Datasheet MAX2031 Datasheet (MAXIM)

Page 1
General Description
The MAX2031 high-linearity passive upconverter or downconverter mixer is designed to provide +36dBm IIP3, 7dB NF, and 7dB conversion loss for a 650MHz to 1000MHz RF frequency range to support GSM/cellular base-station transmitter or receiver applications. With a 650MHz to 1250MHz LO frequency range, this particu­lar mixer is ideal for high-side LO injection architec­tures. For a pin-to-pin-compatible mixer meant for low-side LO injection, refer to the MAX2029.
In addition to offering excellent linearity and noise per­formance, the MAX2031 also yields a high level of com­ponent integration. This device includes a double­balanced passive mixer core, a dual-input LO selec­table switch, and an LO buffer. On-chip baluns are also integrated to allow for a single-ended RF input for downconversion (or RF output for upconversion), and single-ended LO inputs. The MAX2031 requires a nomi­nal LO drive of 0dBm, and supply current is guaranteed to be below 100mA.
The MAX2031 is pin compatible with the MAX2039/ MAX2041 1700MHz to 2200MHz mixers, making this family of passive upconverters and downconverters ideal for applications where a common PC board layout is used for both frequency bands.
The MAX2031 is available in a compact 20-pin thin QFN package (5mm x 5mm) with an exposed pad. Electrical performance is guaranteed over the extended
-40°C to +85°C temperature range.
Applications
Features
650MHz to 1000MHz RF Frequency Range650MHz to 1250MHz LO Frequency Range570MHz to 900MHz LO Frequency Range
(Refer to the MAX2029 Data Sheet)
DC to 250MHz IF Frequency Range7dB Conversion Loss+36dBm Input IP3+27dBm Input 1dB Compression Point7dB Noise FigureIntegrated LO BufferIntegrated RF and LO BalunsLow -3dBm to +3dBm LO DriveBuilt-In SPDT LO Switch with 49dB LO1 to LO2
Isolation and 50ns Switching Time
Pin Compatible with the MAX2039/MAX2041
1700MHz to 2200MHz Mixers
External Current-Setting Resistor Provides Option
for Operating Mixer in Reduced-Power/Reduced­Performance Mode
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
________________________________________________________________
Maxim Integrated Products
1
19-0248; Rev 1; 6/09
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
EVALUATION KIT
AVAILABLE
cdma2000 is a registered trademark of Telecommunications Industry Association. iDEN is a registered trademark of Motorola, Inc. WiMAX is a trademark of WiMAX Forum.
WCDMA/LTE and cdma2000®Base Stations
GSM 850/GSM 900 2G and 2.5G EDGE Base Stations
Integrated Digital Enhanced Network (iDEN
®
) Base Stations
WiMAX™ Base Stations and Customer Premise Equipment
Predistortion Receivers Microwave and Fixed
Broadband Wireless Access
Wireless Local Loop Digital and Spread-
Spectrum Communication Systems
Ordering Information
+
Denotes a lead(Pb)-free/RoHS-compliant package.
T= Tape and reel.
*
EP = Exposed pad.
MAX2031
TOP VIEW
4
5
3
2
12
11
13
LOBIAS
LOSEL
GND
14
V
CC
IF+
GND
GND
GND
67
TAP
910
20 19 17 16
GND
GND
V
CC
GND
GND
LO1
V
CC
IF-
8
18
RF
+
1
15
LO2
V
CC
E.P.
Pin Configuration/
Functional Diagram
PART TEMP RANGE PIN-PACKAGE
M AX 2031E TP + - 40°C to + 85° C 20 Thi n QFN- E P *
M AX 2031E TP + T- 40°C to + 85° C 20 Thi n QFN- E P *
Page 2
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
VCCto GND...........................................................-0.3V to +5.5V
RF (RF is DC shorted to GND through a balun)..................50mA
LO1, LO2 to GND ..................................................-0.3V to +0.3V
IF+, IF- to GND ...........................................-0.3V to (V
CC
+ 0.3V)
TAP to GND ...........................................................-0.3V to +1.4V
LOSEL to GND ...........................................-0.3V to (V
CC
+ 0.3V)
LOBIAS to GND..........................................-0.3V to (V
CC
+ 0.3V)
RF, LO1, LO2 Input Power (Note 1) ...............................+20dBm
Continuous Power Dissipation (Note 2)....................................5W
θj
A
(Notes 3, 4)...............................................................+38°C/W
θj
C
(Notes 2, 3) ..............................................................+13°C/W
Operating Temperature Range (Note 5) .....T
C
= -40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC= 4.75V to 5.25V, no RF signals applied, TC= -40°C to +85°C. IF+ and IF- are DC grounded through an
IF balun. Typical values are at V
CC
= 5V, TC= +25°C, unless otherwise noted.)
RECOMMENDED AC OPERATING CONDITIONS
Note 1: Maximum, reliable, continuous input power applied to the RF and IF port of this device is +12dBm from a 50Ω source. Note 2: Based on junction temperature T
J
= TC+ (θJCx VCCx ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the
Applications Information
section for details. The junction
temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial
.
