Datasheet M51971FP, M51971L Datasheet (Mitsubishi)

Page 1
MITSUBISHI <CONTROL / DRIVER IC>
)
t
7
6
y
M51971L/FP
MOTOR SPEED CONTROL
DESCRIPTION
The M51971 is a semiconductor integrated circuit designed to control the motor rotating speed. The built-in FG amplifier with high gain enables to use a wide range of rotating speed detector (FG detector). Use of less external parts enables DC motors to be controlled with high precision.
FEATURES
Wide range of supply voltage • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 4 – 17.5V
V ariation coefficient of supply voltage •••••±0.005%/V (standard)
Load variation coefficient•••••±0.01% (standard, full load range)
Temperature coefficient of rotating speed • • • • 7ppm/˚C (standard)
Built-in high performance FG amplifier
APPLICATION
Motor rotating speed control i n floppy disk driver, player, tape recorder, car stereo, etc.
RECOMMENDED OPERATING CONDITIONS
Supply voltage range ••••••••••••••••••••••••••••••••••••4–17.5V Rated supply voltage ••••••••••••••••••••••••••••••••••••••••••••9V Input voltage range at pin ••••••••••••••••• -0.4 – Vcc Note 1 Input voltage range at pin •••••••••••••••••••••••••• -0.4 – Vcc Highest setup tacho-generator frequency •••••••••••••••• 2.5kHz Minimum trigger pulse width (input pulse at pin )
Note 1: The linear operation range is -0.4 to +0.4V. Note 2: This condition applies to both periods: from pulse rising to
pulse falling and pulse falling to pulse rising.
1
4
4
• • • • • • • • • • 40µs Note 2
PIN CONFIGURATION(TOP VIEW
GND
Output
1 2 3 4 5 6 7 8 9
10
Outline 10P5
M51971FP
M51971L
Power supply
10
Output
9
Integration capacitance
8
GND
7
Stabilized voltage
65
Non-inverted input
Amplifier output
Stabilized voltage
Integration capacitance
Non-inverted input
Inverted input
Amplifier outpu
Schmitt input
Time constant
Inverted input
Schmitt input
Time constant
Power supply
1 2 3 4
BLOCK DIAGRAM
Non-inverted input
Inverted input
Power suppl
Outline 10P2-C
Amplifier output
Operational amplifier
V
LS
1
1.9V
2
10
Stabilized supply voltage
Schmitt intput
3
4
Schmitt comparator
VLS 1.9V
Time constant
5
Timer
Over-shoot prevention circuit
Constant current control
Integration capacitance
8
Buffer amplifier
9
Output
GND
Stabilized voltage
Page 2
ABSOLUTE MAXIMUM RATINGS(Ta=25°C unless otherwise noted
)
)
MITSUBISHI <CONTROL / DRIVER IC>
M51971L/FP
MOTOR SPEED CONTROL
Symbol
Vcc V
1
I
3
I 6 V4 I
9
Pd
F
K
θF
Topr Tstg
Supply voltage Apply voltage at pin Source current at pin Source current at pin Apply voltage at pin Source current at pin
Power dissipation
Thermal derating Operating temperature
Storage temperature
Parameter Conditions
1
3 6
4
9
Ta25˚C
ELECTRICAL CHARACTERISTICS(Ta=25°C, Vcc=9V unless otherwise noted
Symbol Test conditions UnitParameter
CC Supply voltage range
V I
CC
VS I
1
I 2
1
V LS AV
4
I
4
V TH
4
V HY
5
V S Tτ
8
I C rCD
9
R
9
V max
9
V min V
BO
Circuit current Stabilized supply voltage Input current at pin Input current at pin Level shift voltage at pin
1 2
1
FG amplifier voltage gain Input current at pin
4
Threshold voltage at pin 4 Hysteresis width at pin Saturation voltage at pin
4
5
One-shot pulse width Charging current at pin
8
Ratio of charging to discharging current at pin Output protection resistance at pin Maximum voltage at pin Minimum voltage at pin
9
9
9
Buffer amplifier offset voltage
Voltage at pin
1
V = 0V
1
V = 0V
1
V = 0V
1
V =0.2mVrms,f=500Hz,
4
V = 2.5V Useslevel shift voltageatpin as thereference.
