Datasheet M38027E8SS, M38027E8SP, M38027E8FS, M38027M8-XXXSP, M38027M8-XXXFP Datasheet (Mitsubishi)

...
Page 1
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Programmable input/output ports ............................................. 56

DESCRIPTION

The 3802 group is the 8-bit microcomputer based on the 740 fam­ily core technology. The 3802 group is designed for controlling systems that require analog signal processing and include two serial I/O functions, A-D converters, and D-A converters. The various microcomputers in the 3802 group include variations of internal memory size and packaging. For details, refer to the section on part numbering. For details on availability of microcomputers in the 3802 group, re­fer to the section on group expansion.

FEATURES

Basic machine-language instructions....................................... 71
The minimum instruction execution time ............................ 0.5 µs
(at 8 MHz oscillation frequency) Memory size
ROM .................................................................. 8 K to 32 K bytes
RAM ................................................................. 384 to 1024 bytes
Interrupts .................................................. 16 sources, 16 vectors
Timers ............................................................................. 8 bit 4
Serial I/O1 .................... 8-bit 1 (UART or Clock-synchronized)
Serial I/O2 ....................................8-bit 1 (Clock-synchronized)
PWM................................................................................ 8-bit 1
A-D converter .................................................. 8-bit 8 channels
D-A converter.................................................. 8-bit 2 channels
Clock generating circuit ....................... Internal feedback resistor
(connect to external ceramic resonator or quartz-crystal oscillator)
Power source voltage..................................................3.0 to 5.5 V
(Extended operating temperature version : 4.0 to 5.5 V)
Power dissipation............................................................... 32 mW
Memory expansion possible
Operating temperature range .................................... –20 to 85°C
(Extended operating temperature version : –40 to 85°C)

APPLICATIONS

Office automation, VCRs, tuners, musical instruments, cameras, air conditioners, etc.
PIN CONFIGURATION (TOP VIEW)
P37/RD
P36/WR
P35/SYNC
P34/φ
P33/RESETOUT
P32/ONW
P31/DA2 P30/DA1
VCC
VREF
SS
AV
7
/AN
7
P6
6
/AN
6
P6
P65/AN5 P64/AN4
P63 /AN3
2
/AD3
P01/AD1
P03
P00/AD0
P02/AD
45
46
48
47 49 50 51 52 53 54 55 56
M38022M4-XXXFP
57 58 59 60 61 62 63 64
123
4
/AN1
/INT3
P60/AN0
P62/AN2
P61
P57
7
P04/AD4
P06/AD6
P05/AD5
P07/AD
41
44
43
42
56789
0
/SRDY2
/CNTR1
5
P56
P53
P54/CNTR
P5
/AD8 P10
40
P52/SCLK2
P11/AD9
39
10
P51/SOUT2
/AD13
P12/AD10
P14/AD12
P16/AD14
P13/AD11
P15
38
37
35
36
34
11
12
131415
D
/SIN2 P50
/SRDY1 P47
P46/SCLK1
4/RXD
P45/TX
P4
Package type : 64P6N-A
64-pin plastic-molded QFP
P17/AD15
33
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
16
/INT2
3
P4
P20/DB0 P21/DB1 P22/DB2 P23/DB3 P24/DB4 P25/DB5 P26/DB6 P27/DB7 VSS XOUT XIN P40/INT4 P41/INT0 RESET CNVSS P42/INT1
Page 2

PIN CONFIGURATION (TOP VIEW)

MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
V
V
AV P67/AN P66/AN P65/AN P64/AN P63/AN
2
/AN
P6
1
/AN
P6 P60/AN
P57/INT
P56/PWM
P5
5
/CNTR
P54/CNTR
/S
RDY2
P5
3
2/SCLK2
P5 P51/S
OUT2
P50/S
P47/S
RDY1
P46/S
CLK1
5/TX
P4
P44/R
3
/INT
P4 P42/INT
CNV
RESET P41/INT P40/INT
X
OUT
V
REF
IN2
X
X
CC
1 2
SS
7 6 5 4 3 2 1 0 3
3 4 5 6 7 8
9 10 11 12
M38022M4-XXXSP
13 14
1
15
0
16 17 18 19 20 21
D D
SS
22 23 24
2
25
1
26 27 28
0
29
4
IN
30 31
SS
32
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
P3
0
/DA
1
P31/DA
2
P32/ONW P33/RESET P34/φ P3
5
/SYNC
/WR
6
P3
/RD
7
P3
P00/AD
0
P01/AD
1
P02/AD
2 3
P03/AD P04/AD
4
P05/AD
5
P06/AD
6 7
P07/AD
0
/AD
8
P1 P11/AD
9
P12/AD
10
P13/AD
11
P14/AD
12
P15/AD
13 14
P16/AD
15
P17/AD P20/DB
0
P21/DB
1
P22/DB
2
P23/DB
3
P24/DB
4
P25/DB
5
P26/DB
6
P27/DB
7
OUT
Package type : 64P4B
64-pin shrink plastic-molded DIP
2
Page 3
MITSUBISHI MICROCOMPUTERS
CNTR1
CNTR
0
VREF AVSS
RAM
ROM
CPU
A
X
Y
S
PC
H
PCL
PS
VSS
32
RESET
27
VCC
1
26
CNVSS
P0(8)
49 50 51
52 53
54
55
56
P1(8)
41
43 45
47
42 44
46
48
P2(8)
33 35 37 39
36
38 40
P3(8)
57 59
61 63
58 60
62 64
P4(8)
20 22
24 28
21 23
25
29
P5(8)
12 14
16 18
13
15
17
19
P6(8)
46
10
59
11
3
34
2
XIN
30
XOUT
31
D-A
(8)
D-A
(8)
A-D
(8)
Reset input
Clock generating circuit
Clock input Clock output
Prescaler 12 (8)
Timer 1 (8)
Timer 2 (8)
I/O port P4 I/O port P0I/O port P1I/O port P2I/O port P3
I/O port P5
I/O port P6
7 8
SI/O1 (8)
INT
0
INT2
INT4
Prescaler X (8)
Timer X (8)
Prescaler Y (8)
Timer Y (8)
converter 2
converter 1
~
SI/O2 (8)
PWM (8)
INT3
converter
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FUNCTIONAL BLOCK DIAGRAM (Package : 64P4B)
3
Page 4

PIN DESCRIPTION

MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Pin
VCC, VSS
CNVSS
VREF
AVSS
RESET XIN XOUT
P00–P07 P10–P17 P20–P27 P30/DA1,
P31/DA2
Name
Power source
CNVSS
Analog reference voltage
Analog power source
Reset input Clock input Clock output
I/O port P0 I/O port P1 I/O port P2 I/O port P3
Function
Function except a port function
• Apply voltage of 3.0 V–5.5 V to VCC, and 0 V to VSS. (Extended operating temperature version : 4.0 V to 5.5 V)
• This pin controls the operation mode of the chip.
• Normally connected to VSS.
• If this pin is connected to VCC, the internal ROM is inhibited and external memory is accessed.
• Reference voltage input pin for A-D and D-A converters
• GND input pin for A-D and D-A converters
• Connect to VSS.
• Reset input pin for active “L”
• Input and output signals for the clock generating circuit.
• Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set the oscillation frequency.
• If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.
• The clock is used as the oscillating source of system clock.
• 8 bit CMOS I/O port
• I/O direction register allows each pin to be individually programmed as either input or output.
• At reset this port is set to input mode.
• In modes other than single-chip, these pins are used as address, data, and control bus I/O pins.
• CMOS compatible input level
• CMOS 3-state output structure
• D–A conversion output pins
P32–P37 P40/INT4,
P41/INT0, P42/INT1, P43/INT2
P44/RXD, P45/TXD, P46/SCLK1, P47/SRDY1
P50/SIN2, P51/SOUT2, P52/SCLK2, P53/SRDY2
P54/CNTR0, P55/CNTR1
P56/PWM P57/INT3 P60/AN0
P67/AN7
I/O port P4
I/O port P5
I/O port P6
• 8-bit CMOS I/O port with the same function as port P0
• CMOS compatible input level
• CMOS 3-state output structure
• 8-bit CMOS I/O port with the same function as port P0
• CMOS compatible input level
• CMOS 3-state output structure
• 8-bit CMOS I/O port with the same function as port P0
• CMOS compatible input level
• CMOS 3-state output structure
• External interrupt input pin
• Serial I/O1 I/O pins
• Serial I/O2 I/O pins
• Timer X and Timer Y I/O pins
• PWM output pin
• External interrupt input pin
• A-D conversion input pins
4
Page 5
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

GROUP EXPANSION

Mitsubishi plans to expand the 3802 group as follows: (1) Support for mask ROM, One Time PROM, and EPROM
versions
ROM/PROM capacity................................... 8 K to 32 K bytes
RAM capacity .............................................. 384 to 1024 bytes
Memory Expansion Plan
ROM size (bytes)
32K
28K
Mass product
24K
20K
Mass product
16K
12K
Mass product
8K
M38022M4
M38022M2
(2) Packages
64P4B ............................................ Shrink plastic molded DIP
64P6N-A................................................... Plastic molded QFP
64S1B-E.................................................... Shrink ceramic DIP
64D0................................................................... Ceramic LCC
Mass product
M38027M8/E8
M38024M6
4K
192
256 384 512 640 768 896 1024
Currently supported products are listed below
Product
M38022M2-XXXSP M38022M2-XXXFP M38022M4-XXXSP M38022M4-XXXFP M38024M6-XXXSP M38024M6-XXXFP
(P) ROM size (bytes) ROM size for User in ( )
8192
(8062) 16384
(16254)
24576
(24446)
M38027M8-XXXSP M38027E8-XXXSP M38027E8SP M38027M8-XXXFP M38027E8-XXXFP
32768
(32638)
M38027E8FP M38027E8SS M38027E8FS
RAM size (bytes)
RAM size (bytes)
384
384
640
1024
Package
64P4B
64P6N-A
64P4B
64P6N-A
64P4B
64P6N-A
64P4B
64P6N-A
64S1B-E
64D0
As of May 1996
Remarks
Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version One Time PROM version One Time PROM version (blank) Mask ROM version One Time PROM version One Time PROM version (blank) EPROM version EPROM version
5
Page 6
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

GROUP EXPANSION (Extended operating temperature version)

Mitsubishi plans to expand the 3802 group (extended operating temperature version) as follows: (1) Support for mask ROM One Time PROM, and EPROM ver-
sions
ROM/PROM capacity................................... 8 K to 32 K bytes
RAM capacity .............................................. 384 to 1024 bytes
(2) Packages
64P4B ............................................ Shrink plastic molded DIP
64P6N-A................................................... Plastic molded QFP
Memory Expansion Plan (Extended operating temperature version)
ROM size (bytes)
32K
28K
24K
20K
Mass product
16K
12K
Mass product
8K
M38022M4D
M38022M2D
Mass product
M38027M8D/E8D
4K
192
256 384 512 640 768 896 1024
RAM size (bytes)
Currently supported products are listed below. As of May 1996
Product M38022M2DXXXSP M38022M2DXXXFP M38022M4DXXXSP M38022M4DXXXFP M38027M8DXXXSP M38027E8DXXXSP M38027E8DSP M38027M8DXXXFP M38027E8DXXXFP M38027E8DFP
(P) ROM size (bytes)
8192 (8062) 16384
(16254)
32768
(32638)
RAM size (bytes)
384
384
1024
Package
64P4B
64P6N-A
64P4B
64P6N-A
64P4B
64P6N-A
Remarks Mask ROM version Mask ROM version Mask ROM version Mask ROM version Mask ROM version One Time PROM version One Time PROM version (blank) Mask ROM version One Time PROM version One Time PROM version (blank)
6
Page 7

PART NUMBERING

MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Product
M3802 2 M 4 - XXX SP
Package type
SP : 64P4B package FP : 64P6N-A package SS : 64S1B-E package FS : 64D0 package
ROM number
Omitted in some types.
Normally, using hyphen. When electrical characteristic, or division of quality identification code using alphanumeric character
– : standard
D : Extended operating temperature version ROM/PROM size
: 4096 bytes
1
: 8192 bytes
2
: 12288 bytes
3
: 16384 bytes
4
: 20480 bytes
5
: 24576 bytes
6
: 28672 bytes
7
: 32768 bytes
8
The first 128 bytes and the last 2 bytes of ROM are reserved areas ; they cannot be used.
Memory type
M
: Mask ROM version
E
: EPROM or One Time PROM version
RAM size
: 192 bytes
0
: 256 bytes
1
: 384 bytes
2
: 512 bytes
3
: 640 bytes
4
: 768 bytes
5
: 896 bytes
6
: 1024 bytes
7
7
Page 8
FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)
The 3802 group uses the standard 740 family instruction set. Re­fer to the table of 740 family addressing modes and machine in­structions or the SERIES 740 <Software> User’s Manual for de­tails on the instruction set. Machine-resident 740 family instructions are as follows:
The FST and SLW instruction cannot be used. The STP, WIT, MUL, and DIV instruction can be used.