Note 4: Junction temperature T
J
= TA+ (θJAx VCCx ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 5: T
C
is the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V
Supply Current I
LOSEL Input-Logic Low V
LOSEL Input-Logic High V
CC
CC
IL
IH
4.75 5.00 5.25 V
2V
85 100 mA
0.8 V
RF Frequency f
LO Frequency f
IF Frequency f
LO Drive Level P
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF
LO
IF
LO
C om p onents tuned for the 700M H z b and ( Tab l e 1) , C 1 = 7p F, C 5 = 3.3p F ( N otes 6, 7)
C om p onents tuned for the 800M H z/900M H z cel l ul ar b and ( Tab l e 1) , C 1 = 82p F, C 5 = 2.0p F ( N ote 6)
(Notes 6, 7) 650 1250 MHz
IF frequency range depends on external IF transformer selection
(Note 6) -3 +3 dBm
650 850
800 1000
0 250 MHz
MHz
Page 3
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________ 3
AC ELECTRICAL CHARACTERISTICS (800MHz/900MHz CELLULAR BAND DOWNCON­VERTER OPERATION)
(
Typical Application Circuit,
optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not
used, V
CC
= 4.75V to 5.25V, RF and LO ports driven from 50Ω sources, PLO= -3dBm to +3dBm, PRF= 0dBm, fRF= 815MHz to
1000MHz, f
LO
= 960MHz to 1180MHz, fIF= 160MHz, fLO> fRF, TC= -40°C to +85°C, unless otherwise noted. Typical values are at
V
CC
= 5V, PRF= 0dBm, PLO= 0dBm, fRF= 910MHz, fLO= 1070MHz, fIF= 160MHz, TC= +25°C, unless otherwise noted.) (Note 8)
Conversion Loss Lc 7.0 dB
Conversion Loss Flatness
Conversion Loss Variation Over Temperature
Input Compression Point P
Input Third-Order Intercept Point IIP3
Input IP3 Variation Over Temperature
Spurious Response at IF
Noise Figure NF Single sideband 7.0 dB
Noise Figure Under Blocking (Note 11)
LO1-to-LO2 Isolation (Note 10)
Maximum LO Leakage at RF Port PLO = +3dBm -27 dBm
Maximum LO Leakage at IF Port PLO = +3dBm -35 dBm
LO Switching Time 50% of LOSEL to IF, settled within 2 degrees 50 ns
Minimum RF-to-IF Isolation 45 dB
RF Port Return Loss 17 dB
LO Port Return Loss
IF Port Return Loss LO driven at 0dBm, RF terminated into 50Ω 17 dB
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Flatness over any one of three frequency bands (f f
RF
f
RF
f
RF
TC = +25°C to -40°C -0.3
T
C
(Note 9) 27 dBm
1dB
f
RF1
P
RF
P
LO
IIP3
2 x 2 2LO - 2RF 72
3 x 3 3LO - 3RF 79
TC = +25°C to -40°C 0.3
T
C
P
BLOCKER
P
BLOCKER
LO2 selected, PLO = +3dBm, TC = +25°C 42 51
LO1 selected, P
LO1/LO2 port selected, LO2/LO1, RF, and IF terminated into 50Ω
LO1/LO2 port unselected, LO2/LO1, RF, and IF terminated into 50Ω
= 160MHz):
IF
= 827MHz to 849MHz = 869MHz to 894MHz = 880MHz to 915MHz
= +25°C to +85°C 0.2
= 910MHz, f
= 0dBm/tone, fLO = 1070MHz,
= 0dBm, TC = +25°C (Note 10)
= +25°C to +85°C -0.3
= +8dBm 15
= +12dBm 19
= 911MHz,
RF2
= +3dBm, TC = +25°C 42 49
LO
±0.18 dB
32 36 dBm
28
30
dB
dB
dBc
dB
dB
dB
Page 4
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
4 _______________________________________________________________________________________
AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(
Typical Application Circuit
, L1 = 4.7nH, C4 = 6pF, C1 = 82pF, C5 not used, VCC= 4.75V to 5.25V, RF and LO ports are driven from
50Ω sources, P
LO
= -3dBm to +3dBm, PIF= 0dBm, fRF= 815MHz to 1000MHz, fLO= 960MHz to 1180MHz, fIF= 160MHz, fLO> fRF,
T
C
= -40°C to +85°C, unless otherwise noted. Typical values are at VCC= 5V, PIF= 0dBm, PLO= 0dBm, fRF= 910MHz, fLO=
1070MHz, f
IF
= 160MHz, TC= +25°C, unless otherwise noted.) (Note 8)
Note 6: Operation outside this range is possible, but with degraded performance of some parameters. Note 7: Not production tested. Note 8: All limits include external component losses. Output measurements are taken at IF or RF port of the
Typical Application Circuit
.
Note 9: Compression point characterized. It is advisable not to continuously operate the mixer RF/IF inputs above +12dBm. Note 10: Guaranteed by design. Note 11: Measured with external LO source noise filtered, so its noise floor is -174dBm/Hz. This specification reflects the effects of all
SNR degradations in the mixer, including the LO noise as defined in Application Note 2021:
Specifications and Measurements
of Local Oscilator Noise in Integrated Circuit Base Station Mixers.
AC ELECTRICAL CHARACTERISTICS (700MHz BAND DOWNCONVERTER OPERATION)
(
Typical Application Circuit
, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC=
4.75V to 5.25V, RF and LO ports driven from 50Ω sources, P
LO
= -3dBm to +3dBm, PRF= 0dBm, fRF= 650MHz to 850MHz, fLO=
790MHz to 990MHz, f
IF
= 140MHz, fLO> fRF, TC= +25°C, unless otherwise noted. Typical values are at VCC= 5V, PRF= 0dBm,
P
LO
= 0dBm, fRF= 750MHz, fLO= 890MHz, fIF= 140MHz, TC= +25°C, unless otherwise noted.) (Notes 8, 10)
Conversion Loss L
Input 1dB Compression Point P
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Input Third-Order Intercept Point IIP3
LO Leakage at IF Port PLO = +3dBm -33 -21 dBm
LO Leakage at RF Port PLO = +3dBm -20 -13 dBm
RF-to-IF Isolation 36 49 dB
2LO-2RF Spurious Response 2 x 2 40 72 dBc
3LO-3RF Spurious Response 3 x 3 65 82 dBc
Conversion Loss Lc 7.4 dB
Conversion Loss Flatness
Conversion Loss Variation Over Temperature
Input Compression Point P
Input Third-Order Intercept Point IIP3
Input IP3 Variation Over Temperature
LO ± 2IF Spur 64 dBc
LO ± 3IF Spur 83 dBc
Output Noise Floor P
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
C
1dB
fRF = 750MHz, PRF = 0dBm, PLO = 0dBm 27.7 dBm
= 749MHz, f
f
RF1
f
= 890MHz, PRF = 0dBm/tone,
LO
= 0dBm
P
LO
Flatness over any one of three frequency bands (f f
= 827MHz to 849MHz
RF
= 869MHz to 894MHz
f
RF
f
= 880MHz to 915MHz
RF
TC = +25°C to -40°C -0.3
T
= +25°C to +85°C 0.4
C
(Note 9) 27 dBm
1dB
= 160MHz, f
f
IF1
= 0dBm/tone, fLO = 1070MHz,
P
IF
P
= 0dBm, TC = +25°C (Note 10)
LO
IIP3
TC = +25°C to -40°C 1.2
= +25°C to +85°C -0.9
T
C
OUT
6.1 6.9 8.1 dB
= 750MHz,
RF2
= 160MHz):
IF
= 161MHz,
IF2
= 0dBm (Note 11) -167 dBm/Hz
32 37 dBm
±0.3 dB
32 36 dBm
dB
dB
Page 5
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________
5
Typical Operating Characteristics
(
Typical Application Circuit
, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
V
CC
= 5.0V, PLO= 0dBm, PRF= 0dBm, fLO> fRF, fIF= 160MHz, TC= +25°C, unless otherwise noted.)
