Datasheet MAX9052AESA, MAX9051AESA, MAX9051AEUT-T, MAX9051BESA, MAX9043AEUB Datasheet (Maxim)

...
Page 1
General Description
The MAX9040–MAX9043 and MAX9050–MAX9053 fea­ture combinations of low-power comparators and a pre­cision voltage reference. Their operating voltage range makes them ideal for both +3V and +5V systems. The MAX9040/MAX9041/MAX9050/MAX9051 have a single comparator and reference consuming only 40µA of supply current. The MAX9042/MAX9043/MAX9052/ MAX9053 have dual comparators and a reference, while consuming only 55µA of supply current. Low-volt­age operation and low supply current make these devices ideal for battery-operated systems.
The comparators feature Rail-to-Rail
®
inputs and out­puts, with a common-mode input voltage range that extends 250mV beyond the supply rails. Input bias cur­rent is typically 1.0pA, and input offset voltage is typi­cally 0.5mV. Internal hysteresis ensures clean output switching, even with slow-moving input signals. The output stage features a unique design that limits supply current surges while switching, virtually eliminating sup­ply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The comparator outputs have rail-to-rail push-pull output stages that sink and source up to 8mA. The propagation delay is 400ns, even with the low operating supply current.
The reference output voltage is set to 2.048V in the MAX9040–MAX9043 and to 2.500V in the MAX9050– MAX9053. These devices are offered in two grades: an A grade with 0.4% initial accuracy and 6ppm/°C tempco, and a B grade with 1% initial accuracy and 100ppm/°C tempco. The voltage reference features a proprietary curvature-correction circuit and laser­trimmed thin-film resistors. The series-mode references can sink or source up to 500µA of load current.
Applications
Precision Battery Management
Window Comparators
IR Receivers
Level Translators
Digital Line Receivers
Features
Comparator + Precision Reference in SOT23
+2.5V to +5.5V Single-Supply Operation
(MAX9040–MAX9043)
Low Supply Current (MAX9042/43/52/53)
55µA Quiescent 65µA with 100kHz Switching
400ns Propagation Delay
Rail-to-Rail Inputs
Rail-to-Rail Output Stage Sinks and Sources 8mA
Internal ±3mV Hysteresis
Voltage Reference Offers
±0.4% max Initial Accuracy (MAX90_ _A) 6ppm/°C typ Temperature Coefficient Stable for 0 to 4.7nF Capacitive Loads
Ordering Information continued at end of data sheet.
*Future product—contact factory for availability.
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
________________________________________________________________ Maxim Integrated Products 1
19-1569; Rev 1; 1/00
Ordering Information
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
Typical Operating Circuit appears at end of data sheet.
Functional Diagrams appear at end of data sheet.
Selector Guide appears at end of data sheet.
Pin Configurations
Pin Configurations continued at end of data sheet.
PIN-
PACKAGE
5 SOT23-5
5 SOT23-5
6 SOT23-6
6 SOT23-6
8 SO
8 SO
8 µMAX 8 µMAX 8 SO 8 SO 10 µMAX
10 µMAX-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
TEMP. RANGEPART
MAX9040AEUK-T
MAX9040BEUK-T
MAX9041AEUT-T*
MAX9041BEUT-T*
MAX9041AESA*
MAX9041BESA*
MAX9042AEUA MAX9042BEUA MAX9042AESA MAX9042BESA MAX9043AEUB
MAX9043BEUB
TOP
MARK
ADNV
ADNX
AAHF
AAHH
— — — — —
TOP VIEW
15V
OUT
V
MAX9040
2
EE
MAX9050
CC
34
SOT23-5
REFIN+
Page 2
dB
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICSA Grade (0.4% initial accuracy)
(VCC= +5V, VEE= 0, VCM= 0, I
OUT
= 0, I
REF
= 0, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.)