6
External set gain=60dB
1
Rτ = 75k Rτ= 75k, Cτ = 4700pF
8
V = 1V
8
8
V = 1V
9
I = -20mA
8 8 9
V = 1V, V - V
Ratings
18
-3
Vcc
-5
-5
0 Vcc
-20 880 (M51971L) 450 (M51971FP)
8.8 (M51971L)
4.5 (M51971FP)
-20 +75
-40 +125
Limits
Min. Typ. Max.
3.2
-30
59
0.4 16 37
3
395
100
3.2 50
100
17.5
6.0
2.98
2.27 64
2.0 40 55 20
415
-140
-9.0
150
200 200
4.0
2.44
-3.0
-180
1.51 54
0
20
375
-260
-14.5 65
2.9
0
2.71
-0.5
1.89
-190
-11.6
Unit
V V
mA mA
V
mA
mW
mW / °C
°C °C
V
mA
V
µA nA
V dB µA
mV mV mV
µsec
µA
V
mV mV
Page 3
TYPICAL CHARACTERISTICS
0
)
MITSUBISHI <CONTROL / DRIVER IC>
M51971L/FP
MOTOR SPEED CONTROL
Thermal Derating (Maximum Rating)
1000
M51971L
800
600
M51971FP
400
Power Dissipation Pd (mW)
200
0
25 50 75 100 125
Ambient temperature Ta (°C)
Rotating speed–Motor torque characteristics
3005
VCC=9V
Rotating speed–Supply voltage characteristics
3005
No load
3000
Rotating speed N (rpm)
2995
048121620
Supply voltage VCC (V)
Rotating speed–Ambient temperature characteristics
3005
VCC=9V No load Rτ, Cτ Outside constant temperature bath
3000
Rotating speed N (rpm)
2995
0 50 100
Torque T (g-cm)
Circuit current–Supply voltage characteristics
5
4
3
2
Circuit current ICC (mA)
1
0
0 4 8 121620
Supply voltage VCC (V)
3000
Rotating speed N (rpm)
2995
-50
0255075
-25 Ambient temperature Ta(°C
Circuit current–Ambient temperature characteristics
5
4
3
2
Circuit current ICC (mA)
1
0
-50 100
-25 0 25 50 75
Ambient temperature Ta (˚C)
100
Page 4
MITSUBISHI <CONTROL / DRIVER IC>
)
)
M51971L/FP
MOTOR SPEED CONTROL
FG amplifier open loop voltage gain, phase transition characteristics
100
80
60
40
20
Voltage gain AV (dB)
0
-20 10 100 1k 10k 100k 1M
Voltage gain
Phase
Frequency FIN (Hz)
Level shift voltage at pin – Ambient temperature characteristics
3.0
2.5
1
1
2.0
1.5
VCC=9V
1
-90
-120
-150
Phase φ (degree)
Revel shift voltage at pin – Input voltage characteristics at pin
2.5 VCC=9V
1
1
2.0
Level shift voltage at pin V LS (V)
1.5
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Input voltage at pin V (V)
Voltage at pin – Output current characteristics of pin
4
3
3
3
2
1 1
3
3
1
CC=9V
V
1 =0V
V
1
1.0
0.5
Level shift voltage at pin V LS (V)
0
-25 0 50 75
-50 25 100 Ambient temperature Ta(°C
Threshold voltage at pin – Ambient
4
temperature characteristics
50 40 30
4
Threshold voltage at pin (mV)
20 10
0
-10
-20
-30
-40
-50
-50 -25
Ambient temperature T
ON level
OFF level
25 50 75
0
a (°C)
100
Voltage at pin V (V)
1
0
-15 15
-10
Output current at pin I (mA)
0510
-5
3
Saturetion voltage at pin –Sink current characteristics at pin
40
30
5 5
20
10
Saturation voltage at pin V S (mV)
0
0 1.20.2 0.4 0.6 0.8 1.0
Sink current at pin I(mA
5
3
5
5
VCC=9V
5
Page 5
MITSUBISHI <CONTROL / DRIVER IC>
)
)
0
)
M51971L/FP
MOTOR SPEED CONTROL
Stabilized voltage–Supply voltage characteristics
3.0
2.8
2.6
2.4
Stabilized voltage VS (V)
2.2
2.0 048121620
Supply voltage VCC (V)
Stabilized voltage–Source current characteristics of pin
2.8
6
VCC=9V
Stabilized voltage–ambient temperature characteristics
5
VCC=9V
4
3
2
Stabilized voltage VS (V)
