–16 96 Units per Rail MC14052BDTR2 TSSOP–16 2500 Units / T ape & Reel MC14052BF SOEIAJ–16 See Note 7. MC14052BFEL SOEIAJ–16 See Note 7.
ORDERING & SHIPPING INFORMATION:
MC14053BCP PDIP–16 2000 Units per Box MC14053BD SOIC–16 48 Units per Rail MC14053BDR2 SOIC–16 2500 Units / Tape & Reel MC14053BDT TSSOP–16 96 Units per Rail MC14053BDTEL TSSOP–16 2000 Units / Tape & Reel MC14053BDTR2 TSSOP–16 2500 Units / T ape & Reel MC14053BF SOEIAJ–16 See Note 7. MC14053BFEL SOEIAJ–16 See Note 7.
7. For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor rep­resentative.
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability , including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly , any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer .
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
ASIA/PACIFIC : LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (T ue–Fri 9:00am to 1:00pm, Hong Kong T ime)
T oll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, T okyo, Japan 141–8549
Phone: 81–3–5740–2745 Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.
MC14051B/D
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 T oll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 T oll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse T ime)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy , England, Ireland
Loading...