(Note 1)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Supply Voltage (VCCto VEE) ....................................-0.3V to +6V
All Other Pins ...................................(V
EE
- 0.3V) to (VCC+ 0.3V)
Output Short-Circuit Duration
(OUT_, REF) .............Indefinite Short Circuit to Either Supply
Continuous Power Dissipation (T
A
= +70°C)
5-Pin SOT23 (derate 7.10mW/°C above +70°C)........571mW
6-Pin SOT23 (derate 8.70mW/°C above +70°C)........696mW
8-Pin µMAX (derate 4.1mW/°C above +70°C) ...........330mW
10-Pin µMAX (derate 5.6mW/°C above +70°C) .........444mW
8-Pin SO (derate 5.88mW/°C above +70°C)..............471mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
VCC= 2.7V 35
VCC= 5V
2.3 2.55VCC= 2.7V, I
SOURCE
= 3.5mA
TA = -40°C to +85°C
TA= +25°C
VCC= 5.0V
VCC= 2.7V
VCC= 5.0V
VCC= 2.7V
PARAMETER SYMBOL MIN TYP MAX UNITS
60 85
55 80
Supply Current I
CC
45 60
µA
Input Offset Voltage (Note 3) V
OS
±0.5 ±5.0
mV
±7.0
Input Hysteresis V
HYST
±3.0 mV
Input Bias Current (Notes 4, 5, 6)
I
B
±0.001 ±10.0 nA
Supply Voltage Range (Note 2) V
CC
2.5 5.5 V
2.7 5.5
40 55
Input Offset Current (Note 4) I
OS
±0.5 pA
Common-Mode Voltage Range (Notes 4, 7)
CMVR
VEE- 0.25 V
CC
+ 0.25
V
V
EE
V
CC
Common-Mode Rejection Ratio (Note 4)
CMRR 52 80
Power-Supply Rejection Ratio PSRR
55 80
55 80
Input Capacitance (Note 4) C
IN
2.5 pF
Output Short-Circuit Current I
SC
95
mA
Output Voltage Low V
OL
0.2 0.55 V
0.15 0.4
Output Voltage High V
OH
4.45 4.85 V
CONDITIONS
Specified common-mode range
TA= +25°C
Over entire common­mode range
TA= -40°C to +85°C
Specified common-mode range
Specified common-mode range
MAX9040–MAX9043, 2.5V ≤ VCC≤ 5.5V MAX9050–MAX9053, 2.7V ≤ VCC≤ 5.5V
MAX9040–MAX9043
MAX9050–MAX9053
V
OUT
= VEEor V
CC
MAX9040/MAX9041/ MAX9050/MAX9051
VCC= 5V, I
SINK
= 8mA
VCC= 2.7V, I
SINK
= 3.5mA
VCC= 5V, I
SOURCE
= 8mA
dB
MAX9042/MAX9043/ MAX9052/MAX9053
COMPARATORS
Page 3
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICSA Grade (0.4% initial accuracy) (continued)
(VCC= +5V, VEE= 0, VCM= 0, I
OUT
= 0, I
REF
= 0, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.)
(Note 1)
ELECTRICAL CHARACTERISTICSB Grade (1% initial accuracy)
(VCC= +5V, VEE= 0, VCM= 0, I
OUT
= 0, I
REF
= 0, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.)