CPU mode register

The CPU mode register is allocated at address 003B16. The CPU mode register contains the stack page selection bit.
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
CPU mode register
(
Fig. 1 Structure of CPU mode register
CPUM : address
Processor mode bits b1 b0 0 0 : Single-chip mode 0 1 : Memory expansion mode 1 0 : Microprocessor mode 1 1 : Not available
Stack page selection bit 0 : 0 page 1 : 1 page
Not used (return “0” when read)
003B16)
8
Page 9
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Memory Special function register (SFR) area
The Special Function Register area in the zero page contains con­trol registers such as I/O ports and timers.
RAM
RAM is used for data storage and for stack area of subroutine calls and interrupts.
ROM
The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt vector area

The interrupt vector area contains reset and interrupt vectors.
RAM area
RAM capacity
(bytes)
192 256 384 512 640 768 896
1024
Address XXXX
00FF 013F 01BF 023F 02BF 033F 03BF 043F
16
16 16 16 16 16 16 16 16

Zero page

The 256 bytes from addresses 000016 to 00FF16 are called the zero page area. The internal RAM and the special function regis­ters (SFR) are allocated to this area. The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special page

The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Ac­cess to this area with only 2 bytes is possible in the special page addressing mode.
0000
RAM
0040
0100
XXXX
16
16
16
16
SFR area
Zero page
Reserved area
ROM area
ROM capacity
(bytes)
4096
8192 12288 16384 20480 24576 28672 32768
Fig. 2 Memory map diagram
Address YYYY
F000 E000 D000 C000 B000 A000 9000 8000
0440
16
Not used
16 16
16 16 16 16
16 16 16
Address ZZZZ
F080 E080 D080 C080 B080 A080 9080 8080
16 16
16 16 16 16
16 16 16
ROM
YYYY
ZZZZ
FF00
FFDC
FFFE FFFF
16
Reserved ROM area
(128 bytes)
16
16
16
Interrupt vector area
16
Reserved ROM area
16
Special page
9
Page 10
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Port P0 (P0)
000016
Port P0 direction register (P0D)
000116
Port P1 (P1)
000216
Port P1 direction register (P1D)
000316
Port P2 (P2)
000416
Port P2 direction register (P2D)
000516
Port P3 (P3)
000616
Port P3 direction register (P3D)
000716
Port P4 (P4)
000816
Port P4 direction register (P4D)
000916
Port P5 (P5)
000A16
Port P5 direction register (P5D)
000B16
Port P6 (P6)
000C16
Port P6 direction register (P6D)
000D16 000E16 000F16 001016 001116 001216 001316 001416 001516 001616 001716
Transmit/Receive buffer register (TB/RB)
001816
Serial I/O1 status register (SIO1STS)
001916
Serial I/O1 control register (SIO1CON)
001A16
UART control register (UARTCON)
001B16
Baud rate generator (BRG)
001C16
Serial I/O2 control register (SIO2CON)
001D16 001E16
Serial I/O2 register (SIO2)
001F16
Prescaler 12 (PRE12)
002016
Timer 1 (T1)
002116
Timer 2 (T2)
002216
Timer XY mode register (TM)
002316
Prescaler X (PREX)
002416
Timer X (TX)
002516
Prescaler Y (PREY)
002616
Timer Y (TY)
002716 002816 002916 002A16
PWM control register (PWMCON)
002B16
PMW prescaler (PREPWM)
002C16 002D16
PWM register (PWM) 002E16 002F16 003016 003116 003216 003316
AD/DA control register (ADCON)
003416
A-D conversion register (AD)
003516
D-A1 conversion register (DA1)
003616
D-A2 conversion register (DA2)
003716 003816 003916
Interrupt edge selection register (INTEDGE)
003A16
CPU mode register (CPUM)
003B16
Interrupt request register 1(IREQ1)
003C16
Interrupt request register 2(IREQ2)
003D16
Interrupt control register 1(ICON1)
003E16
Interrupt control register 2(ICON2)
003F16
Fig. 3 Memory map of special function register (SFR)
10
Page 11
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
I/O Ports Direction registers
The 3802 group has 56 programmable I/O pins arranged in seven I/O ports (ports P0 to P6). The I/O ports have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, each pin can be set to be input port or output port. When “0” is written to the bit corresponding to a pin, that pin be­comes an input pin. When “1” is written to that bit, that pin be­comes an output pin.
Pin
P00–P07
P10–P17
P20–P27
P30/DA1 P31/DA2 P32–P37 P40/INT4, P41/INT0, P43/INT2 P44/RXD, P45/TXD, P46/SCLK1, P47/SRDY1 P50/SIN2, P51/SOUT2, P52/SCLK2, P53/SRDY2 P54/CNTR0, P55/CNTR1 P56/PWM P57/INT3
P60/AN0– P67/AN7
Note 1: For details of the functions of ports P0 to P3 in modes other than single-chip mode, and how to use double-function ports as func-
tion I/O ports, refer to the applicable sections.
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.
Name
Port P0
Port P1
Port P2
Port P3
Port P4
Port P5
Port P6
Input/Output
Input/output, individual bits
Input/output, individual bits
Input/output, individual bits
Input/output, individual bits
Input/output, individual bits
Input/output, individual bits
Input/output, individual bits
I/O Format CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level
CMOS 3-state output CMOS compatible input level
CMOS 3-state output CMOS compatible input level
CMOS 3-state output CMOS compatible input level
If data is read from a pin which is set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.
Non-Port Function
Address low-order byte output
Address high-order byte output
Data bus I/O
D-A conversion output
Control signal I/O
External interrupt input
Serial I/O1 function I/O
Serial I/O2 function I/O
Timer X and Timer Y function I/O PWM output External interrupt input
A-D conversion input
Related SFRs
CPU mode register
CPU mode register
CPU mode register
AD/DA control register CPU mode register CPU mode register
Interrupt edge selection register
Serial I/O1 control register UART control register
Serial I/O2 control register
Timer XY mode register PWM control register
Interrupt edge selection register
Ref.No.
(1)
(2) (1)
(3)
(4) (5) (6) (7) (8)
(9) (10) (11)
(12) (13)
(3)
(14)
11
Page 12
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(1) Ports P0, P1, P2, P32–P37
Direction register
Data bus
Port latch
(3) Ports P40–P43, P57
Direction register
Data bus
Port latch
Interrupt input
(2) Ports P30, P31
Direction register
Data bus
Port latch
(4) Port P44
Serial I/O1 enable bit
Receive enable bit
Direction register
Data bus
Port latch
D–A conversion output
DA1 output enable bit (P30) DA
2 output enable bit (P31)
Serial I/O1 input
(5) Port P45 (6) Port P46
P45/TXD P-channel output disable bit
Serial I/O1 enable bit
Transmit enable bit
Direction register
Data bus
Port latch
Serial I/O1 output
Serial I/O1 synchronous clock selection bit
Serial I/O1 enable bit
Serial I/O1 mode selection bit
Data bus
(7) Port P47 (8) Port P50
Serial I/O1 mode selection bit
Serial I/O1 enable bit
S
RDY1 output enable bit
Data bus
Direction register
Port latch
Data bus
Serial I/O1 enable bit
Direction register
Port latch
Serial I/O1 clock output
Direction register
Port latch
Serial I/O2 input
Serial I/O1 external clock input
Serial I/O1 ready output
Fig. 4 Port block diagram (single-chip mode) (1)
12
Page 13
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(9) Port P5
Data bus
(11) Port P5
1
P5
1/SOUT2
Serial I/O2 transmit end signal
Serial I/O2 port selection bit
Direction register
Port latch
Serial I/O2 output
3
Data bus
Serial I/O2 ready output
P-channel output disable bit
S
RDY2
output enable bit
Direction register
Port latch
(10) Port P5
Data bus
2
Serial I/O2 synchronous clock selection bit
Serial I/O2 port selection bit
Serial I/O2 clock output
(12) Ports P54, 5
Data bus
Direction register
Port latch
5
Direction register
Port latch
Pulse output mode
Timer output
Serial I/O2 external clock input
CNTR
0
, CNTR
Interrupt input
1
6
PWM output enable bit
Direction register
Data bus
Port latch
PWM output
Fig. 5 Port block diagram (single-chip mode) (2)
(14) Port P6(13) Port P5
Data bus
Direction register
Port latch
A-D conversion input
Analog input pin selection bit
13
Page 14
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPTS

Interrupts occur by sixteen sources: seven external, eight internal, and one software.

Interrupt control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software in­terrupt set by the BRK instruction. An interrupt occurs if the corre­sponding interrupt request and enable bits are “1” and the inter­rupt disable flag is “0”. Interrupt enable bits can be set or cleared by software. Interrupt request bits can be cleared by software, but cannot be set by software. The BRK instruction cannot be disabled with any flag or bit. The I (interrupt disable) flag disables all interrupts except the BRK in­struction interrupt. When several interrupts occur at the same time, the interrupts are received according to priority.
Table 1. Interrupt vector addresses and priority
Interrupt Source Reset (Note 2) INT
0
INT1 Serial I/O1
reception Serial I/O1
transmission Timer X
Timer Y Timer 1 Timer 2
CNTR0
CNTR1
Serial I/O2
INT2
INT3
INT4 A-D converter
Priority
1 2
3
4
5
6 7 8 9
10
11
12
13
14
15 16
Vector Addresses (Note 1)
High
FFFD16 FFFB16
FFF916
FFF716
FFF516
FFF316 FFF116 FFEF16 FFED16
FFEB16
FFE916
FFE716
FFE516
FFE316
FFE116 FFDF16
Low
FFFC16 FFFA16
FFF816
FFF616
FFF416
FFF216 FFF016 FFEE16 FFEC16
FFEA16
FFE816
FFE616
FFE416
FFE216
FFE016 FFDE16

Interrupt operation

When an interrupt is received, the contents of the program counter and processor status register are automatically stored into the stack. The interrupt disable flag is set to inhibit other interrupts from interfering.The corresponding interrupt request bit is cleared and the interrupt jump destination address is read from the vector table into the program counter.