Downconverter Curves
5
6
8
7
9
10
CONVERSION LOSS vs. RF FREQUENCY
MAX2031 toc01
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
800 900850 950 1000
TC = -40°C
TC = +25°C
TC = -25°C
TC = +85°C
5
6
8
7
9
10
CONVERSION LOSS vs. RF FREQUENCY
MAX2031 toc02
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
800 900850 950 1000
PLO = -3dBm, 0dBm, +3dBm
5
6
8
7
9
10
CONVERSION LOSS vs. RF FREQUENCY
MAX2031 toc03
RF FREQUENCY (MHz)
CONVERSION LOSS (dB)
800 900850 950 1000
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
40
PRF = 0dBm/TONE
38
36
34
32
INPUT IP3 (dBm)
30
28
26
800 850 900 950 1000
NOISE FIGURE vs. RF FREQUENCY
10
9
8
7
NOISE FIGURE (dB)
6
5
800 900850 950 1000
INPUT IP3 vs. RF FREQUENCY
40
PRF = 0dBm/TONE
38
36
34
32
30
28
26
800 850 900 950 1000
VCC = 5.25V
VCC = 4.75V
RF FREQUENCY (MHz)
VCC = 5.0V
NOISE FIGURE vs. RF FREQUENCY
10
9
8
7
6
5
800 900850 950 1000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
TC = +85°C, +25°C
RF FREQUENCY (MHz)
TC = +25°C
TC = -40°C
RF FREQUENCY (MHz)
TC = -40°C
TC = +85°C
TC = -25°C
TC = -25°C
MAX2031 toc04
MAX2031 toc07
INPUT IP3 vs. RF FREQUENCY
40
PRF = 0dBm/TONE
38
36
34
32
INPUT IP3 (dBm)
30
28
26
PLO = +3dBm
800 850 900 950 1000
RF FREQUENCY (MHz)
PLO = 0dBm
PLO = -3dBm
NOISE FIGURE vs. RF FREQUENCY
10
9
8
7
NOISE FIGURE (dB)
6
5
800 900850 950 1000
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
MAX2031 toc05
INPUT IP3 (dBm)
MAX2031 toc08
NOISE FIGURE (dB)
MAX2031 toc06
MAX2031 toc09
Page 6
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
6 _______________________________________________________________________________________
Downconverter Curves
45
55
75
65
85
95
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc10
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
800 900850 950 1000
TC = -40°C
TC = +85°C
TC = +25°C
TC = -25°C
PRF = 0dBm
45
55
75
65
85
95
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc11
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
800 900850 950 1000
PLO = +3dBm
PLO = -3dBm
PLO = 0dBm
PRF = 0dBm
45
55
75
65
85
95
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc12
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE (dBc)
800 900850 950 1000
PRF = 0dBm
VCC = 4.75V, 5.0V
VCC = 5.25V
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
V
CC
= 5.0V, PLO= 0dBm, PRF= 0dBm, fLO> fRF, fIF= 160MHz, TC= +25°C, unless otherwise noted.)
100
3LO - 3RF RESPONSE (dBc)
(dBm)
1dB
INPUT P
3LO - 3RF RESPONSE
vs. RF FREQUENCY
PRF = 0dBm
90
80
70
60
32
30
28
26
24
TC = +25°C
TC = +85°C
TC = -40°C, -25°C
800 900850 950 1000
RF FREQUENCY (MHz)
INPUT P
TC = +25°C
800 900850 950 1000
vs. RF FREQUENCY
1dB
TC = -40°C
TC = -25°C, +85°C
RF FREQUENCY (MHz)
100
MAX2031 toc13
90
80
70
3LO - 3RF RESPONSE (dBc)
60
800 900850 950 1000
32
MAX2031 toc16
30
(dBm)
1dB
28
INPUT P
26
24
800 900850 950 1000
3LO - 3RF RESPONSE
vs. RF FREQUENCY
PRF = 0dBm
PLO = 0dBm
RF FREQUENCY (MHz)
INPUT P
PLO = 0dBm, +3dBm
PLO = -3dBm
RF FREQUENCY (MHz)
PLO = -3dBm
PLO = +3dBm
vs. RF FREQUENCY
1dB
100
MAX2031 toc14
90
80
70
3LO - 3RF RESPONSE (dBc)
60
800 900850 950 1000
32
MAX2031 toc17
30
(dBm)
1dB
28
INPUT P
26
24
800 900850 950 1000
3LO - 3RF RESPONSE
vs. RF FREQUENCY
PRF = 0dBm
VCC = 5.25V
RF FREQUENCY (MHz)
INPUT P
VCC = 5.25V
VCC = 4.75V
RF FREQUENCY (MHz)
VCC = 5.0V
VCC = 4.75V
vs. RF FREQUENCY
1dB
VCC = 5.0V
MAX2031 toc15
MAX2031 toc18
Page 7
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________
7
Downconverter Curves
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
V
CC
= 5.0V, PLO= 0dBm, PRF= 0dBm, fLO> fRF, fIF= 160MHz, TC= +25°C, unless otherwise noted.)