2
24
1
-50 -25 0 25 50 100
Ambient temperature Ta(°C
Voltage at pin – Input signal
8
75
frequency characteristics
4
CC=9V
V
3
2.7
Stabilized voltage VS (V)
2.6 0
12
Source current at pin I (mA
6 6
Charging current at pin – Ambient temperature characteristics
-300
-250
8
-200
8
-150
-100
-50
Charging current at pin I c (µA)
0
-25-50 Ambient temperature Ta(°C
25 50 75
8
VCC=9V
8 8
2
Voltage at pin V (V)
1
0
5
43
401.5
Discharging current at pin – Ambient
402.0 402.5 403.0
8
Pin – input signal frequency fIN (Hz)
8
temperature characteristics
30
VCC=9V
a (°C)
100
25
8 8
20
15
10
5
Discharging current at pin I d (µA)
0
-25 0 25 50 75
-50 100 Ambient temperature T
Page 6
MITSUBISHI <CONTROL / DRIVER IC>
M51971L/FP
MOTOR SPEED CONTROL
Output voltage range at pin – Supply voltage characteristics
4
9
3
9
2
Ta =25°C
Ta =75°C
1
Output voltage range at pin V (V)
0
4 8 12 16
Supply voltage V
9
Ta = -20°C
CC (V)
Buffer amplifier offset voltage – Voltage characteristics at pin
160
120
80
40
0
Buffer amplifier offset voltage VBO (mV)
–40
01234
Voltage at pin V (V)
Application Characteristics Example How to determine Rτ and Cτ
These constants determine the motor rotating speed. If the motor rotating speed and the number of poles of tacho-generator are assumed to be N and P, respectively, the following relational expression is generally established. According to the required rotating speed, select the constant in such a way that Rτ can be
100
90
put in the range of 10k– 500k. When using a high resistance, take care for leak current that may flow on the surface of the printed circuit board.
NP
1
1.20 • Rτ • Cτ
8
VCC=9V
8
8
10
0%
Upper side : Motor speed (FV conversion waveform of tacho-
generator frequency) Lower side : Supply voltage Horizontal axis : 20 ms/div Time constant of motor 100 ms
Tacho-generator output frequency – Connection resistance characteristics at pin
10000
7000 5000
3000 2000
1000
700 500
300 200
Tacho-generator output frequency NP (Hz)
10 20 30 50 70 100 200 300 500
Connection resistance Rτ (k) at pin Rτ (k)
0.1
0.047µ
µF
0.022µ
F
C
τ= 4700pF
0.01 µF
F
1
1
1000
Page 7
Brief Description on M51971 Operation
6M9
8
y
Block Description
Amplifier output
3
1
D D2
Non-inverted input
Inverted input
1
2
FG amplifier
VLS
1.9V
Operational amplifier
Schmitt input
4
A
Schmitt circuit
VLS 1.9V
A’
Timer
Logic for timer
MITSUBISHI <CONTROL / DRIVER IC>
M51971L/FP
MOTOR SPEED CONTROL
6
To pin
7.5k
Rτ
C
B
E
5
Q
1
comparator
Cτ
15k
D
Over-shoot prevention signal
Over-shoot prevention circuit
G
Logic for over-shoot prevention
H
C
F1
I
100
Buffer
OP
Q
3
FG amplifier
The FG amplifier consists of an operational amplifier, revel shift circuit and diode for waveform clip. When a DC block capacitor is connected to pin , output DC voltage at pin becomes higher than DC voltage at pin by VLS
3
(1.9V3VBE). AC signals centering around the GND can be therefore amplified easily. The clipper diode limits the output signal amplitude to ±0.7V (VBE) max. and rapidly charges DC block capacitor with power supply turned ON.