Notes on use

When the active edge of an external interrupt (INT0 to INT4, CNTR
0, or CNTR1) is changed, the corresponding interrupt re-
quest bit may also be set. Therefore, please take following se­quence; (1) Disable the external interrupt which is selected. (2) Change the active edge selection. (3) Clear the interrupt request bit which is selected to “0”. (4) Enable the external interrupt which is selected.
Interrupt Request
Generating Conditions At reset At detection of either rising or falling edge of INT0 input At detection of either rising or falling edge of INT1 input At completion of serial I/O1 data reception At completion of serial I/O1 transfer shift or when transmission buffer is empty At timer X underflow At timer Y underflow At timer 1 underflow At timer 2 underflow At detection of either rising or falling edge of CNTR0 input At detection of either rising or falling edge of CNTR1 input At completion of serial I/O2 data transfer At detection of either rising or falling edge of INT2 input At detection of either rising or falling edge of INT3 input At detection of either rising or falling edge of INT4 input At completion of A-D conversion
Non-maskable External interrupt (active edge selectable) External interrupt (active edge selectable)
Valid when serial I/O1 is selected
Valid when serial I/O1 is selected
STP release timer underflow
External interrupt (active edge selectable) External interrupt (active edge selectable)
Valid when serial I/O2 is selected External interrupt
(active edge selectable) External interrupt (active edge selectable) External interrupt (active edge selectable)
Remarks
BRK instruction
Note 1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.
14
17
FFDD16
FFDC16
At BRK instruction execution
Non-maskable software interrupt
Page 15
Interrupt request bit
Interrupt enable bit
Interrupt disable flag (I)
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Fig. 6 Interrupt control
b7 b0
b7 b0
BRK instruction
Interrupt edge selection register
16
(INTEDGE : address 003A
)
INT0 active edge selection bit INT
1
active edge selection bit Not used (returns “0” when read) INT
2
active edge selection bit INT
3
active edge selection bit INT
4
active edge selection bit Not used (returns “0” when read)
Interrupt request register 1 (IREQ1 : address 003C
16
)
INT0 interrupt request bit INT
1
interrupt request bit
Serial I/O1 receive interrupt request bit Serial I/O1 transmit interrupt request bit Timer X interrupt request bit Timer Y interrupt request bit Timer 1 interrupt request bit Timer 2 interrupt request bit
Reset
0 : Falling edge active 1 : Rising edge active
b7 b0
Interrupt request
Interrupt request register 2 (IREQ2 : address 003D
CNTR0 interrupt request bit CNTR
1
interrupt request bit Serial I/O2 interrupt request bit INT2 interrupt request bit INT
3
interrupt request bit
INT
4
interrupt request bit AD converter interrupt request bit Not used (returns “0” when read)
0 : No interrupt request issued 1 : Interrupt request issued
16
)
b7 b0
Interrupt control register 1 (ICON1 : address 003E
INT0 interrupt enable bit INT
1
interrupt enable bit Serial I/O1 receive interrupt enable bit Serial I/O1 transmit interrupt enable bit Timer X interrupt enable bit Timer Y interrupt enable bit Timer 1 interrupt enable bit Timer 2 interrupt enable bit
Fig. 7 Structure of interrupt-related registers
b7 b0
16
)
Interrupt control register 2 (ICON2 : address 003F16)
CNTR0 interrupt enable bit CNTR
1
interrupt enable bit Serial I/O2 interrupt enable bit INT
2
interrupt enable bit
INT
3
interrupt enable bit
INT
4
interrupt enable bit AD converter interrupt enable bit Not used (returns “0” when read) (Do not write “1” to this bit)
0 : Interrupts disabled 1 : Interrupts enabled
15
Page 16
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Timers

The 3802 group has four timers: timer X, timer Y, timer 1, and timer
2. All timers are count down. When the timer reaches “00 derflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit corresponding to that timer is set to “1”. The division ratio of each timer or prescaler is given by 1/(n + 1), where n is the value in the corresponding timer or prescaler latch.
b7
b0
Timer XY mode register (TM : address 002316)
Timer X operating mode bit
b1b0
0 0: Timer mode 0 1: Pulse output mode 1 0: Event counter mode 1 1: Pulse width measurement mode
CNTR0 active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
Timer X count stop bit
0: Count start 1: Count stop
Timer Y operating mode bit
b4b5
0 0: Timer mode 0 1: Pulse output mode 1 0: Event counter mode 1 1: Pulse width measurement mode
CNTR1 active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event counter mode
1: Interrupt at rising edge
Count at falling edge in event counter mode
Timer Y count stop bit
0: Count start 1: Count stop
16”, an un-

Timer 1 and Timer 2

The count source of prescaler 12 is the oscillation frequency di­vided by 16. The output of prescaler 12 is counted by timer 1 and timer 2, and a timer underflow sets the interrupt request bit.

Timer X and Timer Y

Timer X and Timer Y can each be selected in one of four operating modes by setting the timer XY mode register.

Timer Mode

The timer counts f(X

Pulse Output Mode

Timer X (or timer Y) counts f(X the timer reach “00 CNTR
1) pin is inverted. If the CNTR0 (or CNTR1) active edge
switch bit is “0”, output begins at “ H”. If it is “1”, output starts at “L”. When using a timer in this mode, set the corresponding port P5 put mode.

Event Counter Mode

Operation in event counter mode is the same as in timer mode, except the timer counts signals input through the CNTR CNTR
1 pin.

Pulse Width Measurement Mode

If the CNTR counts at the oscillation frequency divided by 16 while the CNTR (or CNTR1) pin is at “H”. If the CNTR0 (or CNTR1) active edge switch bit is “1”, the count continues during the time that the CNTR
0 (or CNTR1) pin is at “L”.
In all of these modes, the count can be stopped by setting the timer X (timer Y) count stop bit to “1”. Every time a timer underflows, the corresponding interrupt request bit is set.
IN)/16 in timer mode.
IN)/16. Whenever the contents of
16”, the signal output from the CNTR0 (or
4 ( or port P55) direction register to out-
0 or
0 (or CNTR1) active edge selection bit is “0”, the timer
0
Fig. 8 Structure of timer XY register
16
Page 17
Oscillator Divider
f(X
P54/CNTR0 pin
Port P5
direction register
IN
) 1/16
CNTR edge switch bit
“0” “1”
4
Pulse output mode
0
active
Port P5 latch
Pulse width measurement mode
Event counter mode
0
CNTR edge switch bit
4
active
Timer mode Pulse output mode
Timer X count stop bit
Q
“1”
“0”
Toggle flip- flop T
Q
Data bus
Prescaler X latch (8)
Prescaler X (8)
R
Data bus
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Timer X latch (8)
Timer X (8)
Timer X latch write pulse Pulse output mode
To timer X interrupt request bit
0
To CNTR
interrupt
request bit
P55/CNTR1 pin
Port P5
direction register
CNTR1 active edge switch bit
“0” “1”
5
Pulse output mode
Port P5 latch
Pulse width measurement mode
Event counter mode
1
CNTR edge switch bit
5
active
Timer mode Pulse output mode
Timer Y count stop bit
Q
“1”
“0”
Prescaler
12 latch (8)
Toggle flip- flop T
Q
Prescaler Y latch (8)
Prescaler Y (8)
R
Data bus
Timer Y latch (8)
Timer Y (8)
Timer Y latch write pulse Pulse output mode
Timer 2 latch (8) Timer 1 latch (8)
To timer Y interrupt request bit
To CNTR
1
request bit
interrupt
Prescaler 12 (8)
Fig. 9 Block diagram of timer X, timer Y, timer 1, and timer 2
Timer 2 (8)Timer 1 (8)
To timer 2 interrupt request bit
To timer 1 interrupt request bit
17
Page 18
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Serial I/O1

Serial I/O1 can be used as either clock synchronous or asynchro­nous (UART) serial I/O. A dedicated timer is also provided for baud rate generation.
Data bus
Address 0018
Shift clock
Serial I/O1 synchronous clock selection bit Frequency division ratio 1/(n+1)
Transmit shift register
Transmit buffer
Data bus
P44/RXD
P46/SCLK1
f(XIN)
XIN
7/SRDY1
P4
5/TXD
P4
Receive shift register
BRG count source selection bit
1/4
F/F
Falling-edge detector
Receive buffer

Clock synchronous serial I/O mode

Clock synchronous serial I/O1 mode can be selected by setting the mode selection bit of the serial I/O1 control register to “1”. For clock synchronous serial I/O1, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB (address 0018
16
Clock control circuit
Baud rate generator
Address 001C
16
Clock control circuit
Shift clock
Address 0018
16
Serial I/O1 control register
Receive buffer full flag (RBF)
Receive interrupt request (RI)
1/4
Transmit interrupt source selection bit
Transmit buffer empty flag (TBE)
Serial I/O1 status register
Address 001A
Transmit shift completion flag (TSC)
Transmit interrupt request (TI)
Address 0019
16).
16
16
Fig. 10 Block diagram of clock synchronous serial I/O1
Transfer shift clock (1/2 to 1/2048 of the internal clock, or an external clock)
Serial output TxD
Serial input RxD
Receive enable signal S
Write pulse to receive/transmit buffer (address 0018
Notes
1 : The transmit interrupt (TI) can be selected to occur either when the transmit buffer has emptied (TBE=1) or after the
transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1
control register.
2 : If data is written to the transmit buffer when TSC=0, the transmit clock is generated continuously and serial data is 3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .
RDY1
16
)
output continuously from the TxD pin.
TBE = 0
TBE = 1 TSC = 0
D
0
D
D
0
D
Fig. 11 Operation of clock synchronous serial I/O1 function
D
1
D
2
1
D
2
D
3
D
4
D
5
D
6
D
3
D
4
D
5
D
6
7
D
7
RBF = 1 TSC = 1
Overrun error (OE) detection
18
Page 19
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Asynchronous serial I/O (UART) mode

Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O mode selection bit of the serial I/O control register to “0”. Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical. The transmit and receive shift registers each have a buffer, but the
Data bus
P4
P4
4/RXD
6/SCLK1
P4
f(XIN)
5/TXD
Address 0018
OE
Character length selection bit
STdetector
BRG count source selection bit
1/4
7 bits 8 bits
Serial I/O1 synchronous clock selection bit
Character length selection bit
16
Receive buffer
Receive shift register
PE FE
SP detector
Frequency division ratio 1/(n+1)
Baud rate generator
Address 001C16
ST/SP/PA generator
Transmit shift register
Transmit buffer
Data bus
two buffers have the same address in memory. Since the shift reg­ister cannot be written to or read from directly, transmit data is written to the transmit buffer, and receive data is read from the re­ceive buffer. The transmit buffer can also hold the next data to be transmitted, and the receive buffer can hold a character while the next charac­ter is being received.
Serial I/O1 control register
Receive buffer full flag (RBF) Receive interrupt request (RI)
Clock control circuit
1/16
Transmit interrupt source selection bit
Address
001816
Serial I/O1 status register
Address 001A
1/16
16
UART control register
Address 001B
Transmit shift completion flag (TSC)
Transmit interrupt request (TI)
Transmit buffer empty flag (TBE)
Address
16
001916
Fig. 12 Block diagram of UART serial I/O
19
Page 20
Transmit or receive clock
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Transmit buffer write
Receive buffer read
signal
TBE=0 TBE=0
TSC=0 TBE=1
Serial output TXD
signal
X
Serial input R
Notes
D
1: Error flag detection occurs at the same time that the RBF flag becomes "1" (at 1st stop bit, during reception). 2: The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes "1", depending on the setting of the transmit interrupt
source selection bit (TIC) of the serial I/O control register.
3: The receive interrupt (RI) is set when the RBF flag becomes "1". 4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.
ST SP
D
0
D
1
1 start bit 7 or 8 data bit 1 or 0 parity bit 1 or 2 stop bit (s)
ST
D
0
D
1
Fig. 13 Operation of UART serial I/O function
Serial I/O1 control register (SIO1CON) 001A16
The serial I/O control register consists of eight control bits for the serial I/O function.
UART control register (UARTCON) 001B16
The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer. One bit in this register (bit 4) is always valid and sets the output structure of the P4
5/TXD pin.
Serial I/O1 status register (SIO1STS) 001916
The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors. Three of the flags (bits 4 to 6) are valid only in UART mode. The receive buffer full flag (bit 1) is cleared to “0” when the receive buffer is read. If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer, and the receive buffer full flag is set. A write to the serial I/O status reg­ister clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, re-
TBE=1
ST
SP
RBF=1
ST
SP D
D
0
D
1
Generated at 2nd bit in 2-stop-bit mode
RBF=0
D
1
0
TSC=1
RBF=1
SP
spectively). Writing “0” to the serial I/O enable bit SIOE (bit 7 of the Serial I/O Control Register) also clears all the status flags, in­cluding the error flags. All bits of the serial I/O1 status register are initialized to “0” at re­set, but if the transmit enable bit (bit 4) of the serial I/O control reg­ister has been set to “1”, the transmit shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become “1”.
Transmit buffer/Receive buffer register (TB/ RB) 0018
The transmit buffer and the receive buffer are located at the same
address. The transmit buffer is write-only and the receive buffer is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer is “0”.
16
Baud rate generator (BRG) 001C16
The baud rate generator determines the baud rate for serial trans­fer. The baud rate generator divides the frequency of the count source by 1/(n + 1), where n is the value written to the baud rate genera­tor.
20
Page 21
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
Serial I/O1 status register (SIO1STS : address 0019
16
)
b7
Transmit buffer empty flag (TBE) 0: Buffer full 1: Buffer empty
Receive buffer full flag (RBF) 0: Buffer empty 1: Buffer full
Transmit shift completion flag (TSC) 0: Transmit shift in progress 1: Transmit shift completed
Overrun error flag (OE) 0: No error 1: Overrun error
Parity error flag (PE) 0: No error 1: Parity error
Framing error flag (FE) 0: No error 1: Framing error
Summing error flag (SE) 0: (OE) U (PE) U (FE)=0 1: (OE) U (PE) U (FE)=1
Not used (returns "1" when read)
b0
Serial I/O1 control register (SIO1CON : address 001A16)
BRG count source selection bit (CSS) 0: f(X
IN
)
1: f(X
IN
)/4
Serial I/O1 synchronous clock selection bit (SCS) 0: BRG output divided by 4 when clock synchronous serial I/O is selected, BRG output divided by 16 when UART is selected. 1: External clock input when clock synchronous serial I/O is selected, external clock input divided by 16 when UART is selected.
S
RDY1
output enable bit (SRDY)
0: P4
7
pin operates as ordinaly I/O pin
1: P4
7
pin operates as S
RDY1
output pin
Transmit interrupt source selection bit (TIC) 0: Interrupt when transmit buffer has emptied 1: Interrupt when transmit shift operation is completed
Transmit enable bit (TE) 0: Transmit disabled 1: Transmit enabled
Receive enable bit (RE) 0: Receive disabled 1: Receive enabled
Serial I/O1 mode selection bit (SIOM) 0: Asynchronous serial I/O (UART) 1: Clock synchronous serial I/O
b7
b0
UART control register (UARTCON : address 001B
Character length selection bit (CHAS) 0: 8 bits 1: 7 bits
16
)
Serial I/O enable bit (SIOE) 0: Serial I/O disabled (pins P4
4
to P47 operate as ordinary I/O pins)
1: Serial I/O enabled (pins P4
4
to P47 operate as serial I/O pins)
Parity enable bit (PARE) 0: Parity checking disabled 1: Parity checking enabled
Parity selection bit (PARS) 0: Even parity 1: Odd parity
Stop bit length selection bit (STPS) 0: 1 stop bit 1: 2 stop bits
P4
5/TX
D P-channel output disable bit (POFF) 0: CMOS output (in output mode) 1: N-channel open drain output (in output mode)
Not used (return "1" when read)
Fig. 14 Structure of serial I/O control registers
21
Page 22

Serial I/O2

Serial I/O2 control register (SIO2CON : address 001D
16
)
b7
Internal synchronous clock selection bits 0 0 0: f(XIN)/8
0 0 1: f(X
IN
)/16
0 1 0: f(X
IN
)/32
0 1 1: f(X
IN
)/64
1 1 0: f(X
IN
)/128
1 1 1: f(X
IN
)/256
Serial I/O2 port selection bit (SM2
3
) 0: I/O port 1: S
OUT2,SCLK2
output pin
S
RDY2
output enable bit (SM24) 0: I/O port 1: S
RDY2
output pin
Transfer direction selection bit (SM2
5
) 0: LSB first 1: MSB first
Serial I/O2 synchronous clock selection bit (SM2
6
) 0: External clock 1: Internal clock
P5
1/SOUT2
P-channel output disable bit 0: CMOS output (in output mode) 1: N-channel open-drain output (in output mode)
b0
b2 b1 b0
The serial I/O2 function can be used only for clock synchronous serial I/O. For clock synchronous serial I/O the transmitter and the receiver must use the same clock. If the internal clock is used, transfer is started by a write signal to the serial I/O2 register.
Serial I/O2 control register (SIO2CON) 001D16
The serial I/O2 control register contains seven bits which control various serial I/O functions.
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Fig. 15 Structure of serial I/O2 control register
1/8 1/16
X
IN
P53 latch
S
RDY2
P52 latch
P5
"0"
"1"
"0"
"0"
"1"
output enable bit
1
latch
"1"
P53/S
RDY2
P52/S
CLK2
Serial I/O2 port selection bit
Fig. 16 Block diagram of serial I/O2 function
P51/S
P50/S
OUT2
Serial I/O2 port selection bit
IN2
Serial I/O2 synchronous
S
RDY2
clock selection bit
Synchronization circuit
CLK2
S
External clock
1/32 1/64
Divider
1/128 1/256
"1"
"0"
Serial I/O counter 2 (3)
Serial I/O shift register 2 (8)
Internal synchronous clock selection bits
Data bus
Serial I/O2 interrupt request
22
Page 23
Transfer clock (Note 1)
Serial I/O2 register
write signal
Serial I/O2 output S
Serial I/O2 input SIN2
Receive enable signal SRDY2
Notes
OUT2
1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial
I/O2 control register.
2: When the internal clock is selected as the transfer clock, the S
D2
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(Note 2)
D3 D4 D5 D6
Serial I/O2 interrupt request bit set
OUT2 pin goes to high impedance after transfer completion.
D7D0 D1
Fig. 17 Timing of serial I/O2 function
23
Page 24
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PULSE WIDTH MODULATION (PWM)

The 3802 group has a PWM function with an 8-bit resolution, based on a signal that is the clock input X vided by 2.
IN or that clock input di-

Data Setting

The PWM output pin also functions as port P56. Set the PWM pe­riod by the PWM prescaler, and set the period during which the output pulse is an “H” by the PWM register. If the value in the PWM prescaler is n and the value in the PWM register is m (where n = 0 to 255 and m = 0 to 255) : PWM period = 255 (n+1)/f(X
= 51 (n+1) µs (when X
Output pulse “H” period = PWM period m/255
IN)
IN = 5 MHz)
= 0.2 (n+1) m µs
(when X
IN = 5 MHz)

PWM Operation

When bit 0 (PWM enable bit) of the PWM control register is set to “1”, operation starts by initializing the PWM output circuit, and pulses are output starting at an “H”. If the PWM register or PWM prescaler is updated during PWM output, the pulses will change in the cycle after the one in which the change was made.
51 m (n+1)
255
PWM output
T = [51 (n+1)] µs
m: Contents of PWM register n : Contents of PWM prescaler T : PWM cycle (when X
Fig. 18 Timing of PWM cycle
IN
= 5 MHz)
µs
Data bus
prescaler pre-latch
Count source selection bit
1/2
“0”
“1”
XIN
Fig. 19 Block diagram of PWM function
PWM
Transfer control circuit
PWM
prescaler latch
PWM prescaler
PWM
register pre-latch
PWM
register latch
PWM register
Port P56 latch
PWM enable bit
Port P5
6
24
Page 25
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
PWM control register (PWMCON : address 002B
PWM function enable bit
0: PWM disabled 1: PWM enabled
Count source selection bit
IN
)
0: f(X 1: f(X
IN
)/2
Not used (return “0” when read)
Fig. 20 Structure of PWM control register
PWM output
PWM register write signal
16
)
C
B
=
T2
ABC
T
(Changes from “A” to “B” during “H” period)
T
T
T2
PWM prescaler write signal
When the contents of the PWM register or PWM prescaler have changed, the PWM output will change from the next period after the change.
(Changes from “T” to “T2” during PWM period)
Fig. 21 PWM output timing when PWM register or PWM prescaler is changed
25
Page 26
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

A-D Converter

The functional blocks of the A-D converter are described below.
[A-D conversion register]
The A-D conversion register is a read-only register that stores the result of an A-D conversion. When reading this register during an A-D conversion, the previous conversion result is read.
[AD/DA control register]
The AD/DA control register controls the A-D conversion process. Bits 0 to 2 select a specific analog input pin. Bit 3 signals the completion of an A-D conversion. The value of this bit remains at “0” during an A-D conversion, and changes to “1” when an A-D conversion ends. Writing “0” to this bit starts the A-D conversion. Bits 6 and 7 are used to control the output of the D-A converter.
[Comparison voltage generator]
The comparison voltage generator divides the voltage between AV
SS and VREF into 256, and outputs the divided voltages.
[Channel selector]
The channel selector selects one of the ports P60/AN0 to P67/AN7, and inputs the voltage to the comparator.
[Comparator and Control circuit]
The comparator and control circuit compares an analog input volt­age with the comparison voltage, then stores the result in the A-D conversion register. When an A-D conversion is complete, the control circuit sets the AD conversion completion bit and the AD interrupt request bit to “1”. Note that the comparator is constructed linked to a capacitor, so set f(X
IN) to 500 kHz or more during an A-D conversion.
b7
b0
AD/DA control register (ADCON : address 0034
Analog input pin selection bits
b2 b1 b0
0 0 0: P6 0 0 1: P61/AN1 0 1 0: P62/AN2 0 1 1: P63/AN3 1 0 0: P64/AN4 1 0 1: P65/AN5 1 1 0: P66/AN6 1 1 1: P67/AN7
AD conversion completion bit 0: Conversion in progress 1: Conversion completed
Not used (return "0" When read) DA
0: DA 1: DA
DA 0: DA 1: DA
0/AN0
1 output enable bit
1 output disabled 1 output enabled
2 output enable bit
2 output disabled 2 output enabled
16)
AD/DA control register
(Address 0034
P60/AN P61/AN P62/AN P63/AN P64/AN P65/AN P66/AN P67/AN
16
0 1 2 3 4 5 6 7
Fig. 23 Block diagram of A-D converter
b7 b0
)
3
Comparator
Channel selector
Fig.22 Structure of AD/DA control register
Data bus
A-D control circuit
A-D conversion register
Resistor ladder
REF
V
8
AV
SS
A-D interrupt request
(Address 0035
16
)
26
Page 27

D-A Converter

The 3802 group has two internal D-A converters (DA1 and DA2) with 8-bit resolutions. The D-A converter is performed by setting the value in the D-A conversion register. The result of D-A converter is output from the DA
1 or DA2 pin by setting the DA output enable bit to “1”.
When using the D-A converter, the corresponding port direction register bit (P3 tus). The output analog voltage V is determined by the value n (base
10) in the D-A conversion register as follows:
V = V
REF n/256 (n = 0 to 255)
Where V
At reset, the D-A conversion registers are cleared to “0016”, the DA output enable bits are cleared to “0”, and the P3 DA
2 pins are set to input (high impedance).
The D-A output is not buffered, so connect an external buffer when driving a low-impedance load. Set V
CC to 3.0 V or more when using the D-A converter.
0/DA1 or P31/DA2) should be set to “0” (input sta-
REF is the reference voltage.
0/DA1 and P31/
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
D-A1 conversion register (8)
DA
1
output enable bit
R-2R resistor ladder
Data bus
D-A2 conversion register (8)
DA
R-2R resistor ladder
2
P30/DA
1
output enable bit
P3
1
/DA
2
1
output enable bit
DA
"0"
P30/DA1
D-A1 conversion register
AV
SS
V
REF
Fig. 25 Equivalent connection circuit of D-A converter
"1"
MSB
"0"
2R
"1"
R
2R
Fig. 24 Block diagram of D-A converter
R
2R
R
2R
R
R
2R
R
2R
R
2R 2R
LSB
2R
27
Page 28