LO SWITCH ISOLATION
vs. LO FREQUENCY
60
LO SWITCH ISOLATION
vs. LO FREQUENCY
60
60
LO SWITCH ISOLATION
vs. LO FREQUENCY
55
50
TC = +85°C
45
LO SWITCH ISOLATION (dB)
40
850 1050950 1150 1250
TC = -40°C, -25°C
TC = +25°C
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-20
TC = -40°C, -25°C
-30
-40
LO LEAKAGE (dBm)
-50
-60 960 10601010 1110 1160
TC = -40°C, -25°C
TC = +25°C
TC = +25°C
LO FREQUENCY (MHz)
TC = +85°C
TC = +85°C
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-15
-20
-25
TC = -40°C, -25°C
MAX2031 toc19
55
50
45
LO SWITCH ISOLATION (dB)
40
850 1050950 1150 1250
-20
MAX2031 toc22
-30
-40
LO LEAKAGE (dBm)
-50
-60 960 10601010 1110 1160
-15
-20
MAX2031 toc25
-25
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2031 toc20
55
50
45
LO SWITCH ISOLATION (dB)
40
850 1050950 1150 1250
-20
MAX2031 toc23
-30
-40
LO LEAKAGE (dBm)
-50
-60 960 10601010 1110 1160
-15
-20
MAX2031 toc26
-25
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
VCC = 5.25V
VCC = 4.75V
VCC = 5.0V
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 5.25V
MAX2031 toc21
MAX2031 toc24
MAX2031 toc27
-30 TC = +85°C
-35
LO LEAKAGE AT RF PORT (dBm)
-40
-45
850 1050950 1150 1250
LO FREQUENCY (MHz)
TC = +25°C
-30 PLO = -3dBm, 0dBm, +3dBm
-35
LO LEAKAGE AT RF PORT (dBm)
-40
-45
850 1050950 1150 1250
LO FREQUENCY (MHz)
-30
-35
LO LEAKAGE AT RF PORT (dBm)
-40
-45 850 1050950 1150 1250
VCC = 4.75V
LO FREQUENCY (MHz)
VCC = 5.0V
Page 8
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
8 _______________________________________________________________________________________
Downconverter Curves
30
40
35
50
45
55
60
800 900850 950 1000
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2031 toc28
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
TC = -40°C, -25°C
TC = +85°C
TC = +25°C
30
40
35
50
45
55
60
800 900850 950 1000
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2031 toc29
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
PLO = -3dBm
PLO = 0dBm
PLO = +3dBm
30
40
35
50
45
55
60
800 900850 950 1000
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2031 toc30
RF FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
VCC = 4.75V, 5.0V, 5.25V
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
V
CC
= 5.0V, PLO= 0dBm, PRF= 0dBm, fLO> fRF, fIF= 160MHz, TC= +25°C, unless otherwise noted.)
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
5
10
15
20
RF PORT RETURN LOSS (dB)
PLO = -3dBm, 0dBm, +3dBm
25
30
750 850 900800 950 1000 1050
RF FREQUENCY (MHz)
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
0
5
10
15
20
25
30
LO SELECTED RETURN LOSS (dB)
35
40
800 900 1000 1100 1200 1300
PLO = +3dBm
PLO = -3dBm
LO FREQUENCY (MHz)
PLO = 0dBm
0
INCLUDES IF TRANSFORMER
5
MAX2031 toc31
10
15
20
25
30
35
IF PORT RETURN LOSS (dB)
40
45
50
0 200100 300 400 500
LO UNSELECTED RETURN LOSS
0
10
MAX2031 toc34
20
30
40
50
LO UNSELECTED RETURN LOSS (dB)
60
800 1300
IF PORT RETURN LOSS
vs. IF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
IF FREQUENCY (MHz)
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
1000900 1100 1200
LO FREQUENCY (MHz)
0
5
MAX2031 toc32
10
15
20
25
30
35
IF PORT RETURN LOSS (dB)
40
45
50
100
MAX2031 toc35
90
80
SUPPLY CURRENT (mA)
70
60
-40 10-15 35 60 85
IF PORT RETURN LOSS
vs. IF FREQUENCY
INCLUDES IF TRANSFORMER
PLO = -3dBm, 0dBm, +3dBm
0 200100 300 400 500
IF FREQUENCY (MHz)
SUPPLY CURRENT
vs.TEMPERATURE (T
VCC = 5.25V
VCC = 4.75V
TEMPERATURE (°C)
)
C
VCC = 5.0V
MAX2031 toc33
MAX2031 toc36
Page 9
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
_______________________________________________________________________________________
9
Typical Operating Characteristics (continued)
(
Typical Application Circuit,
optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC=
5V, P
LO
= 0dBm, PRF= 0dBm, fLO> fRF, fIF= 140MHz, TC= +25°C, unless otherwise noted.)
Downconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
9
8
7
CONVERSION LOSS (dB)
6
T
= -40°C
C
5
650 850
TC = +85°C
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
P
= 0dBm/TONE
RF
38
TC = +25°C
36
34
INPUT IP3 (dBm)
TC = -40°C
32
CONVERSION LOSS vs. RF FREQUENCY
9
8
7
V
= 4.75V, 5.0V, 5.25V
CONVERSION LOSS (dB)
6
5
CC
650 850
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
PRF = 0dBm/TONE
38
V
= 5.25V
CC
36
34
INPUT IP3 (dBm)
32
VCC = 4.75V
VCC = 5.0V
800750700
TC = +25°C
TC = +25°C
800750700
TC = +85°C
9
MAX2031 toc37
MAX2031 toc40
8
7
CONVERSION LOSS (dB)
6
5
40
38
36
34
INPUT IP3 (dBm)
32
CONVERSION LOSS vs. RF FREQUENCY
P
= -3dBm, 0dBm, +3dBm
LO
650 850
RF FREQUENCY (MHz)
800750700
INPUT IP3 vs. RF FREQUENCY
P
= 0dBm/TONE
RF
PLO = -3dBm, 0dBm, +3dBm
MAX2031 toc38
MAX2031 toc41
MAX2031 toc39
MAX2031 toc42
30
650 850
RF FREQUENCY (MHz)
2LO-2RF RESPONSE
vs. RF FREQUENCY
85
75
TC = +85°C
65
2LO-2RF RESPONSE (dBc)
55
45
650 850
TC = +25°C
TC = -40°C
RF FREQUENCY (MHz)
800750700
P
RF
800750700
= 0dBm
30
85
MAX2031 toc43
75
65
2LO-2RF RESPONSE (dBc)
55
45
650 850
RF FREQUENCY (MHz)
800750700
2LO-2RF RESPONSE
vs. RF FREQUENCY
P
= 0dBm
RF
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
650 850
RF FREQUENCY (MHz)
800750700
30
650 850
85
MAX2031 toc44
75
65
2LO-2RF RESPONSE (dBc)
55
45
650 850
RF FREQUENCY (MHz)
2LO-2RF RESPONSE
vs. RF FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
800750700
P
RF
800750700
= 0dBm
MAX2031 toc45
Page 10
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
10 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit,
optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC=
5V, P
LO
= 0dBm, PRF= 0dBm, fLO> fRF, fIF= 140MHz, TC= +25°C, unless otherwise noted.)
Downconverter Curves
3LO-3RF RESPONSE
vs. RF FREQUENCY
90
P
= 0dBmTC = +25°C
RF
90
MAX2031 toc46
3LO-3RF RESPONSE
vs. RF FREQUENCY
PRF = 0dBm
MAX2031 toc47
3LO-3RF RESPONSE
vs. RF FREQUENCY
90
VCC = 5.25V
PRF = 0dBm
80
70
3LO-3RF RESPONSE (dBc)
TC = +85°C
TC = -40°C
80
P
70
3LO-3RF RESPONSE (dBc)
LO
= -3dBm, 0dBm, +3dBm
80
70
3LO-3RF RESPONSE (dBc)
VCC = 4.75V
V
= 5.0V
CC
MAX2031 toc48
60
650
RF FREQUENCY (MHz)
INPUT P
30
29
TC = +25°C
28
(dBm)
1dB
27
INPUT P
26
25
650 850
vs. RF FREQUENCY
1dB
T
= -40°C
C
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-15
T
= -40°C
C
-25
800750700
TC = +85°C
800750700
850
MAX2031 toc49
MAX2031 toc52
60
650
RF FREQUENCY (MHz)
INPUT P
30
29
28
(dBm)
1dB
27
INPUT P
26
PLO = -3dBm
25
650 850
vs. RF FREQUENCY
1dB
PLO = +3dBm
P
= 0dBm
LO
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-15
-25 P
LO
= +3dBm
MAX2031 toc50
60
650
RF FREQUENCY (MHz)
INPUT P
30
29
28
(dBm)
1dB
27
INPUT P
26
25
650 850
vs. RF FREQUENCY
1dB
VCC = 5.0V
VCC = 4.75V
RF FREQUENCY (MHz)
V
= 5.25V
CC
800750700
800750700
850
MAX2031 toc51
800750700
800750700
850
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-15
MAX2031 toc53
-25
V
CC
= 5.25V
MAX2031 toc54
-35
TC = +25°C
LO LEAKAGE AT IF PORT (dBm)
-45 790
TC = +85°C
LO FREQUENCY (MHz)
-35
LO LEAKAGE AT IF PORT (dBm)
940890840
990
-45 790
PLO = 0dBm
LO FREQUENCY (MHz)
PLO = -3dBm
940890840
990
-35
LO LEAKAGE AT IF PORT (dBm)
-45 790
VCC = 4.75V
LO FREQUENCY (MHz)
VCC = 5.0V
940890840
990
Page 11
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
11
Typical Operating Characteristics (continued)
(
Typical Application Circuit,
optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC=
5V, P
LO
= 0dBm, PRF= 0dBm, fLO> fRF, fIF= 140MHz, TC= +25°C, unless otherwise noted.)
Downconverter Curves
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
T
= -40°C
-15
-20
-25
LO LEAKAGE AT RF PORT (dBm)
-30 790 990
C
TC = +25°C
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
TC = -40°C
-25
TC = +85°C
940890840
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
MAX2031 toc55
-15
-20
-25
LO LEAKAGE AT RF PORT (dBm)
-30 790 990
P
= +3dBm
LO
PLO = 0dBm
LO FREQUENCY (MHz)
PLO = -3dBm
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
MAX2031 toc58
-25
PLO = +3dBm
-10
MAX2031 toc56
-15
-20
-25
LO LEAKAGE AT RF PORT (dBm)
940890840
-30
-20
MAX2031 toc59
-25
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
V
= 5.25V
CC
VCC = 5.0V
790 990
LO FREQUENCY (MHz)
VCC = 4.75V
940890840
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
V
= 5.0V
VCC = 5.25V
CC
MAX2031 toc57
MAX2031 toc60
-30
TC = +25°C
-35
2LO LEAKAGE AT RF PORT (dBm)
-40 790 990
T
= +85°C
C
LO FREQENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
TC = +85°C
50
T
= +25°C
40
RF-TO-IF ISOLATION (dB)
30
650 850
TC = -40°C
RF FREQUENCY (MHz)
C
-30
-35
2LO LEAKAGE AT RF PORT (dBm)
940890840
-40 790 990
P
= -3dBm
LO
LO FREQUENCY (MHz)
PLO = 0dBm
940890840
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2031 toc61
50
P
= -3dBm, 0dBm, +3dBm
LO
40
RF-TO-IF ISOLATION (dB)
800750700
30
650
RF FREQUENCY (MHz)
800750700
850
-30
-35
2LO LEAKAGE AT RF PORT (dBm)
-40 790 990
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2031 toc62
50
40
RF-TO-IF ISOLATION (dB)
30
650 850
LO FREQUENCY (MHz)
V
= 4.75V, 5.0V, 5.25V
CC
RF FREQUENCY (MHz)
VCC = 4.75V
940890840
MAX2031 toc63
800750700
Page 12
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
12 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(
Typical Application Circuit,
optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC=
5V, P
LO
= 0dBm, PRF= 0dBm, fLO> fRF, fIF= 140MHz, TC= +25°C, unless otherwise noted.)