2
1
Timer output
Power
10
7
supply
GND
RF
CF2
Q2
Constant current control
206µA
I1
16µA
I2
Stabilized power suppl
Stabilized voltage
(≈190µA) for the period without one-shot pulse and generates sink current of I2 (16µA) for the period with one-shot pulse. The ratio of I1 to I2 is characteristic to the IC. The frequency of the tacho-generator to be set is determined by the one-short pulse width and this current ratio (I1/ I2 12.6).
T
G = Tτ x 1.09 x Tτ
1–I2
I
I1
Where:
TG: Tacho-generator signal frequency (set value) Tτ : One-short pulse width
Schmitt circuit
The Schmitt circuit is a comparator with histeresis, and has ON level of VLS + 20mV and OFF level of VLS - 20mV.
Timer
The timer generates basic time necessary for controlling the speed. This timer is a one-shot circuit triggered with input signals and
Over-shoot prevention circuit
The over-shoot prevention circuit operates when over-shoot is large in particular, e.g. the motor is suddenly released from lock status. Q3 is set to ON for the period of one-short pulse width (Tτ) when the signal period of the tacho-generator in a motor is shorter than the one-shot pulse. Generally, electric charge of CF1 is discharged for this period due to RF • CF2 >>Tτ.
generates pulse of 1.1 Cτ Rτ in pulse width.
Buffer amplifier
Consta nt currentcontrolcircuit
The constant current control circuit is controlled with output of timer circuit. The circuit generates, at pin , source current of I1 –I2
8
The buffer circuit is a voltage follower circuit using an operational amplifier. The input current is very small (10nA max.) and the circuit can drive the output current of 20mA.
Page 8
Input/Output Circuit Drawing
2
318
495
6
To pin 10
MITSUBISHI <CONTROL / DRIVER IC>
M51971L/FP
MOTOR SPEED CONTROL
10
To pin
1k
To pin 6
To pin 10
I
Control signal
100
200
To pin 6
Control signal
2k
10
To pin
1k
I
2k
To the next stage
I
100
3k
To pin 10
To pin 6
I
To pin 10
7.5k
15k
Timing Chart I. In normal operation II. Normal operation to rapid discharging operation
A, A’
A, A’
B
Approx
S
10µ
H, I
B
Approx
S
10µ
C
D
E
F
G
Tτ
G
T
TG 1.09Tτ
C
D
E
F
G
H, I
Page 9
Application Circuit Examples
MITSUBISHI <CONTROL / DRIVER IC>
M51971L/FP
MOTOR SPEED CONTROL
I. When the ou tput im pedance of the tacho-
generator is lo w ;
RS Rf RNF
CS
G
2 3 4 5 6
CNF
M51971L
M51971FP
CS : Coupling capacitor for AC amplification RS, Rf : FG amplifier gain set resistance RNF, CNF : Filter for noise removal Rτ, Cτ : Time constant for motor speed setup CF1, CF2, RF : Phase compensation capacitance and resistance to
stabilize integration and speed control systems
Notes:
1. The signal amplitude of the tacho-generator for set motor rotating speed must be set to 1 mVP-P or more.
2. FG amplifier gain
1+ω
ωG: Angle frequency of tacho-generator signal
3. The CS, RS, RNF and CNF values are desirable to be selected as follows: (Values omitted)
CS4.7µF
2
CSRS
ωG
RNF • CNF
1
ω
1
ω
G
Rτ VCC
Cτ
10
71
1+ω
G
2
GCS
2
GCS
8
CF1
M : Motor G : Tacho-generator
2
(RS+Rf)
2RS2
2
RF CF2
M
9
III. When the signal amplitude of the tacho-
generator is large;
R
1
2
RNF
G
3 4 5 6 10
CNF
M51971L
M51971FP
71
Rτ
Cτ
CF1
VCC
M
9
8
F
R CF2
In the above three examples, the portion over Vf (0.7V) of the output waveform at pin is clipped in the built-in waveform clip
3
diode.
IV. When the input waveform is pulse shape
Input pulse signal
4 5 6 10
M51971L
M51971FP
3 2
Note: The threshold voltage at pin to GND is approx. 1.9V.
Rτ VCC
Cτ
9
CF1
4
8
RF CF2
71
M
II.When the output impedance of the ta cho-
generator is high and the signal amplitude is small;
CS
RS Rf RNF
2 3 4 5 6 10
1G
CNF
M51971L
M51971FP
7
Rτ VCC
CF1
Cτ
9
8
RF CF2
M
V. When turning the m ot or ON/OFF with control
signals;
Rτ
5 6 10
M51971L
M51971FP
7
When Q1 is set to ON When Q
8
CF1
1 is set to OFF
Cτ
9
R
F
CF2
Control signal
Q1
1
R
: Stops the motor. : Controls the motor rotating speed.
VCC
M
Page 10
MITSUBISHI <CONTROL / DRIVER IC>
(
)
4
y
M51971L/FP
MOTOR SPEED CONTROL
VI.To switch the set rotating speed in stages with
control signals
Control signal 1
6
Rτ1
M51971L
M51971FP
5
7
Rτ2
VII. Limiting output current at pin to prevent the
Control
signal 2
Rτ3
Cτ
9
IC from heating
Rτ
Cτ
5 6 10
M51971L
M51971FP
CF1
V max
9
R +RSC
9
8
RF
CF2
: V max9
~
~
7
I max =
9
(See the Electrical Characteristics and Typical Characteristics.)
9
3.2V, R
RSC
9
~
~
100
VCC
M
Q1
VIII. To limit drive current to the motor
1)
Rτ
Cτ
5 6 10
~
~
R1 200
9
0.7V RSC
M51971L
M51971FP
7 8
CF1
IMmax =
RF
CF2
V
RSC
BE2
2) To reduce power loss due to a current limiting resistance
Rτ
τ
C
5 6 10
x
RSC
R1 200
9
R3
R2 +R3
Q2
M51971L
M51971FP
7
8
~
~
RF
CF2
0.7V x R2
R2 +R3
CF1
IMmax = (VBE2 – VBE1 )/RSC
M
Q1
Q2
RSC
M
R2
R3
Q1
IM
RSC
V
CC
V
CC
IM
IX. Frequency comparator
Frequency input
VCC
10 6
M51971L
M51971FP
7
Note: The selected Hysteresis of the Schmitt circuit must be more than or
equal to the ripple current at pin (to prevent chattering).
Rτ
8
C
F
R’τ
Cτ
5
9
8
R’τ> 2Rτ
Output
Schmitt circuit
Input/output transmission characteristics
Output voltage
fTH2 fTH1
Input frequenc
~
f
TH1
~ ~
TH2
f
~
1
1.20 x Rτ Cτ 1
1.09 x Rτ // R’τ x Cτ x In
3(Rτ + R’τ)
R’τ – 2Rτ
Page 11
Hint for designing a stabilized speed control
ω
(S)
(S)
system
(Method for determining the filter constants (CF1, CF2 and RF) at
8
pin ) The filter constants at pin must be determined to satisfy the
system stability.