Reset Circuit

To reset the microcomputer, the RESET pin should be held at an “L” level for 2 µs or more. Then the RESET pin is returned to an “H” level (the power source voltage should be between 4.0 V and 5.5 V), reset is released. Internal operation begin until after 8 to 13 X clock cycles are completed. After the reset is completed, the pro­gram starts from the address contained in address FFFD order byte) and address FFFC
16 (low-order byte).
Make sure that the reset input voltage is less than 0.6 V for V
3.0 V (Extended operating temperature version : the reset input voltage is less than 0.8 V for V
CC of 4.0 V).
4.0V
Power source
voltage
Reset input
voltage
0V
0V
1
M51953AL
3
5
4
0.1 µ F
0.8V
V
CC
RESET
SS
V
3802 group
Fig. 26 Example of reset circuit
16 (high-
CC of
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Address
(1)
Port P0 direction register
(2)
IN
Port P1 direction register
(3)
Port P2 direction register
(4)
Port P3 direction register
(5)
Port P4 direction register
(6)
Port P5 direction register
(7)
Port P6 direction register Serial I/O1 status register
(8) (9)
Serial I/O1 control register
(10)
UART control register
(11)
Serial I/O2 control register
(12)
Prescaler 12
(13)
Timer 1 Timer 2
(14) (15)
Timer XY mode register
(16)
Prescaler X
(17)
Timer X
(18)
Prescaler Y
(19)
Timer Y
(20)
PWM control register
(21)
AD/DA control register
(22)
D-A1 conversion register D-A2 conversion register
(23) (24)
Interrupt edge selection register
(25)
CPU mode register Interrupt request register 1
(26)
Interrupt request register 2
(27)
Interrupt control register 1
(28) (29)
Interrupt control register 2
(30)
Processor status register Program counter
(31)
(000116) · · · (0003
(0005 (0007 (0009 (000B
(000D (0019
(001A (001B
(001D (0020 (0021 (0022
(0023 (0024
(0025 (0026
(0027 (002B (0034 (0036
(0037 (003A
(003B (003C (003D (003E (003F16) · · ·
Register contents
16) · · ·
16) · · ·
16) · · ·
16) · · ·
16) · · ·
16) · · ·
16) · · ·
100000 00
16) · · ·
16) · · ·
111000 00
16) · · ·
16) · · ·
16) · · ·
16) · · ·
16) · · ·
16) · · ·
16) · · ·
16) · · ·
16) · · ·
16) · · ·
16) · · ·
000010 00
16) · · ·
16) · · ·
16) · · ·
000000 0
16) · · ·
16) · · ·
16) · · ·
16) · · ·
✕✕✕✕✕1✕
(PS)
Contents of address FFFD16
H)
(PC
Contents of address FFFC16
(PC
L)
0016 0016 0016 0016 0016 00 0016
0016
0016 FF16
0116 FF16 0016 FF16 FF16 FF16 FF16 0016
0016 0016 0016
0016 0016 0016 0016
16
28
Note. : Undefined : The initial values of CM
CNV
SS pin.
The contents of all other registers and RAM are undefined after a reset, so they must be initialized by software.
1 are determined by the level at the
Fig. 27 Internal status of microcomputer after reset
Page 29
X
RESET
RESET
OUT
(internal reset)
SYNC
Address
Data
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
IN
φ
ADH, AD
?
XIN: 8 to 13 clock cycles
?
?
?
?
Notes
??
??
1: f(XIN) and f(φ) are in the relationship: f(XIN)=2 • f(φ). 2: A question mark (?) indicates an undefined status that depends on the previous status.
?
FFFC FFFD
?
?
AD
AD
L
L
Reset address from the vector table
H
Fig. 28 Timing of reset
29
Page 30
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Clock Generating Circuit

An oscillation circuit can be formed by connecting a resonator be­tween X
IN and XOUT. To supply a clock signal externally, input it to
the X
IN pin and make the XOUT pin open.

Oscillation control

Stop Mode

If the STP instruction is executed, the internal clock φ stops at an “H”. Timer 1 is set to “01 Oscillator restarts when an external interrupt is received, but the internal clock φ remains at an “H” until timer 1 underflow. This allows time for the clock circuit oscillation to stabilize. If oscillator is restarted by a reset, no wait time is generated, so keep the RESET pin at an “L” level until oscillation has stabilized.

Wait Mode

If the WIT instruction is executed, the internal clock φ stops at an “H” level, but the oscillator itself does not stop. The internal clock restarts if a reset occurs or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted. To ensure that interrupts will be received to release the STP or WIT state, interrupt enable bits must be set to “1” before the STP or WIT instruction is executed.
16” and prescaler 12 is set to “FF16”.
When the STP status is released, prescaler 12 and timer 1 will start counting and reset will not be released until timer 1 underflows, so set the timer 1 interrupt enable bit to “0” before the STP instruction is executed.
XIN XOUT
CIN
COUT
Fig. 29 Ceramic resonator circuit
Interrupt request
Interrupt disable flag (I)
Reset
Single-chip mode
X
IN
STP instruction
ONW pin
Rf
X
OUT
SQ
R
1/2
Rd
XIN XOUT
External oscillation circuit
Fig. 30 External clock input circuit
S
Q
WIT instruction
ONW control
1/8
R
Prescaler 12
FF
16
01
Q
Timer 1
16
Vcc Vss
S
STP instruction
R
Internal clock φ
Open
Reset
φ output
Reset or STP instruction
Fig. 31 Block diagram of clock generating circuit
30
Page 31

Processor Modes

Single-chip mode, memory expansion mode, and microprocessor mode can be selected by changing the contents of the processor mode bits CM memory expansion mode and microprocessor mode, memory can be expanded externally through ports P0 to P3. In these modes, ports P0 to P3 lose their I/O port functions and become bus pins.
Table 2. Functions of ports in memory expansion mode and
Port Name Port P0 Port P1
Port P2
Port P3
Note: If CNVSS is connected to VSS, the microcomputer goes to

Single-Chip Mode

Select this mode by resetting the microcomputer with CNV nected to V

Memory Expansion Mode

Select this mode by setting the processor mode bits to “01” in soft­ware with CNV memory expansion while maintaining the validity of the internal ROM. Internal ROM will take precedence over external memory if addresses conflict.
0 and CM1 (bits 0 and 1 of address 003B16). In

microprocessor mode

Function Outputs low-order byte of address. Outputs high-order byte of address. Operates as I/O pins for data D7 to D0 (including instruction codes). P30 and P31 function only as output pins (except that the port latch cannot be read). P32 is the ONW input pin. P33 is the RESETOUT output pin. (Note) P34 is the φ output pin. P35 is the SYNC output pin. P36 is the WR output pin, and P37 is the RD output pin.
single-chip mode after a reset, so this pin cannot be used as the RESETOUT output pin.
SS con-
SS.
SS connected to VSS. This mode enables external
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
000016 0008
16
SFR area
16
0040
Internal RAM reserved area
0440
16
16
YYYY FFFF
Fig. 32 Memory maps in various processor modes
Fig. 33 Structure of CPU mode register
Internal ROM
16
Memory expansion mode
The shaded areas are external memory areas.
:
YYYY16 is the start address of internal ROM.
b7
b0
CPU mode register (CPUM : address 003B
000016
16
0008 0040
0440
FFFF
Processor mode bits
b1 b0
0 0 : Single-chip mode 0 1 : Memory expansion mode 1 0 : Microprocessor mode 1 1 : Not available
Stack page selection bit 0 : 0 page 1 : 1 page
Not used (return “0” when read)
SFR area
16
Internal RAM reserved area
16
16
Microprocessor mode
16
)
Microprocessor Mode
Select this mode by resetting the microcomputer with CNV nected to V software with CNV the internal ROM is no longer valid and external memory must be used.
CC, or by setting the processor mode bits to “10” in
SS connected to VSS. In microprocessor mode,
SS con-
31
Page 32

Bus control with memory expansion

The 3802 group has a built-in ONW function to facilitate access to external memory and I/O devices in memory expansion mode or microprocessor mode. If an “L” level signal is input to the ONW pin when the CPU is in a read or write state, the corresponding read or write cycle is ex­tended by one cycle of φ. During this extended period, the RD or WR signal remains at “L”. This extension period is valid only for writing to and reading from addresses 0000 0440
16 to FFFF16 in microprocessor mode, 044016 to YYYY16 in
memory expansion mode, and only read and write cycles are ex­tended.
16 to 000716 and
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
φ
AD15 to AD
0
RD
WR
ONW
:
Period during which ONW input signal is received During this period, the ONW signal must be fixed at either “H” or “L”. At all other times, the input level of the ONW signal has no affect on operations. The bus cycles is not extended for an address in the area 000816 to 043F is received.
Fig. 34 ONW function timing
Read cycle Write cycle
Dummy cycle
Write cycle
Read cycle Dummy cycle
✽✽
16,
regardless of whether the ONW signal
32
Page 33
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
NOTES ON PROGRAMMING Processor Status Register
The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is “1”. Af­ter a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immedi­ately after they have been written. After writing to an interrupt re­quest register, execute at least one instruction before executing a BBC or BBS instruction.

Decimal Calculations

To calculate in decimal notation, set the decimal mode flag (D) to “1”, then execute an ADC or SBC instruction. Only the ADC and SBC instructions yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid. The carry flag can be used to indicate whether a carry or borrow has occurred. Initialize the carry flag before each calculation. Clear the carry flag before an ADC and set the flag before an SBC.

Timers

If a value n (between 0 and 255) is written to a timer latch, the fre­quency division ratio is 1/(n + 1).

Multiplication and Division Instructions

The index X mode (T) and the decimal mode (D) flags do not af­fect the MUL and DIV instruction. The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. The following cannot be used:
• The data transfer instruction (LDA, etc.)
• The operation instruction when the index X mode flag (T) is “1”
• The addressing mode which uses the value of a direction regis­ter as an index
• The bit-test instruction (BBC or BBS, etc.) to a direction register
• The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a direction register
Use instructions such as LDM and STA, etc., to set the port direc­tion registers.

Serial I/O

In clock synchronous serial I/O, if the receive side is using an ex­ternal clock and it is to output the S enable bit, the receive enable bit, and the S to “1”. Serial I/O1 continues to output the final bit from the T transmission is completed. The S high impedance after transmission is completed.
RDY1 signal, set the transmit
RDY1 output enable bit
XD pin after
OUT2 pin from serial I/O2 goes to

A-D Converter

The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low. Make sure that f(X sion. (If the ONW pin has been set to “L”, the A-D conversion will take twice as long to match the longer bus cycle, and so f(X must be at least 1 MHz.) Do not execute the STP or WIT instruction during an A-D conver­sion.
IN) is at least 500 kHz during an A-D conver-
IN)

D-A Converter

The accuracy of the D-A converter becomes poor rapidly under the V
CC = 3.0 V or less condition.

Instruction Execution Time

The instruction execution time is obtained by multiplying the fre­quency of the internal clock φ by the number of cycles needed to execute an instruction. The number of cycles required to execute an instruction is shown in the list of machine instructions. The frequency of the internal clock φ is half of the X When the ONW function is used in modes other than single-chip mode, the frequency of the internal clock φ may be one fourth the X
IN frequency.
IN frequency.