(Note 1)
2.7V ≤ VCC≤ 5.5V, MAX9050–MAX9053
CONDITIONS UNITSMIN TYP MAXSYMBOLPARAMETER
CL= 15pF, V
CC
= 2.7V
CL = 200pF
CL = 50pF
CL = 15pF
ns
450
tPD+/tPD-
Output Propagation Delay (Note 8)
80
ns
50
Output Rise/Fall Times
40
tR/t
F
TA= +25°C
Time to V
OUT
valid logic state
V
2.040 2.048 2.056
V
REF
Output Voltage
µs20t
PU
Power-Up Time
2.5V ≤ VCC≤ 5.5V, MAX9040–MAX9043
µV/µA
V
REF
/
I
REF
Load Regulation
+50 +200
µV/V
+50 +200
V
REF
/
V
CC
Line Regulation
ppm/°C630TCV
REF
Output Voltage Temperature Coefficient (Note 9)
2.490 2.500 2.510
50mV overdrive
MAX9040–MAX9043
MAX9050–MAX9053
1000h at TA= +25°C
V
REF
= VEEor V
CC
Sourcing: 0 ≤ I
REF
500µA
50Long-Term Stability
ppm130T
HYST
Thermal Hysteresis (Note 10)
mA4I
SC
Output Short-Circuit Current
24
400100mV overdrive
f = 0.1Hz to 10Hz µVp-p40
E
OUT
Noise Voltage
To V
REF
= 1% of final value
VCC= 5V ±100mV, f = 120Hz
f = 10Hz to 10kHz
nF0 4.7CL(V
REF
)
Capacitive Load Stability Range (Note 6)
µs200tR(V
REF
)Turn-On Settling Time
dB84
V
REF
/
V
CC
Ripple Rejection
µV
RMS
105
ppm
3.5 6Sinking: -500µA ≤ I
REF
0
VOLTAGE REFERENCE
V
CC
I
CC
SYMBOL
VCC= 5.0V
VCC= 2.7V
VCC= 5.0V
VCC= 2.7V
MAX9040/MAX9041/ MAX9050/MAX9051
MAX9050–MAX9053
MAX9040–MAX9043
MAX9042/MAX9043/ MAX9052/MAX9053
CONDITIONS
40
2.7 5.5
V
2.5 5.5
Supply Voltage Range (Note 2)
45 100
µA
55
Supply Current
60 130
UNITSMIN TYP MAXPARAMETER
Page 4
ns
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICSB Grade (1% initial accuracy) (continued)
(VCC= +5V, VEE= 0, VCM= 0, I
OUT
= 0, I
REF
= 0, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.)
(Note 1)
V
REF
/
l
REF
I
SC
T
HYST
tR/t
F
V
REF
/
V
CC
TCV
REF
V
REF
t
PD+/tPD-
t
PU
PSRR
CMVR
CMRR
V
OH
V
OL
C
IN
I
SC
I
OS
I
B
V
HYST
V
OS
SYMBOL
MAX9050–MAX9053
MAX9040–MAX9043
MAX9040–MAX9043
MAX9050–MAX9053
50mV overdrive
VCC= 2.7V
VCC= 5V
Sinking: -500µA ≤ I
REF
0
Sourcing: 0 ≤ I
REF
500µA
V
REF
= VEEor V
CC
1000h at TA= +25°C
3.5 6
µV/mA
24
+50 +200
Load Regulation
mA
4
Output Short-Circuit Current
ppm
130
Thermal Hysteresis (Note 10)
ppm
100
Long-Term Stability
CL= 200pF
CL= 50pF
CL= 15pF
2.5V ≤ VCC≤ 5.5V
TA= +25°C
CL= 15pF, VCC= 2.7V
Time to V
OUT
valid logic state
80
ns
50
40
Output Rise/Fall Times
µV/V
+50 +200
Line Regulation
ppm/°C
20 100
Output Voltage Temperature Coefficient (Note 9)
2.475 2.500 2.525
V
2.028 2.048 2.068
Output Voltage
450
Output Propagation Delay (Note 8)
400
µs
µs
20
Power-Up Time
MAX9040–MAX9043, 2.5V ≤ VCC≤ 5.5V
Specified common-mode range
VCC= 2.7V, I
SOURCE
= 3.5mA
VCC= 5V, I
SOURCE
= 8mA
VCC= 2.7V, I
SINK
= 3.5mA
VCC= 5V, I
SINK
= 8mA
MAX9050–MAX9053, 2.7V ≤ VCC≤ 5.5V
dB
55 80
Power-Supply Rejection Ratio
dB
52 80
V
V
EE
V
CC
Common-Mode Voltage Range (Notes 4, 7)
Common-Mode Rejection Ratio (Note 4)
2.55
V
4.45 4.85
Output Voltage High
0.15
V
0.2 0.55
Output Voltage Low
55 80
pF
2.5
Input Capacitance (Note 4)
mA
95
Output Short-Circuit Current
35
Specified common-mode range
Specified common-mode range
Over entire common-mode range
CONDITIONS
pA
±0.5
Input Offset Current (Note 4)
nA
±0.001 ±25.0
Input Bias Current (Notes 4, 5, 6)
mV
±3.0
Input Hysteresis
mV
±1 ±9.0
Input Offset Voltage (Note 3)
UNITSMIN TYP MAXPARAMETER
V
OUT
= VEEor V
CC
ns
100mV overdrive
COMPARATOR
VOLTAGE REFERENCE
Page 5
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
_______________________________________________________________________________________ 5
ELECTRICAL CHARACTERISTICSB Grade (1% initial accuracy) (continued)
(VCC= +5V, VEE= 0, VCM= 0, I
OUT
= 0, I
REF
= 0, TA= T
MIN
to T
MAX
, unless otherwise noted. Typical values are at TA= +25°C.)