Downconverter Curves
RF PORT RETURN LOSS
vs. RF FREQUENCY
0
5
10
15
RF PORT RETURN LOSS (dB)
20
25
500 1000
P
LO
RF FREQUENCY (MHz)
= -3dBm, 0dBm, +3dBm
900800700600
LO UNSELECTED RETURN LOSS
0
10
0
MAX2031 toc64
vs. LO FREQUENCY
5
10
15
IF PORT RETURN LOSS (dB)
20
25
IF PORT RETURN LOSS
vs. IF FREQUENCY
fLO = 890MHz
V
= 4.75V, 5.0V, 5.25V
CC
50 350
IF FREQUENCY (MHz)
300250200150100
SUPPLY CURRENT
vs. TEMPERATURE (T
100
V
MAX2031 toc67
90
CC
MAX2031 toc65
10
20
30
LO SELECTED RETURN LOSS (dB)
40
= 5.25V
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
0
P
= 0dBm
LO
PLO = -3dBm
600 1200
LO FREQUENCY (MHz)
)
C
MAX2031 toc68
PLO = +3dBm
1050900750
MAX2031 toc66
P
20
30
LO UNSELECTED RETURN LOSS (dB)
40
= -3dBm, 0dBm, +3dBm
LO
600 1200
LO FREQENCY (MHz)
1050900750
80
SUPPLY CURRENT (mA)
70
60
-40 85
= 4.75V
V
CC
TEMPERATURE (NC)
= 5.0V
V
CC
603510-15
Page 13
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
13
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC= 5.0V, PLO= 0dBm, PIF= 0dBm, fRF= f
LO
+ fIF, fIF= 160MHz,
T
C
= +25°C, unless otherwise noted.)
Upconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
9
TC = +85°C
8
7
6
CONVERSION LOSS (dB)
TC = -40°C
5
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
9
8
7
6
5
CONVERSION LOSS (dB)
4
TC = +25°C
TC = -25°C
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
9
8
MAX2031 toc69
7
6
5
CONVERSION LOSS (dB)
4
PLO = -3dBm, 0dBm, +3dBm
MAX2031 toc70
VCC = 4.75V, 5.0V, 5.25V
MAX2031 toc71
4
750 850800 900 950 1000 1050
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
39
PIF = 0dBm/TONE
37
35
33
31
INPUT IP3 (dBm)
29
27
25
750 850 900800 950 1000 1050
TC = -25°C
TC = +85°C
RF FREQUENCY (MHz)
TC = +25°C
TC = -40°C
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
80
75
70
PIF = 0dBm
TC = -40°C, -25°C
TC = +25°C
3
750 850 900800 950 1000 1050
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
39
PIF = 0dBm/TONE
37
MAX2031 toc72
35
33
PLO = -3dBm, 0dBm, +3dBm
31
INPUT IP3 (dBm)
29
27
25
750 850 900800 950 1000 1050
RF FREQUENCY (MHz)
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
80
PIF = 0dBm
75
MAX2031 toc75
70
PLO = +3dBm
MAX2031 toc73
MAX2031 toc76
3
750 850 900800 950 1000 1050
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
39
PIF = 0dBm/TONE
37
35
33
31
INPUT IP3 (dBm)
29
27
25
VCC = 4.75V
750 850 900800 950 1000 1050
RF FREQUENCY (MHz)
VCC = 5.25V
VCC = 5.0V
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
80
PIF = 0dBm
75
70
VCC = 5.0V
VCC = 5.25V
MAX2031 toc74
MAX2031 toc77
65
60
LO + 2IF REJECTION (dBc)
55
50
910 1010 1060960 1110 1160 1210
LO FREQUENCY (MHz)
TC = +85°C
65
60
LO + 2IF REJECTION (dBc)
PLO = 0dBm
55
50
910 1010 1060960 1110 1160 1210
PLO = -3dBm
LO FREQUENCY (MHz)
65
60
LO + 2IF REJECTION (dBc)
55
50
910 1010 1060960 1110 1160 1210
VCC = 4.75V
LO FREQUENCY (MHz)
Page 14
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
14 ______________________________________________________________________________________
Upconverter Curves
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC= 5.0V, PLO= 0dBm, PIF= 0dBm, fRF= f
LO
+ fIF, fIF= 160MHz,
T
C
= +25°C, unless otherwise noted.)