Memory Expansion Mode

The memory expansion mode is not available in the following mi­crocomputers.
• M38024M6-XXXSP
• M38024M6-XXXFP
Memory Expansion Mode and Microproces­sor Mode
Execute the LDM or STA instruction for writing to port P3 (address 0006
16) in memory expansion mode and microprocessor mode.
Set areas which can be read out and write to port P3 (address 0006
16) in a memory, using the read-modify-write instruction
(SEB, CLB).
33
Page 34
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM produc­tion:
1. Mask ROM Order Confirmation Form
2. Mark Specification Form
3. Data to be written to ROM, in EPROM form (three identical copies)

ROM PROGRAMMING METHOD

The built-in PROM of the blank One Time PROM version and built­in EPROM version can be read or programmed with a general­purpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area.
Package
64P4B, 64S1B
64P6N
64D0
The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To en­sure proper operation after programming, the procedure shown in Figure 35 is recommended to verify programming.
Name of Programming Adapter
PCA4738S-64A PCA4738F-64A PCA4738L-64A
Programming with PROM
programmer
Screening (Caution) (150°C for 40 hours)
Verification with
PROM programmer
Functional check in
target device
Caution :
Fig. 35 Programming and testing of One Time PROM version
The screening temperature is far higher than the storage temperature. Never expose to 150 °C exceeding 100 hours.
34
Page 35

ABSOLUTE MAXIMUM RATINGS

Symbol
VCC
VI
VI VI
VO
Pd Topr Tstg
Note: 300 mW in case of the flat package.
Power source voltage Input voltage P00–P07, P10–P17, P20–P27,
Input voltage RESET, XIN Input voltage CNVSS Output voltage P00–P07, P10–P17, P20–P27,
Power dissipation Operating temperature Storage temperature
Parameter
P30–P37, P40–P47, P50–P57, P60–P67, VREF
P30–P37, P40–P47, P50–P57, P60–P67, XOUT
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Conditions Ratings
All voltages are based on VSS. Output transistors are cut off.
Ta = 25 °C
MITSUBISHI MICROCOMPUTERS
3802 Group
Unit
–0.3 to 7.0
–0.3 to V
–0.3 to V
–0.3 to 13
–0.3 to V
1000 (Note)
–20 to 85
–40 to 125
CC +0.3
CC +0.3
CC +0.3
V
V
V V
V
mW
°C °C

RECOMMENDED OPERATING CONDITIONS (Vcc = 3.0 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)

3.0
4.0
2.0
3.0
0 0
0
Limits
Typ. Max.
5.0
5.0 0
V VCC
0
VCC VCC VCC
0.2 VCC
0.2 VCC
0.16 V –80 –80
–40 –40
–10
6 VCC–16
Symbol Parameter
VCC VSS VREF AVSS
VIA VIH VIH VIL VIL
VIL
ΣIOH(peak) ΣIOH(peak) ΣIOL(peak) ΣIOL(peak) ΣIOH(avg) ΣIOH(avg) ΣIOL(avg) ΣIOL(avg)
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg)
f(XIN)
Note 1: The minimum power source voltage is [V] (f(XIN) = XMHz) on the condition of 2 MHz < f(XIN) < 8 MHz.
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-
3: The peak output current is the peak current flowing in each port. 4: The average output current I
Power source voltage (f(XIN) < 2 MHz) (Note 1) Power source voltage (f(XIN) = 8 MHz) (Note 1) Power source voltage Analog reference voltage (when A-D converter is used) Analog reference voltage (when D-A converter is used) Analog power source voltage Analog input voltage AN0–AN7 “H” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
“H” input voltage RESET, XIN, CNVSS “L” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
“L” input voltage RESET, CNVSS “L” input voltage XIN “H” total peak output current “H” total peak output current P40–P47,P50–P57, P60–P67 (Note 2) “L” total peak output current “L” total peak output current P40–P47,P50–P57, P60–P67 (Note 2) “H” total average output current “H” total average output current P40–P47,P50–P57, P60–P67 (Note 2) “L” total average output current “L” total average output current P40–P47,P50–P57, P60–P67 (Note 2) “H” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
“L” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
“H” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
“L” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V) Internal clock oscillation frequency (VCC = 3.0 to 4.0 V)
age value measured over 100 ms. The total peak current is the peak value of all the currents.
OL(avg), IOH(avg) in an average value measured over 100 ms.
P50–P57, P60–P67
P50–P57, P60–P67
P00–P07, P10–P17, P20–P27, P30–P37 (Note 2)
P00–P07, P10–P17, P20–P27, P30–P37 (Note 2)
P00–P07, P10–P17, P20–P27, P30–P37 (Note 2)
P00–P07, P10–P17, P20–P27, P30–P37 (Note 2)
P50–P57, P60–P67 (Note 3)
P50–P57, P60–P67 (Note 3)
P50–P57, P60–P67 (Note 4)
P50–P57, P60–P67 (Note 4)
X+16
6
Min.
AVSS
0.8 VCC
0.8 VCC
5.5
5.5
CC
80 80
40 40
10
–5
Unit
V V V V
V V
V V V
CC
V mA mA mA mA mA mA mA mA
mA
mA
mA
5
mA
8
MHz
35
Page 36
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)

Symbol Parameter
“H” output voltage P00–P07, P10–P17, P20–P27,
VOH
P30–P37, P40–P47, P50–P57, P60–P67 (Note 1)
“L” output voltage P00–P07, P10–P17, P20–P27,
VOL
P30–P37, P40–P47,P50–P57, P60–P6
IOH = –10 mA VCC = 4.0 to 5.5 V
IOH = –1.0 mA VCC = 3.0 to 5.5 V
IOL = 10 mA VCC = 4.0 to 5.5 V
7
IOL = 1.0 mA
Test conditions
Min.
VCC–2.0
VCC–1.0
VCC = 3.0 to 5.5 V
VT+ – VT– VT+ – VT– VT+ – VT–
Hysteresis CNTR0, CNTR1, INT0–INT Hysteresis RXD, S
CLK1
, S
IN2
, S
Hysteresis RESET
4
CLK2
“H” input current P00–P07, P10–P17, P20–P27,
IIH
IIH IIH
“H” input current RESET, CNV “H” input current X
P30–P37, P40–P47, P50–P57, P60–P6
7
SS
IN
VI = VCC
VI = VCC VI = VCC
“L” input current P00–P07, P10–P17, P20–P27,
IIL
IIL IIL VRAM
“L” input current RESET, CNV “L” input current X RAM hold voltage
P30–P37, P40–P47, P50–P57, P60–P67, RESET, CNV
SS
IN
SS
VI = VSS
VI = VSS VI = VSS When clock stopped f(XIN) = 8 MHz, VCC = 5 V f(XIN) = 5 MHz, VCC = 5 V f(XIN) = 2 MHz, VCC = 3 V
When WIT instruction is executed with
ICC
Power source current
f(Xin) = 8MHz,V When WIT instruction is executed with
f(Xin) = 5MHz,V
CC=5V
CC=5V
When WIT instruction is executed with
Note 1: P4
f(Xin) = 2MHz,V
When STP instruction is executed with clock stopped, output transistors isolated.
5 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
CC=3V
Ta = 25 °C (Note 2)
Ta = 85 °C (Note 2)
P51 is measured when the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through VREF pin.
Limits
Typ. Max.
0.4
0.5
0.5
4
–4
2.0
6.4 4
0.8
1.5
1
0.2
0.1
2.0
1.0
5.0
5.0
–5.0
–5.0
5.5 13
2.0
10
Unit
V
V
V V V
µA
µA µA
µA
µA µA
V
8
mA
1
µA
A–D CONVERTER CHARACTERISTICS
(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
Symbol Parameter Unit
Resolution
Absolute accuracy (excluding quantization error)
— tCONV RLADDER IVREF II(AD)
Note: When D-A conversion registers (addresses 0036
Conversion time Ladder resistor Reference power source input current (Note) A-D port input current
16 and 003716) contain “0016”.
Test conditions
VREF = 5.0 V 50
Min.
36
Limits Typ. Max.
±1
±2.5
35
150
0.5
200
5.0
8
50
Bits
LSB
C(φ)
t
k
µA µA
Page 37
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

D-A CONVERTER CHARACTERISTICS

(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
Symbol Parameter
su
t RO IVREF
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “00
rents flowing through the A-D resistance ladder.
Resolution Absolute accuracy Setting time
Output resistor Reference power source input current (Note)
VCC = 4.0 to 5.5 V VCC = 3.0 to 4.0 V
Test conditions
Min.
Limits
1
Typ. Max.
1.0
2.5
2.5
3.2
16”, and excluding cur-
Unit
8
Bits
%
3
µs
4
k mA
37
Page 38
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)

125
50 50
200
80 80 80 80
800
370 400 370 400 220 200 100 200
2
Limits
Typ. Max.
Unit
µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Symbol Parameter
tw(RESET) tc(XIN) twH(XIN) twL(XIN) tc(CNTR) twH(CNTR) twH(INT) twL(CNTR) twL(INT) tc(SCLK1) tc(SCLK2) twH(SCLK1) twH(SCLK2) twL(SCLK1) twL(SCLK2) t
su(RXD–S
t
su(S
IN2–SCLK2
t
h(S
CLK1–RX
t
h(S
CLK2–SIN2
Reset input “L” pulse width External clock input cycle time External clock input “H” pulse width External clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width INT0 to INT4 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT4 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O2 clock input cycle time Serial I/O1 clock input “H” pulse width (Note) Serial I/O2 clock input “H” pulse width Serial I/O1 clock input “L” pulse width (Note) Serial I/O2 clock input “L” pulse width Serial I/O1 input set up time
CLK1
)
Serial I/O2 input set up time
)
Serial I/O1 input hold time
D)
Serial I/O2 input hold time
)
Min.
1000
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0”.

TIMING REQUIREMENTS 2 (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)

500 230 230 230 230
950 950 950 950 400 400 200 300
Limits
2
Typ. Max.
Unit
µs ns
ns
ns ns
ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Symbol Parameter
tw(RESET) tc(XIN)
twH(XIN)
twL(XIN) tc(CNTR)
twH(CNTR) twH(INT) twL(CNTR) twL(INT) tc(SCLK1) tc(SCLK2) twH(SCLK1) twH(SCLK2) twL(SCLK1) twL(SCLK2) t
su(RXD–S
t
su(S
IN2–SCLK2
t
h(S
CLK1–RX
t
h(S
CLK2–SIN2
Reset input “L” pulse width External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
0, CNTR1 input cycle time
CNTR CNTR0, CNTR1 input “H” pulse width INT0 to INT4 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT4 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O2 clock input cycle time Serial I/O1 clock input “H” pulse width (Note) Serial I/O2 clock input “H” pulse width Serial I/O1 clock input “L” pulse width (Note) Serial I/O2 clock input “L” pulse width Serial I/O1 input set up time
CLK1
)
Serial I/O2 input set up time
)
Serial I/O1 input hold time
D)
Serial I/O2 input hold time
)
Min.
500/
(3 VCC–8)
200/
(3 VCC–8)
200/
(3 VCC–8)
2000 2000
Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is “0”.
38
Page 39
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SWITCHING CHARACTERISTICS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)