(Note 1)
Note 1: All devices are 100% production tested at T
A
= +25°C. Limits over the extended temperature range are guaranteed by
design, not production tested.
Note 2: Supply voltage range guaranteed by PSRR test on comparator and line regulation of REF. Note 3: V
OS
is defined as the center of the input-referred hysteresis band.
Note 4: For the comparators with the inverting input (IN-) uncommitted. Note 5: Input bias current is the average of the inverting and noninverting input bias currents. Note 6: Not production tested. Guaranteed by design. Note 7: Guaranteed by CMRR test. Note 8: V
OVERDRIVE
is beyond the offset and hysteresis determined trip point.
Note 9: Temperature coefficient is measured by the box method; i.e., the maximum ∆V
REF
is divided by the maximum T.
Note 10: Thermal hysteresis is defined as the change in V
REF
at +25°C before and after cycling the device from T
MIN
to T
MAX
.
Typical Operating Characteristics
(VCC= +5V, VEE= 0, VCM= 0, I
OUT
= 0, I
REF
= 0, TA= +25°C, unless otherwise noted.)
0
10
30
20
50
40
60
-40 0-20 20 40 60 80
MAX9040/MAX9041/MAX9050/MAX9051
SUPPLY CURRENT vs. TEMPERATURE
MAX9040-3/50-3 toc01A
TEMPERATURE (°C)
SUPPLY CURRENT (µA)
VCC = +5.0V
V
IN+ > VIN-
VCC = +2.7V
0
10
30
20
50
40
60
-40 0-20 20 40 60 80
MAX9042/MAX9043/MAX9052/MAX9053
SUPPLY CURRENT vs. TEMPERATURE
MAX9040-3/50-3 toc01
TEMPERATURE (°C)
SUPPLY CURRENT (µA)
VCC = +5.0V
V
IN+ > VIN-
VCC = +2.7V
0.01 0.1 1 10 100 1000
200
150
100
50
0
MAX9040/MAX9041/MAX9050/MAX9051
SUPPLY CURRENT vs. SWITCHING FREQUENCY
MAX9040-3/50-3 toc02A
SWITCHING FREQUENCY (kHz)
SUPPLY CURRENT (µA)
VCC = +5.0V
VCC = +2.7V
CL(V
REF)
tR(V
REF)
V
REF
/
V
CC
E
OUT
SYMBOL
To V
REF
= 1% of final value
VCC= 5V ±100mV, f = 120Hz
f = 10Hz to 10kHz
f = 0.1Hz to 10Hz
nF
0 4.7
Capacitive Load Stability Range (Note 6)
µs
200
Turn-On Settling Time
dB
84
Ripple Rejection
µVRMS
105
µVp-p
40
Noise Voltage
CONDITIONS UNITSMIN TYP MAXPARAMETER
Page 6
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
6 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC= +5V, VEE= 0, VCM= 0, I
OUT
= 0, I
REF
= 0, TA= +25°C, unless otherwise noted.)