8
MITSUBISHI <CONTROL / DRIVER IC>
M51971L/FP
MOTOR SPEED CONTROL
1. Transfer Function of the Motor Speed Control System
Control circuit
C
- G
Motor speed control system
The motor speed control system is a negative feedback system including a control circuit and a motor. As the condition necessary for stable negative feedback, the phase must be generally 180˚ or less in the frequency area where the gain of open-loop transfer function (GC(S) GM(S)) is 1 or more.
Motor
M
G
2. Transfer Function of Motor
If the motor armature current and angular velocity are assumed to be la and ωv, respectively, the following equation is established.
Tg = KT • ∆la = (SJ+D) ∆ωv • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (1)
Where:T g : Torque generated in the motor
KT : Proportional constant between the torque genera-
ted in the motor and the armature current J : Inertia moment of Motor and load D : Coefficient of viscosity friction
If the number of poles in the tacho-generator is assumed to be P, the relation of ω= P ωv exists between tacho-generator angular frequency ωand motor angular velocity ωv and, therefore, the motor transfer function (transfer function including motor and tacho-generator) GM(S) takes a single-pole transfer function as follows:
GM(S) = • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (2)
∆ ∆
la
=
D
(1+S )
=
1 +
KT
P
J
D
M
K
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (3)
S
ω
M
log GM (jω)
M
ω
log ω
Approximate motor transfer function
3. Transfer Function of Control Circuit Using the M51971
If input information is assumed to be given continuously (the tacho­generator frequency is assumed to be infinitely high), the transfer function from the input at pin to the output at pin is as follows:
GC(M51971)(S)
Tτ( I C + I d )
=
Where : Tτ: Timer pulse width 1.10 x Rτx C
8
l C : Charging current at pin
8
l d : Discharging current at pin
1
ω
F1
RF • CF2
F2
RF • CF1 • CF2
CF1 +CF2
ω
If the gain of the circuit connected to the back of pin of the M51971 is assumed to be KCP, transfer function GC(S) for the entire circuit is as follows:
Tτ( I C + I d )
GC(S) = KCP
x
C
4 9
(output voltage at pin ) (input frequency at pin )
~
~
x
x
S(1 + S/
1 + S/
S(1 + S/
8
8
1 + S/
8 8
F1 + CF2
C
8 8
F1 + CF2
9
4
ω
F1
ω
τ
ω
F1
ω
F2)
• • • • • • • • • • • (6)
F2)
9
• • • • • • • • • • • • • (7)
Where:
KM =
ω
M =
PKT
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (4)
D
D
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (5)
J
log GC (jω)
F1
ω
log ω
Approximate transfer function of control circuit
ω
F2
Page 12
MITSUBISHI <CONTROL / DRIVER IC>
M51971L/FP
MOTOR SPEED CONTROL
4. Necessity for stable control
Stable control requires the gain of GC(S) GM(S) to be the phase characteristics of 180˚ or less in a frequency area of 1 or more. The relation of the phase and the gain is determined according to the Baud’s theorem when all poles and zero points of the transfer function are placed at the left side of the complex sphere. If GC(jω) GM(jω) follows the Baud’s theorem, in a frequency area of | GC(jω) GM(jω) | 1 the inclination of gain of GC(jω) GM(jω) must be -12dB/oct or more for stable control. For the reason above, when the circuit constant is selected to achieve ωF1 ≈ωM, and the inclination of the gain of each of GC(jω) and GM(jω) is -6dB/oct, that is, the following formula must be established with respect to the frequency of ωF2 where the inclination of the gain of GC(jω) GM(jω) begins to be -12dB/oct.
| GC
(jωF2)
GM
(jωF2)
| < 1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (8)
To make a precise control, the gain of open-loop transfer function must be large in the entire area of frequency. The variation of the motor rotating speed attenuates due to disturbance at an inclination of -6dB/oct with the frequency of ωM or more. The capability of rotating speed control in the frequency area from
ωF1 to ωF2 is determined by the gain of open-loop transfer function
at ωF1(≈ωM). The following formula is established with | GC
(jωF2)
GM
(jωF2)
| < 1 and when the inclination of the gain of
GC
(jω)
GM
(jω)
is almost equal to -6dB/oct with the frequency of
ωF2or less.