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
80
PIF = 0dBm
75
70
TC = +85°C
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
80
75
70
TC = -40°C, -25°C
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
80
PIF = 0dBm
75
MAX2031 toc78
70
PLO = +3dBm
MAX2031 toc79
PIF = 0dBm
VCC = 5.25V
VCC = 5.0V
MAX2031 toc80
65
60
LO - 2IF REJECTION (dBc)
55
50
910 1010 1060960 1110 1160 1210
LO FREQUENCY (MHz)
TC = +25°C
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
90
PIF = 0dBm
80
TC = -40°C, -25°C, +25°C, +85°C
70
LO + 3IF REJECTION (dBc)
60
50
910 1060960 1010 1110 1160 1210
LO FREQUENCY (MHz)
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
90
80
PIF = 0dBm
TC = -40°C, -25°C, +25°C
65
60
LO - 2IF REJECTION (dBc)
PLO = -3dBm
55
50
910 1010 1060960 1110 1160 1210
PLO = 0dBm
LO FREQUENCY (MHz)
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
90
PIF = 0dBm
MAX2031 toc81
80
PLO = -3dBm, 0dBm, +3dBm
70
LO + 3IF REJECTION (dBc)
60
50
910 1060960 1010 1110 1160 1210
LO FREQUENCY (MHz)
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
90
PIF = 0dBm
MAX2031 toc84
80
65
60
LO - 2IF REJECTION (dBc)
55
50
910 1010 1060960 1110 1160 1210
VCC = 4.75V
LO FREQUENCY (MHz)
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
90
MAX2031 toc82
80
70
LO + 3IF REJECTION (dBc)
60
50
PIF = 0dBm
910 1060960 1010 1110 1160 1210
VCC = 5.25V
VCC = 4.75V, 5.0V
LO FREQUENCY (MHz)
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
90
PIF = 0dBm
MAX2031 toc85
80
VCC = 5.25V
MAX2031 toc83
MAX2031 toc86
70
LO - 3IF REJECTION (dBc)
60
50
910 1060960 1010 1110 1160 1210
TC = +85°C
LO FREQUENCY (MHz)
70
LO - 3IF REJECTION (dBc)
60
50
PLO = -3dBm, 0dBm, +3dBm
910 1060960 1010 1110 1160 1210
LO FREQUENCY (MHz)
70
LO - 3IF REJECTION (dBc)
60
50
910 1060960 1010 1110 1160 1210
VCC = 4.75V
LO FREQUENCY (MHz)
VCC = 5.0V
Page 15
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________
15
Upconverter Curves
Typical Operating Characteristics (continued)
(
Typical Application Circuit
, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC= 5.0V, PLO= 0dBm, PIF= 0dBm, fRF= f
LO
+ fIF, fIF= 160MHz,
T
C
= +25°C, unless otherwise noted.)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
-15
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
-15
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
-15
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35 910 1060960 1010 1110 1160 1210
TC = -40°C, -25°C
TC = +85°C
LO FREQUENCY (MHz)
TC = +25°C
IF LEAKAGE AT RF vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
-50
-60
-70
-80
IF LEAKAGE (dBm)
-90
-100 910 1010960 1060 1110 1160 1210
TC = +25°C
TC = -40°C, -25°C
TC = +85°C
LO FREQUENCY (MHz)
MAX2031 toc87
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35
PLO = -3dBm, 0dBm, +3dBm
910 1060960 1010 1110 1160 1210
LO FREQUENCY (MHz)
IF LEAKAGE AT RF vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
-50
MAX2031 toc90
-60
-70
-80
IF LEAKAGE (dBm)
-90
-100 910 1010960 1060 1110 1160 1210
PLO = -3dBm
PLO = +3dBm
LO FREQUENCY (MHz)
PLO = 0dBm
MAX2031 toc88
-20
-25
-30
LO LEAKAGE AT RF PORT (dBm)
-35
VCC = 4.75V
910 1060960 1010 1110 1160 1210
VCC = 5.0V
LO FREQUENCY (MHz)
IF LEAKAGE AT RF vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
-50
MAX2031 toc91
-60
-70
-80
IF LEAKAGE (dBm)
-90
-100
VCC = 5.0V
VCC = 4.75V
910 1010960 1060 1110 1160 1210
VCC = 5.25V
LO FREQUENCY (MHz)
MAX2031 toc89
VCC = 5.25V
MAX2031 toc92
RF PORT RETURN LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
0
5
L1 AND C4 BPF
10
INSTALLED
15
20
25
RF PORT RETURN LOSS (dB)
30
35
750 850 900800 950 1000 1050
L1 AND C4 BPF REMOVED
THE OPTIONAL L-C BPF ENHANCES PERFORMANCE IN THE UPCONVERTER MODE BUT LIMITS RF BANDWIDTH
RF FREQUENCY (MHz)
MAX2031 toc93
Page 16
MAX2031
Detailed Description
The MAX2031 can operate either as a downconverter or an upconverter mixer that provides approximately 7dB of conversion loss with a typical 7dB noise figure. IIP3 is +36dBm for both upconversion and downconversion modes. The integrated baluns and matching circuitry allow for 50Ω single-ended interfaces to the RF port and the two LO ports. The RF port can be used as an input for downconversion or an output for upconversion. A sin­gle-pole, double-throw (SPDT) switch provides 50ns switching time between the two LO inputs with 49dB of LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2031’s inputs to a
-3dBm to +3dBm range. The IF port incorporates a dif­ferential output for downconversion, which is ideal for providing enhanced IIP2 performance. For upconver­sion, the IF port is a differential input.
Specifications are guaranteed over broad frequency ranges to allow for use in cellular band WCDMA, cdmaOne™, cdma2000, and GSM 850/GSM 900 2.5G EDGE base stations. The MAX2031 is specified to oper­ate over a 650MHz to 1000MHz RF frequency range, a 650MHz to 1250MHz LO frequency range, and a DC to 250MHz IF frequency range. Operation beyond these ranges is possible; see the
Typical Operating
Characteristics
for additional details.
The MAX2031 is optimized for high-side LO injection architectures. However, the device can operate in low-
side LO injection applications with an extended LO range, but performance degrades as f
LO
decreases. See
the
Typical Operating Characteristics
for measurements taken with fLObelow 960MHz. For a pin-compatible device that has been optimized for LO frequencies below 960MHz, refer to the MAX2029.
RF Port and Balun
For using the MAX2031 as a downconverter, the RF input is internally matched to 50Ω, requiring no external matching components. A DC-blocking capacitor is required because the input is internally DC shorted to ground through the on-chip balun. For upconverter operation, the RF port is a single-ended output similarly matched to 50Ω.
LO Inputs, Buffer, and Balun
The MAX2031 is optimized for high-side LO injection architectures with a 650MHz to 1250MHz LO frequency range. For a device with a 570MHz to 900MHz LO fre­quency range, refer to the MAX2029. As an added fea­ture, the MAX2031 includes an internal LO SPDT switch that can be used for frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a par­ticular frequency before it is switched in. LO switching time is typically less than 50ns, which is more than ade­quate for nearly all GSM applications. If frequency hop­ping is not employed, set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL): logic-high selects LO2, logic-low selects LO1.
High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
16 ______________________________________________________________________________________
Pin Description
cdmaOne is a trademark of CDMA Development Group.
PIN NAME FUNCTION
1, 6, 8, 14 V
2RFS i ng l e- E nd ed 50Ω RF Inp ut/O utp ut. Thi s p or t i s i nter nal l y m atched and D C shor ted to G N D thr oug h a b al un.