250
0.01 0.1 1 10 100 1000
200
150
100
50
0
MAX9042/MAX9043/MAX9052/MAX9053
SUPPLY CURRENT vs. SWITCHING FREQUENCY
MAX9040-3/50-3 toc02
SWITCHING FREQUENCY (kHz)
SUPPLY CURRENT (µA)
VCC = +5.0V
VCC = +2.7V
10,000
1000
100
10
1
0.1
0.01 1 100.1
OUTPUT LOW VOLTAGE
vs. OUTPUT SINK CURRENT
MAX9040-3/50-3 toc03
OUTPUT SINK CURRENT (mA)
V
OL
(mV)
VCC = +5.0V
V
IN+ < VIN-
VCC = +2.7V
OUTPUT HIGH VOLTAGE
vs. OUTPUT SOURCE CURRENT
10,000
V
IN+ > VIN-
) (mV)
1000
OH
- V
CC
(V
100
10
1
OUTPUT HIGH VOLTAGE
0.1
0.01 1 100.1 OUTPUT SOURCE CURRENT (mA)
VCC = +2.7V
VCC = +5.0V
MAX9040-3/50-3 toc04
OUTPUT SHORT-CIRCUIT CURRENT
vs. TEMPERATURE
120
100
80
60
40
OUTPUT SINK CURRENT (mA)
20
0
-40 0-20 20 40 60 80
V
IN+ > VIN-
OUT SHORTED TO V
VCC = +5.0V
VCC = +2.7V
TEMPERATURE (°C)
EE
MAX9040-3/50-3 toc05
PROPAGATION DELAY
vs. CAPACITIVE LOAD (V
650
VOD = 50mV
600
550
500
(ns)
PD
t
450
400
350
300
0 400200 600 800100 500300 700 900 1000
t
TO V
PD+
OF FINAL VALUE
t
TO V
PD+
OF FINAL VALUE
t
TO V
= 50%
PD-
OUT
OF FINAL VALUE
CAPACITIVE LOAD (pF)
OUTPUT SHORT-CIRCUIT CURRENT
vs. TEMPERATURE
100
80
60
40
OUTPUT SOURCE CURRENT (mA)
20
0
-40 -20 0 20 40 60 80
= 5V)
CC
= 50%
OUT
= 10%
OUT
t
TO V
= 10%
PD-
OUT
OF FINAL VALUE
V
IN- > VIN+
OUT SHORTED TO V
TEMPERATURE (°C)
650
600
MAX9040-3/50-3 toc08
550
500
(ns)
PD
t
450
400
350
300
-40 0-20 20 40
CC
VCC = +5.0V
VCC = +2.7V
PROPAGATION DELAY
vs. TEMPERATURE
VOD = 50mV
t
TO V
PD+
= 10%
OUT
OF FINAL VALUE
TEMPERATURE (°C)
MAX9040-3/50-3 toc06
(ns)
PD
t
t
TO V
PD+
OUT
OF FINAL VALUE
t
PD-
OF FINAL VALUE
t
TO V
PD-
OUT
OF FINAL VALUE
PROPAGATION DELAY
vs. CAPACITIVE LOAD (V
600
VOD = 50mV
550
500
450
400
350
TO V
t
TO V
= 50%
PD+
OUT
OF FINAL VALUE
0 400200 600 800100 500300 700 900 1000
CAPACITIVE LOAD (pF)
= 50%
MAX9040-3/50-3 toc09
= 50%
OUT
= 10%
80
60
= 2.7V)
CC
t
TO V
PD-
OUT
OF FINAL VALUE
t
TO V
PD+
OF FINAL VALUE
t
TO V
PD-
OUT
OF FINAL VALUE
= 50%
OUT
MAX9040-3/50-3 toc07
= 10%
= 10%
Page 7
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
_______________________________________________________________________________________ 7
C)
Typical Operating Characteristics (continued)
(VCC= +5V, VEE= 0, VCM= 0, I
OUT
= 0, I
REF
= 0, TA= +25°C, unless otherwise noted.)
