Datasheet M57925L Datasheet (Mitsubishi)

MITSUBISHI HYBRID ICs
M57925L
HYBRID IC FOR DRIVING TRANSISTOR MODULES
DESCRIPTION
M57925L is a Hybrid Integrated Circuit designed for driving Transis­tor Modules QM30DY, QM50DY, etc., in an Inverter application. This device operates as an isolation amplifier for Transistor Modules due to the electrical isolation between the input and output, and features a small outline of 10-pin SIP.
FEATURES
Electrical isolation between input and output with integrated opto­coupler. V
Propagation delay time ..................................... t
..................................... t
Large load and sink current driving capability
................................................................. I
................................................................I
Applicable with TTL input
Small outline, 10-pin SIP package
iso=2500Vrms PLH=2µs (TYP) PLH=4µs (TYP)
OH=–1A (MAX)
OLP=–3A (MAX)
APPLICATION
To drive Transistor Modules for Inverter applications
OUTLINE DRAWING Dimensions in mm
33MAX.
21MAX.
0.35±0.2
8.5MAX.
10.0MAX.
3.0MAX.
2.54
2.549=22.86±0.2
1
4.5±1.5
1.8MAX.
7.5MAX.
10
BLOCK DIAGRAM
330
2
1 OPTO-COUPLER
INTERFACE CIRCUIT
Tr1
10
9 8
7
Tr2
6 5
CIRCUIT DIAGRAM
1
2
Tr2
Tr1
5
10
9
8
7
6
Feb.1999
HYBRID IC FOR DRIVING TRANSISTOR MODULES
ABSOLUTE MAXIMUM RATINGS (Ta=–20 ~ +70°C, unless otherwise noted)
Symbol VCC VEE VI IOH IOLP Viso Tj Topg Tstg
Supply voltage Supply voltage Input voltage
Output current Isolation voltage
Junction temperature Operating temperature Storage temperature
Parameter
Conditions DC DC Between terminals and
Pulse width 10µs, Freq. 2kHz, peak value Sinewave voltage 60Hz/min. Ta=25°C
ELECTRICAL CHARACTERISTICS (Ta=25°C, VCC=8V, unless otherwise noted)
Symbol
IIH IOH IOLP PD tPLH tr tPHL tf
“H” input current “H” output current “L” output peak current Internal power dissipation “L-H” propagation delay time “L-H” rise time “H-L” propagation delay time “H-L” fall time
Parameter
Test conditions
VI=5V Rext=9 Cext=10µF, R2=1 IOH=–0.5A, IOLP=1A, f=2kHz, D.F.=50% VI=04V, Tj=100°C VI=04V, Tj=100°C VI=50V, Tj=100°C VI=50V, Tj=100°C
MITSUBISHI HYBRID ICs
M57925L
Ratings
14 –6
–1 ~ 7
–1
3
Min.
–0.8
– – – – – –
2500
100
–20 ~ +70
–25 ~ +100
Limits
Typ.
12
– 2
0.35 2 – 4 –
Max.
Vrms
– – – – 4 2 6 3
Unit
V V V A A
°C °C °C
Unit
mA
A A
W
µs µs µs µs
Feb.1999
PERFORMANCE CURVES
MITSUBISHI HYBRID ICs
M57925L
HYBRID IC FOR DRIVING TRANSISTOR MODULES
PROPAGATION DELAY TIME VS.
AMBIENT TEMPERA TURE (TYPICAL)
4
PLH (µs)
PHL (µs)
“L”-“H” t
3
2
1
0 100
PROPAGATION DELAY TIME “H”-“L” t
CONDITION VCC=10V,VEE=–4V R
ext
=9,R2=1
PLH:VIN
I
OHL:VIH
I load:QM50DY f=2000Hz, D.F.=50%
25 50 75
AMBIENT TEMPERA TURE Ta (°C) “H” INPUT VOLTAGE VIH (V)
PROPAGATION DELAY TIME VS.
REVERSE SUPPLY VOLTAGE (TYPICAL)
5
PHL (µs)
PLH (µs)
“H”-“L” t
CONDITION VCC=10V R
ext
=9,R2=1
PLH:VIN
=0 4V
I
4
I
PHL:VIN
=5 0V
load:QM50DY
3
f=2000Hz, D.F.=50%
a
=100°C
T
=0 4V =5 0V
t
t
PHL
PLH
t
PHL
PHL (µs)
PLH (µs)
“H”-“L” t
PROPAGATION DELAY TIME “L”-“H” t
1000
D (mW)
PROPAGATION DELAY TIME VS.
“H” INPUT VOLTAGE (TYPICAL)
CONDITION
6
VCC=10V,VEE=–4V R
ext
=9,R2=1 load:QM50DY f=2000Hz, D.F.=50%
a
=100°C
T
4
2
0
4.0
4.5 5.0 5.5
INTERNAL POWER DISSIPATION VS.