3 TAP Center Tap of the Internal RF Balun. Connect to ground.
4, 5, 10, 12,
13, 16, 17, 20
7 LOBIAS Bias Resistor for Internal LO Buffer. Connect a 523Ω ±1% resistor from LOBIAS to the power supply.
9 LOSEL Local Oscillator Select. Logic-control input for selecting LO1 or LO2.
11 LO1 Local Oscillator Input 1. Drive LOSEL low to select LO1.
15 LO2 Local Oscillator Input 2. Drive LOSEL high to select LO2.
18, 19 IF-, IF+ Differential IF Input/Outputs
—EP
GND Ground
Power-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the Typical
CC
Application Circuit.
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the noted RF performance.
Page 17
To avoid damage to the part, voltage MUST be applied to VCCbefore digital logic is applied to LOSEL (see the
Absolute Maximum Ratings
). LO1 and LO2 inputs are internally matched to 50Ω, requiring an 82pF DC-block­ing capacitor at each input.
A two-stage internal LO buffer allows a wide input­power range for the LO drive. All guaranteed specifica­tions are for a -3dBm to +3dBm LO signal power. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and match­ing components from the LO inputs to the IF outputs are integrated on-chip.
High-Linearity Mixer
The core of the MAX2031 is a double-balanced, high­performance passive mixer. Exceptional linearity is pro­vided by the large LO swing from the on-chip LO buffer.
Differential IF
The MAX2031 mixer has a DC to 250MHz IF frequency range. Note that these differential ports are ideal for pro­viding enhanced IIP2 performance. Single-ended IF applications require a 1:1 balun to transform the 50Ω dif- ferential IF impedance to 50Ω single-ended. Including the balun, the IF return loss is better than 15dB. The dif­ferential IF is used as an input port for upconverter oper­ation. The user can use a differential IF amplifier following the mixer, but a DC block is required on both IF pins.
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50Ω. No matching components are required. As a downconvert­er, the return loss at the RF port is typically better than 15dB over the entire input range (650MHz to 1000MHz), and return loss at the LO ports are typically 15dB (960MHz to 1180MHz). RF and LO inputs require only DC-blocking capacitors for interfacing (see Table 1).
An optional L-C bandpass filter (BPF) can be installed at the RF port to improve upconverter performance. See the
Typical Application Circuit
and
Typical Operating
Characteristics
for upconverter operation with an L-C BPF tuned for 810MHz RF frequency. Performance can be optimized at other frequencies by choosing different values for L1 and C4. Removing L1 and C4 altogether results in a broader match, but performance degrades. Contact factory for details.
The IF output impedance is 50Ω (differential). For eval­uation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance to a 50Ω single-ended out­put (see the
Typical Application Circuit).
Bias Resistor
Bias current for the LO buffer is optimized by fine tun­ing resistor R1. If reduced current is required at the
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 17
Table 1. Typical Application Circuit Component List
*
C4 and L1 installed only when mixer is used as an upconverter.
**
C5 installed only when mixer is used as a downconverter.
DESIGNATION QTY DESCRIPTION SUPPLIER
82pF microwave capacitor (0603).
C1 1
C2, C7, C8, C10,
C11, C12
C3, C6, C9 3 0.01µF microwave capacitors (0603) Murata Electronics North America, Inc.
C4* 1 6pF microwave capacitor (0603)
C5** 1
L1* 1 4.7nH inductor (0603)
R1 1 523Ω ±1% resistor (0603) Digi-Key Corp.
T1 1 MABAES0029 1:1 transformer (50:50) M/A-Com, Inc.
U1 1 MAX2031 IC (20 TQFN) Maxim Integrated Products, Inc.
Use for 800MHz/900MHz cellular band applications.
7pF microwave capacitor (0603). Use for 700MHz band applications
6 82pF microwave capacitors (0603) Murata Electronics North America, Inc.
2pF microwave capacitor (0603). Use for 800MHz/900MHz cellular band applications.
3.3pF microwave capacitor (0603). Use for 700MHz band applications
Murata Electronics North America, Inc.
Murata Electronics North America, Inc.
Page 18
MAX2031
expense of performance, contact the factory for details. If the ±1% bias resistor values are not readily available, substitute standard ±5% values.
Layout Considerations
A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and induc­tance. For the best performance, route the ground-pin traces directly to the exposed pad under the package. The PC board exposed pad MUST be connected to the ground plane of the PC board. It is suggested that mul­tiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/ther­mal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board. The MAX2031 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for high­frequency circuit stability. Bypass each VCCpin with the capacitors shown in the
Typical Application Circuit
.
See Table 1.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX2031’s 20-pin thin QFN-EP package provides a low-thermal-resistance path to the die. It is important that the PC board on which the MAX2031 is mounted be designed to con­duct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PC board, either directly or through an array of plated via holes.
High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
18 ______________________________________________________________________________________
Page 19
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
______________________________________________________________________________________ 19
Typical Application Circuit
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages
.
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
20 Thin QFN-EP T2055+3
21-0140
RF
C3 C2
C1
L1
T1
1
3
C5
V
CC
IF+
GND
20+19 17 16
1
V
CC
2
TAP
GND
GND
RF
3
4
E.P.
5
67
CC
V
LOBIAS
V
CC
R1
C4
18
8
GND
IF-
MAX2031
910
CC
V
LOSEL
LOSEL
GND
GND
4
IF
5
C12
15
LO2
14
V
CC
13
GND
12
GND
11
LO1
C10
C11
LO2
V
LO1
CC
NOTE: L1 AND C4 USED ONLY FOR UPCONVERTER OPERATION. C5 USED ONLY FOR DOWNCONVERTER OPERATION.
C6
C7
C8
V
CC
C9
Page 20
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Revision History
REVISION
NUMBER
0 7/05 Initial release
1 6/09 Added new Electrical Characteristics tables and Typical Operating Characteristics 1–16
REVISION
DATE
DESCRIPTION
PAGES
CHANGED
Loading...