200
400
300
600
500
800
700
900
08040 120 16020 10060 140 180 200
PROPAGATION DELAY
vs. INPUT OVERDRIVE
MAX9040-3/50-3 toc10
INPUT OVERDRIVE (mV)
t
PD
(ns)
t
PD+
, VCC = 5.0V
t
PD-
, VCC = 2.7V
t
PD-
, VCC = 5.0V
t
PD+
, VCC = 2.7V
B
A
100ns/div
PROPAGATION DELAY (t
PD+
)
MAX9040-3/50-3 toc11
A = IN+, 50mV/div B = OUT, 2V/div
B
A
100ns/div
PROPAGATION DELAY (t
PD-
)
MAX9040-3/50-3 toc12
A = IN+, 50mV/div B = OUT, 2V/div
SWITCHING CURRENT (OUT RISING EDGE)
A
B
MAX9040-3/50-3 toc13
SWITCHING CURRENT (OUT FALLING EDGE)
A
B
MAX9040-3/50-3 toc14
A
POWER-UP DELAY (OUT)
MAX9040-3/50-3 toc15
C
A = IN+, 100mV/div B = OUT, 5V/div
, 1mA/div
C = I
CC
A
B
C
A = VCC, 2V/div B = REF, 1V/div C = REF, 50mV/div, 2.048V OFFSET
B
C
100ns/div
POWER-UP DELAY (REF)
100µs/div
A = IN+, 100mV/div B = OUT, 5V/div C = I
0.003 V
MAX9040-3/50-3 toc16
0.002
0.001
INPUT BIAS CURRENT (nA)
0
0 2.01.50.5 1.0 2.5 3.0 3.5 4.0 4.5 5.0
, 1mA/div
CC
INPUT BIAS CURRENT
vs. INPUT VOLTAGE
= +2.0V
IN-
100ns/div
V
(V)
IN+
A = VCC, 2V/div B = OUT, 1V/div
REFERENCE OUTPUT VOLTAGE
1.00 THREE TYPICAL PARTS
NORMALIZED TO +25°C
0.75
0.50
I
B+
I
B-
MAX9040-3/50-3 toc17
0.25
0
-0.25
-0.50
OUTPUT VOLTAGE CHANGE (mV)
-0.75
-1.00
-40 0-20 20 40 60 80
5µs/div
TEMPERATURE DRIFT
TEMPERATURE (°
MAX9040-3/50-3 toc18
Page 8
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
8 _______________________________________________________________________________________
Pin Description
MAX9041 MAX9051
4
6
7
8
3
1065
4
9
1
254
33
SOT23-5
522
11
µMAXSOT23-6
INA+
INB+
INB-
OUTB
INA-
V
CC
IN-
N.C.
OUTA
REF
IN+
V
EE
OUT
3
5
6
7
8
1
2
4
SO/µMAX
7
2
5, 8
1
3
4
6
SO
NAME
Comparator A Noninverting Input
Comparator B Noninverting Input
Comparator B Inverting Input
Comparator B Output
Comparator A Inverting Input
Positive Supply Voltage
Comparator Inverting Input
No Connection. Not internally connected.
Comparator A Output
Reference Voltage Output
Comparator Noninverting Input
Negative Supply Voltage
Comparator Output
PIN
MAX9043 MAX9053
MAX9040 MAX9050
MAX9042 MAX9052
FUNCTION
-200
-100
-150
0
-50
100
50
150
2.5 3.5 4.03.0 4.5 5.0 5.5
LINE REGULATION
MAX9040-3/50-3 toc19
INPUT VOLTAGE (V)
REFERENCE OUTPUT VOLTAGE CHANGE (µV)
TA = +25°C
TA = +85°C
TA = -40°C
-1500
-500
-1000
500
0
1500
1000
2000
-500 -100-300 100 300 500
LOAD REGULATION
MAX9040-3/50-3 toc20
LOAD CURRENT (µA)
REFERENCE OUTPUT VOLTAGE CHANGE (µV)
TA = +25°C
TA = +85°C
TA = -40°C
Typical Operating Characteristics (continued)
(VCC= +5V, VEE= 0, VCM= 0, I
OUT
= 0, I
REF
= 0, TA= +25°C, unless otherwise noted.)