“H” DUTY FACTOR (TYPICAL)
CONDITION VCC=10V,VEE=–4V
800
600
V
O
=1.6V
I
OH
=–0.9A
1
=5V,f=2kHz
V
FOR QM50DY
400
t
t
PHL
PLH
2
1 –3.2 –5.2
–3.6 –4.4 –4.8
PROPAGATION DELAY TIME “L”-“H” t
–4.0
ALLOWABLE POWER DISSIPATION VS.
AMBIENT TEMPERATURE
(MAXIMUM RATING)
2.5
D (W)
2.0
1.5
1.0
0.5
0
ALLOWABLE POWER DISSIPATION P
25
0 125
50 7570 100
AMBIENT TEMPERA TURE T
t
PLH
a (°C)
INTERNAL POWER DISSIPATION P
–1000
OH (mA)
“H” OUTPUT CURRENT I
I
OH
200
0
20
0 100
40
=–0.45A
FOR QM30DY
60 80
“H” DUTY FACTOR D. F. (%)REVERSE SUPPLY VOLTAGE VEE (V)
“H” OUTPUT CURRENT VS.
“H” LIMITING RESISTOR (TYPICAL)
–800
–600
–400
CONDITION VCC=10V,VEE=–4V
IN
=5V,VO=1.5V
V
–200
0
4
020
8
12 16
“H” LIMITING RESISTOR Rext (Ω)
Feb.1999
MITSUBISHI HYBRID ICs
M57925L
HYBRID IC FOR DRIVING TRANSISTOR MODULES
“L” OUTPUT PEAK CURRENT VS.
REVERSE SUPPLY VOLTAGE (TYPICAL)
5
CONDITION
OLP (A)
VCC=10V f=200Hz, D.F.=1%
4
Ta=25°C FOR TRANSISTOR MODULES IC=10A
3
2
1
“L” OUTPUT PEAK CURRENT I
0
–2.4 –4.4
–2.8
–3.2
–3.6 –4.0
REVERSE SUPPLY VOLTAGE VEE (V) “L” OUTPUT VOLTAGE VOL (V)
POWER DISSIPATION OF R
“H” DUTY FACTOR (TYPICAL)
10
CONDITION VCC=10V,VEE=–4V V
O
=1.6V
8
I
OH
=–0.9A
FOR QM50DY
ext Rext (W)
6
4
OF R
2
I
40
OH
FOR QM30DY 60 80
AVERAGE POWER DISSIPATION
0
0 10020
R R FOR QM50DY
R R FOR QM30DY
ext VS.
=–0.45A
2
=1
ext
=9
2
=3.3
ext
=18
REVERSE SUPPLY VOLTAGE VS.
“L” OUTPUT VOLTAGE (TYPICAL)
–3.6
CONDITION
EE (V)
–3.2
VCC=10V,R R
2
load:QM50DY
a
=25°C
T
=1
ext
=9
–2.8
–2.4
–2.0
REVERSE SUPPLY VOLTAGE V
–1.6
–2.4 –4.4
–2.8
–3.2
–3.6 –4.0
OUTPUT CHARACTERISTIC OF FULL WAVE
RECTIFYING CIRCUIT WITH CENTER-TAPPED
TRANSFORMER (FOR REFERENCE)
14
L(AV) (A)
12
RIPPLE AMPLITUDE
10
8
6
AVERAGE LOAD CURRENT I
4
0 1.00.2
0.4
0.6 0.8
OUTPUT VOL TAGE VO (V)“H” DUTY FACTOR D. F. (%)
V
O
I
L
T
C
1
V
O
T: 8V, 1A2 CENTER-TAPPED TRANSFORMER C1: 4700µF, C2: 470µF
C
2
Z
D
150
Feb.1999
EXPLANATION OF FUNCTION
(cf. Fig. 2, 3, 4, and 5)
MITSUBISHI HYBRID ICs
M57925L
HYBRID IC FOR DRIVING TRANSISTOR MODULES
(1) With low input level (V
in=0 ~ 1V)
Tr1 ...... OFF, Tr2 ...... ON
The base terminal of transistor module is reverse biased with re­spect to its emitter by reverse power supply V
(2) With high input level (V
in=4 ~ 5V)
EE.
Tr1 ...... ON, Tr2 ...... OFF
The base terminal of transistor module is forward biased and drived by the current I
OH through the resistor Rext.
Typical application circuit
M57925L+5V
12 345678
DRIVER TTL etc.
input
SINK 12mA
V
IN
(3) With low input level (Vin=0 ~ 1V)
Tr1 ...... OFF, Tr2 ...... ON
The base terminal of transistor module is reverse biased as stated in (1) after flowing reverse reco very pulse current I
OLP. The
steady reverse base current is limited by the internal base-emit­ter resistor R
BE of the transistor module.
1/2QM50DY etc.
LOAD
I
C
I
O
V
O
R
2
+
V
EE
Z
R
ext
D
+
C
1
V
CC
+
C
2
Typical operating waveform
V
IN
0
–I
O
0
V
O
0
V
I
OH(IB1)
I
V
OH
I
OLP(IB2)
V
R
1
t
t
t
OL
Note: IOH and IOLP correspond to base forward current IB1
and base reverse current IB2 of the transistor module to be driven respectively.
Feb.1999
Loading...