Datasheet M36W832TE, M36W832BE Datasheet (SGS Thomson Microelectronics)

Page 1
32 Mbit (2Mb x16, Boot Block) Flash Memory
and 8 Mbit (512Kb x16) SRAM, Multiple Memory Product

FEATURES SUMMARY

SUPPLY VOLTAGE
–V –V –V
ACCESS TIMES: 70ns and 85ns
LOW POWER CONSUMPTION
ELECTRONIC SIGNATURE
– Manufacturer Code: 20h – Top Device Code, M36W832TE: 88BAh – Bottom Device Code, M36W832BE: 88BBh

FLASH MEMORY

32 Mbit (2Mb x16) BOOT BLOCK
– 8 x 4 KWord Parameter Blocks (Top or
PROGRAMMING TIME
– 10µ s typical – Double Word Programming Option – Quadruple Word Programming Option
BLOCK LOCKING
– All blocks locked at Power up – Any combination of blocks can be locked –WPF
AUTOMATIC STANDBY MODE
PROGRAM and ERASE SUSPEND
100,000 PROGRAM/ERASE CYCLES per
BLOCK
COMMON FLASH INTERFACE
SECURITY
– 128 bit user programmable OTP cells – 64 bit unique device identifier
= 2.7V to 3.3V
= V
DDS
= 12V for Fast Program (optional)
PPF
= 2.7V to 3.3V
DDQF
Bottom Location)
for Block Lock-Down
M36W832TE
M36W832B E

Figure 1. Packages

FBGA
Stacked LFBGA66 (ZA)
12 x 8mm

SRAM

8 Mbit (512Kb x 16)
ACCESS TIME: 70ns
LOW V
POWER DOWN FEATURES USING TWO
CHIP ENABLE INPUTS
DATA RETENTION: 1.5V
DDS
1/64May 2003
Page 2
M36W832TE, M36W832BE

TABLE OF CONTENTS

SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. LFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Address Inputs (A0-A18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Address Inputs (A19-A20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Input/Output (DQ0-DQ15).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Chip Enable (EF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Flash Output Enable (GF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Write Enable (WF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Write Protect (WPF).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Reset (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Chip Enable (E1S, E2S).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Write Enable (WS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
SRAM Output Enable (GS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
SRAM Upper Byte Enable (UBS).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Lower Byte Enable (LBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
V
Supply Voltage (2.7V to 3.3V).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
DDF
V
and V
DDQF
Program Supply Voltage.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
V
PPF
V
and V
SSF
Supply Voltage (2.7V to 3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
DDS
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SSS
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Main Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
Flash Memory Componen t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Flash Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Flash Security Block and Protection Register Memory Map . . . . . . . . . . . . . . . . . . . 12
SRAM Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. SRAM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4
Flash Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Write.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Automatic Standby.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Flash Command Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5
Table 3. Flash Command Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/64
Page 3
M36W832TE, M36W832BE
Read Electronic Signature Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Double Word Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Program/Erase Suspend Comma nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Protection Register Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Block Lock Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 4. Flash Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 5. Flash Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. Flash Read Block Lock Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 7. Flash Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 8. Flash Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . 20
Flash Block Locking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Locked State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1
Lock-Down State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 9. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 10. Protection Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Erase Status (Bit 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
V
Status (Bit 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PPF
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Block Protection Status (Bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Reserved (Bit 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 11. Flash Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
SRAM Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Standby/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Data Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 12. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3/64
Page 4
M36W832TE, M36W832BE
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7
Table 13. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 8. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 9. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 14. Device Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 15. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 10. Flash Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 16. Flash Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 11. Flash Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 17. Flash Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 12. Flash Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 18. Flash Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 13. Flash Power-Up and Reset AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 19. Flash Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 14. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V
Figure 15. SRAM Read AC Waveforms, GS Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Figure 16. SRAM Standby AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 17. SRAM Write AC Waveforms, E1S or E2S Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 20. SRAM Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 18. SRAM Write AC Waveforms, WS Controlled, GS High during Write . . . . . . . . . . . . . . . 38
Figure 19. SRAM Write AC Waveforms, WS Controlled with GS Low . . . . . . . . . . . . . . . . . . . . . . 38
Figure 20. SRAM Write Cycle Waveform, UBS and LBS Controlled GS Low, . . . . . . . . . . . . . . . . 39
Table 21. SRAM Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 21. SRAM Low V Figure 22. SRAM Low V Table 22. SRAM Low V
Data Retention AC Waveforms, E1S Controlled . . . . . . . . . . . . . . . . 41
DDS
Data Retention AC Waveforms, E2S Controlled . . . . . . . . . . . . . . . . 41
DDS
Data Retention Characteristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DDS
. . . . . . 36
IL
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 23. Stacked LFBGA66 12x8mm, 8x8 array, 0.8mm pitch, Bottom View Package Outline . . 42 Table 23. Stacked LFBGA66, 12x8mm, 8x8 ball array, 0.8mm pitch, Pa ckage Mechani ca l Data . 42 Figure 24. Stacked LFBGA66 Daisy Chain - Package Connections (Top view through package) . 43 Figure 25. Stacked LFBGA66 Daisy Chain - PCB Connections proposal (Top view through package)44
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 24. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 25. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
APPENDIX A. FLASH MEMORY BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 26. Top Boot Block Addresses, M36W832TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 27. Bottom Boot Block Addresses, M36W832BE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 28. Query Structure Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 29. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 30. CFI Query System Interface Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
4/64
Page 5
M36W832TE, M36W832BE
Table 31. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Table 32. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 33. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
APPENDIX C. FLASH MEMORY FLOWCHARTS and PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . 53
Figure 26. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 27. Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 28. Quadruple Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 29. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 56
Figure 30. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 31. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 32. Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 33. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 60
APPENDIX D. FLASH MEMORY COMMAND INTERFACE and PROGRAM/ERASE CONTROLLER
STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 34. Write State Machine Current/Next, sheet 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 35. Write State Machine Current/Next, sheet 2 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 36. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
5/64
Page 6
M36W832TE, M36W832BE