Page 9
Detailed Description
The MAX9040–MAX9043 and MAX9050–MAX9053 fea­ture single/dual, low-power, low-voltage comparators and a precision voltage reference. They operate from a single +2.5V to +5.5V (MAX904_) or +2.7V to +5.5V (MAX905_) supply. The single comparators with refer­ence (MAX9040/MAX9041/MAX9050/MAX9051) con­sume only 40µA of supply current, while the dual comparators with reference (MAX9042/MAX9043/ MAX9052/MAX9053) consume only 55µA of supply cur­rent. Their common-mode input range extends 0.25V beyond each rail. Internal hysteresis ensures clean out­put switching, even with slow-moving input signals.
The output stage employs a unique design that mini­mizes supply current surges while switching, virtually eliminating the supply glitches typical of many other comparators. Large internal output drivers allow rail-to­rail output swing that can sink and source up to 8mA of current.
The precision reference uses a proprietary curvature­correction circuit and laser-trimmed thin-film resistors, resulting in a temperature coefficient of less than 30ppm/°C over the extended temperature range and initial accuracy of 0.4% (A grade). The reference output voltage is set to 2.048V in the MAX9040–MAX9043 and to 2.500V in the MAX9050–MAX9053.
Comparator Input Stage Circuitry
The devices’ input common-mode range extends from (VEE- 0.25V) to (VCC+ 0.25V). These comparators may operate at any differential input voltage within these lim­its. Input bias current is typically 1.0pA if the input volt-
age is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input volt­age exceeds the supply rails.
Comparator Output Stage Circuitry
The comparators in these devices contain a unique output stage capable of rail-to-rail operation with loads up to 8mA. Many comparators consume orders-of-mag­nitude more current during switching than during steady-state operation. However, with this family of com­parators, the supply current change during an output transition is extremely small. The Typical Operating Characteristics graph Supply Current vs. Switching Frequency shows the minimal supply current increase as the output switching frequency approaches 1MHz. This characteristic reduces the need for power-supply filter capacitors to reduce glitches created by compara­tor switching currents. Another advantage realized in high-speed, battery-powered applications is a substan­tial increase in battery life.
Applications Information
Additional Hysteresis
These comparators have ±3mV internal hysteresis. Additional hysteresis can be generated with two resis­tors using positive feedback (Figure 1). Use the follow­ing procedure to calculate resistor values:
1) Calculate the trip points of the comparator using these formulas:
and
V
TH
is the threshold voltage at which the comparator switches its output from high to low as VINrises above the trip point. VTLis the threshold voltage at which the comparator switches its output from low to high as VINdrops below the trip point.
2) The hysteresis band will be:
V
HYS
= VTH- VTL= V
CC
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
_______________________________________________________________________________________ 9
Figure 1. Additional Hysteresis
V
R1
CC
2
 
 
VV
=+
TH REF
VVR
CC REF
()
 
12
RR
 
+
V
V
R2
REF
IN
IN+
IN-
V
CC
MAX9040–9043 MAX9050–9053
V
EE
OUT
VV
=−
TL REF
1
 
2
R
12
RR
+
 
R
2
RR
12+
 
Page 10
MAX9040–MAX9043/MAX9050–MAX9053
3) In this example, let VCC= +5V and V
REF
= +2.5V.
and
4) Select R2. In this example, we will choose 1kΩ.
5) Select V
HYS
. In this example, we will choose 50mV.
6) Solve for R1.
where R1 100k, V
TH
= 2.525V, and VTL= 2.475V.
Board Layout and Bypassing
Power-supply bypass capacitors are not typically need­ed, but would be called for in cases where supply impedance is high, supply leads are long, or excessive noise is expected on the supply lines. Use 100nF bypass capacitors under these conditions. Minimize signal trace lengths to reduce stray capacitance.
Reference Output/Load Capacitance
The MAX904_/MAX905_ do not require an output capacitor on REF for frequency stability. They are sta­ble for capacitive loads up to 4.7nF. However, in appli­cations where the load or the supply can experience step changes, an output capacitor will reduce the amount of overshoot (or undershoot) and assist the cir­cuit’s transient response. When an application is not subject to transient conditions, the REF capacitor can be omitted.
Biasing for Data Recovery
Digital data is often embedded into a bandwidth- and amplitude-limited analog path. Recovering the data can be difficult. Figure 2 compares the input signal to a time-averaged version of itself. This self- biases the threshold to the average input voltage for optimal noise margin.