Symbol Parameter
t
wH(SCLK1)
twH(SCLK2) twL(SCLK1) twL(SCLK2) t
d(S
CLK1–TX
t
d(S
CLK2–SOUT2
t
v(S
CLK1–TX
t
v(S
CLK2–SOUT2
tr(SCLK1) tf(SCLK1) tr(SCLK2) tf(SCLK2) tr(CMOS) tf(CMOS)
Serial I/O1 clock output “H” pulse width Serial I/O2 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O2 clock output “L” pulse width Serial I/O1 output delay time (Note 1)
D)
Serial I/O2 output delay time (Note 2)
)
Serial I/O1 output valid time (Note 1)
D)
Serial I/O2 output valid time (Note 2)
)
Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output rising time Serial I/O2 clock output falling time CMOS output rising time (Note 3) CMOS output falling time (Note 3)
Test conditions
Fig. 36
Min.
t
c(S
CLK1
t
c(S
CLK2
t
c(S
CLK1
t
c(S
CLK2
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: When the P5 3: X
OUT pin is excluded.
1/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
Limits
Typ. Max.
)/2–30 )/2–160 )/2–30 )/2–160
–30
0
10 10
140 200
30 30 30 40 30 30
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns

SWITCHING CHARACTERISTICS 2 (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)

Symbol Parameter
t
wH(SCLK1)
twH(SCLK2) twL(SCLK1) twL(SCLK2) t
d(S
CLK1–TX
t
d(S
CLK2–SOUT2
t
v(S
CLK1–TX
t
v(S
CLK2–SOUT2
tr(SCLK1) tf(SCLK1) tr(SCLK2) tf(SCLK2) tr(CMOS) tf(CMOS)
Note1: When the P4
2: When the P5 3: X
Serial I/O1 clock output “H” pulse width Serial I/O2 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O2 clock output “L” pulse width Serial I/O1 output delay time (Note 1)
D)
Serial I/O2 output delay time (Note 2)
)
Serial I/O1 output valid time (Note 1)
D)
Serial I/O2 output valid time (Note 2)
)
Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output rising time Serial I/O2 clock output falling time CMOS output rising time (Note 3) CMOS output falling time (Note 3)
5/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
1/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
OUT pin is excluded.
Test conditions
Fig. 36
Min.
t
c(S
CLK1
t
c(S
CLK2
t
c(S
CLK1
t
c(S
CLK2
Limits
Typ. Max.
)/2–50 )/2–240 )/2–50 )/2–240
–30
0
20 20
350 400
50 50 50 50 50 50
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns
39
Page 40
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE

(VCC = 4.0 to 5.5 V, VSS = 0 V , Ta = –20 to 85 °C, unless otherwise noted)
–20 –20
60
–20
–20
65
0
0
Limits
Typ. Max.
Unit
ns ns ns ns
ns
ns ns
ns
Symbol Parameter
tsu(ONW–φ) th(φ–ONW) tsu(DB–φ) th(φ–DB) tsu
(ONW–RD)
tsu
(ONW–WR)
th(RD–ONW) th(WR–ONW)
tsu(DB–RD) th(RD–DB)
Before φ ONW input set up time After φ ONW input hold time Before φ data bus set up time After φ data bus hold time Before RD ONW input set up time
Before WR ONW input set up time After RD ONW input hold time
After WR ONW input hold time Before RD data bus set up time After RD data bus hold time
Min.

SWITCHING CHARATERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE

(VCC = 4.0 to 5.5 V, VSS = 0 V , Ta = –20 to 85 °C, unless otherwise noted)
6
6
3
15
0
0
10
0
Limits
Typ. Max.
c(XIN)
2t
20 10 25 10 20 10 10
5
20
t
c(XIN)
–15
t
c(XIN)
–20
5
5 15
40
45
20 10 70
65
200 200
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns
ns
ns
ns
ns
ns ns
ns ns ns
Symbol Parameter
c(φ)
t twH(φ) twL(φ) td(φ–AH) tv(φ–AH) td(φ–AL) tv(φ–AL) td(φ–SYNC) tv(φ–SYNC) td(φ–WR) tv(φ–WR) td(φ–DB) tv(φ–DB)
twL(RD) twL(WR)
td(AH–RD) td(AH–WR)
td(AL–RD) td(AL–WR)
tv(RD–AH) tv(WR–AH)
tv(RD–AL) tv(WR–AL)
td(WR–DB) tv(WR–DB) t
d
(RESET–RESET
tv(φ–RESET)
φ clock cycle time φ clock “H” pulse width φ clock “L” pulse width
After φ AD15–AD8 delay time After φ AD15–AD8 valid time After φ AD7–AD0 delay time After φ AD7–AD0 valid time SYNC delay time SYNC valid time RD and WR delay time RD and WR valid time After φ data bus delay time After φ data bus valid time RD pulse width, WR pulse width RD pulse width, WR pulse width
(When one-wait is valid) After AD15–AD8 RD delay time
After AD15–AD8 WR delay time After AD7–AD0 RD delay time
After AD7–AD0 WR delay time After RD AD15–AD8 valid time
After WR AD15–AD8 valid time After RD AD7–AD0 valid time
After WR AD7–AD0 valid time After WR data bus delay time After WR data bus valid time RESETOUT output delay time (Note 1)
OUT
)
RESETOUT output valid time (Note 1)
Test conditions
Fig. 36
Min.
tc(XIN)–10 tc(XIN)–10
tc(XIN)–10
c(XIN)–10
3t
tc(XIN)–35
tc(XIN)–40
Note 1: The RESETOUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after
the RESET input goes “H”.
40
Page 41
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE

(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
tsu(ONW–φ) th(φ–ONW) tsu(DB–φ) th(φ–DB) tsu
(ONW–RD)
tsu
(ONW–WR)
th(RD–ONW) th(WR–ONW)
tsu(DB–RD) th(RD–DB)
Before φ ONW input set up time After φ ONW input hold time Before φ data bus set up time After φ data bus hold time Before RD ONW input set up time
Before WR ONW input set up time After RD ONW input hold time
After WR ONW input hold time Before RD data bus set up time After RD data bus hold time
Parameter

SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE

(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol Parameter
t
c(φ)
twH(φ) twL(φ) td(φ–AH) tv(φ–AH) td(φ–AL) tv(φ–AL) td(φ–SYNC) tv(φ–SYNC) td(φ–WR) tv(φ–WR) td(φ–DB) tv(φ–DB)
twL(RD) twL(WR)
td(AH–RD) td(AH–WR)
td(AL–RD) td(AL–WR)
tv(RD–AH) tv(WR–AH)
tv(RD–AL) tv(WR–AL)
td(WR–DB) tv(WR–DB) t
d
(RESET–RESET
tv(φ–RESET)
Note1: The RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after
φ clock cycle time φ clock “H” pulse width φ clock “L” pulse width
After φ AD15–AD8 delay time After φ AD15–AD8 valid time After φ AD7–AD0 delay time After φ AD7–AD0 valid time SYNC delay time SYNC valid time RD and WR delay time RD and WR valid time After φ data bus delay time After φ data bus valid time RD pulse width, WR pulse width RD pulse width, WR pulse width
(when one-wait is valid) After AD15–AD8 RD delay time
After AD15–AD8 WR delay time After AD7–AD0 RD delay time
After AD7–AD0 WR delay time After RD AD15–AD8 valid time
After WR AD15–AD8 valid time After RD AD7–AD0 valid time
After WR AD7–AD0 valid time After WR data bus delay time After WR data bus valid time
OUT
)
RESETOUT output delay time (Note 1) RESETOUT output valid time (Note 1)
the RESET input goes “H”.
Test conditions
Fig. 36
Min.
tc(XIN)–20 tc(XIN)–20
10
10
3
15
tc(XIN)–20
c(XIN)–20
3t
tc(XIN)–145
tc(XIN)–145
5
5
10
0
Min. –20 –20 180
–20
–20 185
0
0
Limits
Limits
Typ. Max.
Typ. Max.
c(XIN)
2t
150
15
150 15 40 20 15
7
200
10
10
195
300
300
25 15
Unit
ns ns ns ns
ns
ns ns
ns
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns
ns
ns
ns
ns
ns ns
ns
ns ns
41
Page 42
MITSUBISHI MICROCOMPUTERS
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS (Extended operating temperature version)

Symbol Parameter Conditions Ratings
VCC
VI
VI VI
VO
Pd Topr Tstg
Power source voltage Input voltage P0
Input voltage RESET, XIN Input voltage CNVSS Output voltage P00–P07, P10–P17, P20–P27,
Power dissipation Operating temperature Storage temperature
0–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57, P60–P67, VREF
P30–P37, P40–P47, P50–P57, P60–P67, XOUT
All voltage are based on VSS. Output transistors are cut off.
Ta = 25 °C
–0.3 to 7.0
–0.3 to V
–0.3 to V
–0.3 to V
1000 (Note)
–65 to 150
3802 Group
Unit
CC +0.3
CC +0.3
–0.3 to 13
CC +0.3
mW
–40 to 85
°C °C
V
V
V V
V

RECOMMENDED OPERATING CONDITIONS (Extended operating temperature version)

(VCC = 4.0 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted)
4.0
2.0
4.0
0 0
0
Limits
Typ. Max.
5.0 0
V VCC
0
VCC VCC VCC
0.2 VCC
0.2 VCC
0.16 V –80 –80
–40 –40
–10
5.5
CC
80 80
40 40
10
–5
Unit
V V
V V
V V V V V
CC
V mA mA mA mA mA mA mA mA
mA
mA
mA
5
mA
8
MHz
Symbol Parameter
VCC VSS
VREF AVSS
VIA VIH VIH VIL VIL
VIL
ΣIOH(peak) ΣIOH(peak) ΣIOL(peak) ΣIOL(peak) ΣIOH(avg) ΣIOH(avg) ΣIOL(avg) ΣIOL(avg)
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg) f(XIN)
Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-
2: The peak output current is the peak current flowing in each port. 3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.
Power source voltage (f(XIN) 2 MHz) Power source voltage Analog reference voltage (when A-D converter is used) Analog reference voltage (when D-A converter is used) Analog power source voltage Analog input voltage AN0–AN7 “H” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
“H” input voltage RESET, XIN, CNVSS “L” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
“L” input voltage RESET, CNVSS “L” input voltage XIN “H” total peak output current “H” total peak output current P40–P47,P50–P57, P60–P67 (Note 1) “L” total peak output current “L” total peak output current P40–P47,P50–P57, P60–P67 (Note 1) “H” total average output current “H” total average output current P40–P47,P50–P57, P60–P67 (Note 1) “L” total average output current “L” total average output current P40–P47,P50–P57, P60–P67 (Note 1) “H” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
“L” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
“H” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
“L” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V)
age value measured over 100 ms. The total peak current is the peak value of all the currents.
P50–P57, P60–P67
P50–P57, P60–P67
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)
P50–P57, P60–P67 (Note 2)
P50–P57, P60–P67 (Note 2)
P50–P57, P60–P67 (Note 3)
P50–P57, P60–P67 (Note 3)
Min.
AVSS
0.8 VCC
0.8 VCC
42
Page 43
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS (Extended operating temperature version)

(VCC = 4.0 to 5.5 V,
Symbol Parameter
Test conditions
“H” output voltage P00–P07, P10–P17, P20–P27,
VOH
P30–P37, P40–P47, P50–P57,
IOH = –10 mA
P60–P67 (Note 1)
“L” output voltage P00–P07, P10–P17, P20–P27,
VOL
VT+ – VT– VT+ – VT– VT+ – VT–
P30–P37, P40–P47,P50–P57, P60–P6
7
Hysteresis CNTR0, CNTR1, INT0–INT Hysteresis RXD, S
CLK1
, S
IN2
, S
CLK2
Hysteresis RESET
IOL = 10 mA
4
“H” input current P00–P07, P10–P17, P20–P27,
IIH
IIH IIH
“H” input current “H” input current X
P30–P37, P40–P47, P50–P57, P60–P6
7
RESET
, CNV
SS
IN
VI = VCC
VI = VCC VI = VCC
“L” input current P00–P07, P10–P17, P20–P27,
IIL
IIL VRAM
“L” input current X
RAM hold voltage
P30–P37, P40–P47, P50–P57, P60–P67, RESET, CNV
IN
SS
VI = VSS
VI = VSS When clock stopped f(XIN) = 8 MHz f(XIN) = 5 MHz When WIT instruction is executed
with f(XIN) = 8 MHz
ICC
Power source current
When WIT instruction is executed with f(XIN) = 5 MHz
When STP instruction is executed with clock stopped, output transistors isolated.
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
P51 is measured when the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through VREF pin.
VSS = 0 V,
Ta = 25 °C (Note 2)
Ta = 85 °C (Note 2)
Ta = –40 to 85 °C, unless otherwise noted)
Limits
Min.
Typ. Max.
VCC–2.0
2.0
0.4
0.5
0.5
5.0
5.0
4
–5.0
–4
2.0
6.4
5.5 13
4
8
1.5
1
0.1
1
10
Unit
V
V
V V V
µA
µA µA
µA
µA
V
mA
µA