ω
F2
ω
C
(jωM)
GM
(jωM)
| G
| <
ω
Improvement of control precision in the frequency area from
F2
F1
• • • • • • • • • • • • • • • • • • • • • • (9)
ω
M
ωF1to
ωF2requires the following conditions.
ωF1≈ω
M
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (10)
ω
F2
>> • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (11)
1
ω
F1
The KCP or CF1 +CF2 value must be set to satisfy formulae (4) and (5).
5. Influence on the S tability of Tacho-generator Frequency
The control system that is controlled with tacho-generator frequ­ency, i.e. period, is a kind of sample hold system controlled with discrete information in the time axis. Addition of extra phase delay to sample hold operation makes the system more unstable. More precise transfer function H*(jω) (GC*(jω) GM*(jω)) taking the above operation into account is as follows, when H(jω)(GC(jω) GM(jω)) is assumed to be the transfer function where this opera­tion is not taken into account:
2
πω
–j
H*(
sinπ(ω/
jω
)=
π(ω/ωG)
ωG)
ωG
ΣH(jω
e
n=–
+ jn
• • • • • • • • • • • • • • (12)
ωG)
Where:
ωG: Set value of tacho-generator frequency
That is, extra phase delay of 2πω/
ωG(radian) must be taken into
account. That is, if the angular frequency satisfying | GC*(
jω)
GM*(
jω)
| = 1
is assumed to be ωodB, the following relation must be established.
ωG> 4ωod
When this determines function with
| G
B
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (13)
ωG, the possible gain of open-loop transfer
ωMcan be obtained.
C
(
jωM) GM(
jωM)
| < 0.357 x
ω
G
• • • • • • • • • • • • • • • • • • • • (14)
ω
M
This formula (14) must be satisfied in the control system using the frequency of the tacho-generator regardless of the control system and indicates that the upper limit value of the control gain with
ω
is inevitably determined when the motor and tacho-generator are determined. Improvement of the control precision in the rotating speed requires | Gc(
jωM) GM(
jωM)
| >> 1. The following formula must be there-
fore established.
ω
G
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (15)
>> 1
0.357
ω
M
6. Conclusion
According to the theoretical consideration above, the design of speed control system making the best use of the characteristics of the motor is described as follows:
(1)
ωF1≡
If
ωMsharply changes with motor load changed, a circuit constant
1
R
F
CF2
is desirable to be set around minimum
(2)
ωF2≡
CF1 +CF2
R
F
CF1 • CF2
As CF1is smaller, influence by peak-to-peak value of the output pin waveform becomes larger and the drive waveform becomes closer to pulse shape. In most of design cases, both sides are therefore desirable to be equal.
(3) Selection of gain constant Keeping the relation satisfying formulae (16) and (17) above, obtain a value for stable control by changing the KCPor CF1+C value. If the motor set speed is divided into several stages, stage of lower speed is less stable. In this case, experiment must be made at lower speeds.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (16)
ω
M
ωM.
1
• • • • • • • • • • • • • • • • • • • • • • (17)
ω
G
4
ωF2becomes smaller, but the
F2
M
Page 13
MITSUBISHI <CONTROL / DRIVER IC>
M51971L/FP
MOTOR SPEED CONTROL
How to find rough value of motor transfer function
(1) Finding KM
∆ω ∆I
a ∆Ia
2π ∆f
KM = =
Tacho-generator frequency ω
Motor drive current Ia
Plot the relation between the motor drive current and tacho­generator frequency to obtain the inclination.
(2) Finding ω
M
Though ωM is found by measuring the motor frequency response, this method generally takes a lot of time and labor. Measurement of step response can find rough values easily.
63%
Motor speed
M
Motor drive current
t
τ
Supply step-shape current to the motor in static status, measure
τMuntil the motor speed reaches 63% of the final speed and
time then find
ωMby the following formula.
1
ωM=
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (18)
τ
M
Loading...