Even severe phase distortion is eliminated from the dig­ital output signal. Be sure to choose R1 and C1 so that
where f
CAR
is the fundamental carrier frequency of the
digital data stream.
Chip Information
MAX9040/41/50/51 TRANSISTOR COUNT: 204 MAX9042/43/52/53 TRANSISTOR COUNT: 280
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
10 ______________________________________________________________________________________
Figure 2. Time Averaging of the Input Signal for Data Recovery
V
CC
V
CC
V
IN
10k
0.1µF
IN+
IN-
V
EE
OUT
MAX9040–9043 MAX9050–9053
25 25
V
=+
TH
..
RR
2
R
12
+
 
V
TL
 
R
12
RR
+
25 1
.
=−
2
 
VV
HYS CC
=
 
2
R
12
RR
+
 
f
CAR
>>
2R1C1
1
π
0 050 5
. =
 
R
1 1000
1000
+
 
Page 11
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply,
SOT23 Comparator + Precision Reference ICs
______________________________________________________________________________________ 11
Selector Guide
Typical Operating Circuit
REF/Uncommitted
REF/Uncommitted2.500
Uncommitted/Uncommitted
2
2.5002
MAX9052
2.048
MAX9053
Uncommitted/Uncommitted
2
2.0482
MAX9042
MAX9043
REF2.500
Uncommitted
1
2.5001
MAX9050
MAX9051
REF2.048
V
REF
(V)
COMPARATORS
PER PACKAGE
Uncommitted
1
2.0481
MAX9040
MAX9041
PART
Ordering Information (continued)
IN- CONNECTIONS
Pin Configurations (continued)
PART TEMP. RANGE
PIN-
PACKAGE
MAX9050AEUK-T
-40°C to +85°C 5 SOT23-5
MAX9050BEUK-T -40°C to +85°C 5 SOT23-5
MAX9051AEUT-T*
-40°C to +85°C 6 SOT23-6
MAX9051BEUT-T* -40°C to +85°C 6 SOT23-6
MAX9051AESA* -40°C to +85°C 8 SO
MAX9051BESA* -40°C to +85°C 8 SO
MAX9052AEUA
-40°C to +85°C 8 µMAX MAX9052BEUA -40°C to +85°C 8 µMAX MAX9052AESA -40°C to +85°C 8 SO MAX9052BESA -40°C to +85°C 8 SO MAX9053AEUB
-40°C to +85°C 10 µMAX
MAX9053BEUB -40°C to +85°C 10 µMAX
*Future product—contact factory for availability.
TOP
MARK
ADNW
ADNY
AAHG
AAHI
— — — — —
TOP VIEW
16V
OUT
V
MAX9041
2
EE
MAX9051
34
CC
5 REF
IN-IN+
REF
1
IN-
2
MAX9041 MAX9051
3
IN+
4
EE
87N.C.
6
OUT
5
N.C.V
V
CC
OUTA
INA+
V
OUTA
REF
INA-
1
2
MAX9043
3
MAX9053
4
5
EE
1
2
MAX9042 MAX9052
3
4
EE
87V
6
5
CC
OUTBREF
INB-
INB+V
10
CC
9
N.C.
8
OUTB
7
INB-INA+
6
INB+V
SOT23-6
SO
µMAX/SO
V
IN
µMAX
V
CC
V
IN+
IN-
REF
2.048V/2.500V
V
EE
CC
OUT
MAX9041/9043 MAX9051/9053
0.1µF
Page 12
MAX9040–MAX9043/MAX9050–MAX9053
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
Functional Diagrams
OUTA
OUT
V
CC
IN+ REF
MAX9040 MAX9050
OUT
REF
V
EE
REF
INA+
REF
V
EE
V
EE
OUTA
MAX9042 MAX9052
MAX9043 MAX9053
REF
REF
V
CC
IN+ IN-
MAX9041 MAX9051
REF
INA-
INA+
V
REF
EE
V
OUTB
INB-
INB+
V
OUTB
INB-
INB+
CC
CC
Loading...