A-D CONVERTER CHARACTERISTICS (Extended operating temperature version)

(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted)
50
Limits
Typ. Max.
150
Symbol Parameter
— tCONV RLADDER IVREF II(AD)
Resolution Absolute accuracy (excluding quantization error) Conversion time Ladder resistor Reference power source input current (Note) A-D port input current
Note: When D-A conversion registers (addresses 0036
Test conditions
VREF = 5.0 V
16 and 003716) contain “0016”.
Min.
±1
35
0.5
±2.5
50
200
5.0
Unit
8
Bits LSB tC(φ)
k
µA µA
43
Page 44
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

D-A CONVERTER CHARACTERISTICS (Extended operating temperature version)

(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 4.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted)
1
Limits
Typ. Max.
1.0
2.5
3.2
Unit
8
Bits
%
3
µs
4
k
mA
Symbol Parameter
— tsu RO IVREF
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding cur-
rents flowing through the A-D resistance ladder.
Resolution Absolute accuracy Setting time Output resistor Reference power source input current (Note)
Test conditions
Min.
44
Page 45
MITSUBISHI MICROCOMPUTERS
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS 1 (Extended operating temperature version)

(VCC = 4.0 to 5.5 V, VSS = 0 V , Ta = –40 to 85 °C, unless otherwise noted)
Symbol Parameter
tw(RESET) tc(XIN) twH(XIN) twL(XIN) tc(CNTR) twH(CNTR) twH(INT) twL(CNTR) twL(INT) tc(SCLK1) tc(SCLK2) twH(SCLK1) twH(SCLK2) twL(SCLK1) twL(SCLK2) t
su(RXD–S
t
su(S
IN2–SCLK2
t
h(S
CLK1–RX
t
h(S
CLK2–SIN2
Note: When f(X
Reset input “L” pulse width External clock input cycle time External clock input “H” pulse width External clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width INT0 to INT4 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT4 input “L” pulse width Serial I/O1 clock input cycle time (Note) Serial I/O2 clock input cycle time Serial I/O1 clock input “H” pulse width (Note) Serial I/O2 clock input “H” pulse width Serial I/O1 clock input “L” pulse width (Note) Serial I/O2 clock input “L” pulse width Serial I/O1 input set up time
CLK1
)
Serial I/O2 input set up time
)
Serial I/O1 input hold time
D)
Serial I/O2 input hold time
)
IN) = 8 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0”.
Min.
125
50 50
200
80 80 80 80
800
1000
370 400 370 400 220 200 100 200
3802 Group
Limits
Typ. Max.
2
Unit
µs ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
SWITCHING CHARACTERISTICS 1
Symbol Parameter
twH(SCLK1) twH(SCLK2) twL(SCLK1) twL(SCLK2) t
d(S
CLK1–TX
t
d(S
CLK2–SOUT2
t
v(S
CLK1–TX
t
v(S
CLK2–SOUT2
tr(SCLK1) tf(SCLK1) tr(SCLK2) tf(SCLK2) tr(CMOS) tf(CMOS)
Note1: When the P4
2: When the P5 3: X
Serial I/O1 clock output “H” pulse width Serial I/O2 clock output “H” pulse width Serial I/O1 clock output “L” pulse width Serial I/O2 clock output “L” pulse width Serial I/O1 output delay time (Note 1)
D)
Serial I/O2 output delay time (Note 2)
)
Serial I/O1 output valid time (Note 1)
D)
Serial I/O2 output valid time (Note 2)
)
Serial I/O1 clock output rising time Serial I/O1 clock output falling time Serial I/O2 clock output rising time Serial I/O2 clock output falling time CMOS output rising time (Note 3) CMOS output falling time (Note 3)
5/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 1/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
OUT pin excluded.
(Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = 0 V , Ta = –40 to 85 °C, unless otherwise noted)
Test conditions
Fig. 36
t t t t
c(S c(S c(S c(S
Min.
CLK1
CLK2
CLK1
CLK2
–30
)/2–30 )/2–160 )/2–30 )/2–160
0
Limits
Typ. Max.
10 10
140 200
30 30 30 40 30 30
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns
45
Page 46
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
–20 –20
60
–20
–20
65
0
0
Limits
Typ. Max.
Unit
ns ns ns ns
ns
ns ns
ns
Symbol Parameter
tsu(ONW–φ) th(φ–ONW) tsu(DB–φ) th(φ–DB) tsu
(ONW–RD)
tsu
(ONW–WR)
th(RD–ONW) th(WR–ONW)
tsu(DB–RD) th(RD–DB)
Before φ ONW input set up time After φ ONW input hold time Before φ data bus set up time After φ data bus hold time Before RD ONW input set up time
Before WR ONW input set up time After RD ONW input hold time
After WR ONW input hold time Before RD data bus set up time After RD data bus hold time
Min.

SWITCHING CHARACTERISTICS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (Extended operating temperature version)

(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
6
6
3
15
IN
IN
IN
0
0
10
0
)–10
)–10
)–35
Limits
Typ.
2t
20 10 25 10 20 10 10
20
t
c(XIN)
c(XIN)
t
15
c(XIN)
5
–15
–20
5
5
Max.
40
45
20 10 70
65
200 200
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns
ns
ns
ns
ns
ns ns
ns ns ns
Symbol Parameter
t
c(φ)
twH(φ) twL(φ) td(φ–AH) tv(φ–AH) td(φ–AL) tv(φ–AL) td(φ–SYNC) tv(φ–SYNC) td(φ–WR) tv(φ–WR) td(φ–DB) tv(φ–DB) twL(RD)
twL(WR) td(AH–RD)
td(AH–WR) td(AL–RD)
td(AL–WR) tv(RD–AH)
tv(WR–AH) tv(RD–AL)
tv(WR–AL) td(WR–DB) tv(WR–DB) t
d
(RESET–RESET
tv(φ–RESET)
φ clock cycle time φ clock “H” pulse width φ clock “L” pulse width
After φ AD After φ AD
15–AD8 delay time 15–AD8 valid time
After φ AD7–AD0 delay time After φ AD7–AD0 valid time SYNC delay time SYNC valid time RD and WR delay time RD and WR valid time After φ data bus delay time After φ data bus valid time RD pulse width, WR pulse width RD pulse width, WR pulse width
(when one wait is valid) After AD15–AD8 RD delay time
After AD15–AD8 WR delay time After AD
7–AD0 RD delay time
After AD7–AD0 WR delay time After RD AD
15–AD8 valid time
After WR AD15–AD8 valid time After RD AD
7–AD0 valid time
After WR AD7–AD0 valid time After WR data bus delay time After WR data bus valid time
OUT
)
RESET
OUT output delay time
RESETOUT output valid time (Note 1)
Test conditions
Fig. 36
Min.
tc(XIN)–10 tc(XIN)–10
tc(X
3tc(X
tc(X
c(XIN)–40
t
Note 1: The RESETOUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after
the RESET input goes “H”.
Measurement output pin
100pF
CMOS output
Fig. 36 Circuit for measuring output switching
characteristics
46
Page 47

TIMING DIAGRAM

(1) Timing Diagram
CNTR0, CNTR
INT0–INT
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
t
C(CNTR)
t
CC
CC
WL(CNTR)
t
WL(INT)
t
WH(CNTR)
0.8 V
0.8 V
CC
t
WH(INT)
CC
0.2 V
0.2 V
1
4
RESET
X
IN
S
CLK1
S
CLK2
RXD
IN2
S
t
W(RESET)
0.8 V
), tWH(S
)
CC
CLK2
)
t
v(S
CLK1-TX
t
v(S
D),
CLK2-SOUT2
)
0.2 V
CC
t
C(XIN)
t
CC
)
t
WH(S
CC
(S
CLK1-RX
(S
CLK2-SIN2
WL(XIN)
CLK1
D),
t
WH(X
IN)
0.8 V
CC
t
C(S
CLK1
t
WL(S
CLK1
), tWL(S
CLK2
t
f
0.2 V
CC
t
su(RXD-S
t
su(S
t
d(S
CLK1-TX
D),td(S
CLK2-SOUT2
)
CLK1
IN2-SCLK2
0.8 V
0.2 V
CC CC
)
), )
), tC(S
t
r
0.2 V
CLK2
0.8 V
th t
h
TXD
OUT2
S
47
Page 48
MITSUBISHI MICROCOMPUTERS
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(2)Timing Diagram in Memory Expansion Mode and Microprocessor Mode (a)
tC(φ)
tWH(φ)
tWL(φ)
3802 Group
φ
AD15–AD8
AD7–AD0
SYNC
RD,WR
ONW
0.5 VCC
td(φ-AH)
td(φ-AL)
td(φ-SYNC)
0.5 VCC
0.5 VCC
0.5 VCC
tSU(ONW-φ)
0.8 VCC
0.2 VCC
td(φ-WR)
0.5 VCC
tSU(DB-φ)
tv(φ-AH)
tv(φ-AL)
tv(φ-SYNC)
tv(φ-WR)
th(φ-ONW)
th(φ-DB)
DB0–DB7
(At CPU reading)
DB0–DB7
(At CPU writing)
(3)Timing Diagram in Microprocessor Mode
RESET
0.2 VCC
0.8 VCC
φ
td(RESET- RESETOUT)
RESET
OUT
0.5 VCC
td(φ-DB)
0.8 VCC
0.2 VCC
tv(φ-DB)
0.5 VCC
0.5 VCC
tv(φ- RESETOUT)
48
Page 49
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(4) Timing Diagram in Memory Expansion Mode and Microprocessor Mode (b)
t
WL(RD)
t
WL(WR)
RD,WR
AD15–AD8
AD7–AD0
ONW
(At CPU reading)
RD
DB0–DB
7
0.5 V
0.5 V
t
d(AH-RD)
t
d(AH-WR)
CC
t
d(AL-RD)
t
d(AL-WR)
CC
t
su(ONW-RD)
t
su(ONW-WR)
0.8 V
0.2 V
CC
CC
0.5 V
0.5 V
CC
t
v(RD-AH)
t
v(WR-AH)
t
v(RD-AL)
t
v(WR-AL)
t
h(RD-ONW)
t
h(WR-ONW)
t
WL(RD)
CC
t
0.8 V
0.2 V
SU(DB-RD)
CC CC
t
h(RD-DB)
(At CPU writing)
WR
DB0–DB
7
t
d(WR-DB)
0.5 V
CC
0.5 V
t
WL(WR)
CC
t
v(WR-DB)
49
Page 50
MITSUBISHI MICROCOMPUTERS
3802 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Keep safety first in your circuit designs!
• Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
• These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
• Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
• All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
• Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
• The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
• If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
• Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
© 1997 MITSUBISHI ELECTRIC CORP. New publication, effective Dec. 1997. Specifications subject to change without notice.
Page 51

REVISION DESCRIPTION LIST 3802 GROUP DATA SHEET

Rev. Rev.
No. date
1.0 First Edition 971226
Revision Description
(1/1)
Loading...