SUMMARY DESCRIPTION

The M36W832TE is a low voltage Multiple Memo­ry Product which combines two me mory devices; a 32 Mbit boot block Flash memory and an 8 M bit SRAM. Recommended operating conditions do not allow both the F lash and the S RAM t o be ac­tive at the same time.
The memory is offered in a Stacked LFBGA66 (12x8mm, 0.8 mm pitch) package and is s upplied
with all the bits erased (set to ‘1’).

Figure 2. Logic Diagram

V
V
DDF
DDQF
V
PPF
V
DDS

Table 1. Signal Names

A0-A18
A19-A20 Address Inputs for Flash Chip only DQ0-DQ15 Data Input/Output V
DDF
V
DDQF
V
PPF
V
SSF
V
DDS
Address Inputs common to the Flash and SRAM chips
Flash Power Supply Flash Power Supply for I/O Buffers Flash Optional Supply V oltage for Fast
Program & Erase Flash Ground SRAM Power Supply
A0-A20
EF
GF
WF
RPF
WPF
E1S E2S
GS
WS
UBS
LBS
21
M36W832TE M36W832BE
V
SSF
V
SSS
16
DQ0-DQ15
AI90161b
V
SSS
NC Not Connected Internally
Flash control functions
EF GF WF RPF WPF
SRAM control functions
, E2S Chip Enable inputs
E1S GS WS UBS LBS
SRAM Ground
Chip Enable input Output Enable input Write Enable input Reset input Write Protect input
Output Enable input Write Enable input Upper Byte Enable input Lower Byte Enable input
6/64
Page 7

Figure 3. LFBGA Connections (Top view through package)

M36W832TE, M36W832BE
1211109
87654321
NCNC
DDQF
V
SSF
V
A12
A13A11A20NCNC
A15 A14
DQ7
DQ14
WS
DQ15A9A16
DQ5
DQ4
DQ6DQ13NCWF
DDF
V
DDS
V
E2SDQ12V
DQ3DQ2
DQ10
DQ11A19WPF
DQ1DQ0
DQ8DQ9GSLBS
E1SA1
A2A3A6A7A18
NC
NCNCGF
SSF
EFA0A4NCNC
AI90162b
A8 A10
A
B
C
RPF
SSS
D
PPF
V
E
UBS
F
A17
G
A5
NC V
H
7/64
Page 8
M36W832TE, M36W832BE

Signal Descriptions

See Figure 2 Logic Diagram and Table 1,Signal Names, for a brief overview of the signals connect­ed to this device.

Address Inputs (A0-A18). Addresses A0-A18 are common inputs for the Flash an d the SRAM components. The Address Inputs select the cells in the memory array to access during Bu s Read operations. During Bus Write operations they con­trol the commands sent to the Command Interface of the internal state machine. The Flash memory is accessed through the Chip Enable ( Enable (WF

) signals, while the SRAM is accessed through two Chip Enable signals (E1S and the Write Enable signal (WS
EF) and Write
and E2S)
).

Address Inputs (A19-A20). Addresses A19-A20 are inputs for the Flash component only. The Flash memory is acc essed through the Chip E n­able (EF

) and Write Enable (WF) signals

Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be programmed durin g a Write Bus operation.

Flash Chip Enable (EF
). The Chip Enable input
activates the Flash memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is at V is in active mode. When Chip Enable is at V
and Reset is at VIH the device
IL
IH
the memory is deselected, the outputs are high imped­ance and the power consumption is reduced to the standby level.
Flash Output Enable (GF
). The Output Enable
controls the data outputs during the Bus Read op­eration of the Flash memory.
Flash Write Enable (
WF). The Write Enable
controls the Bus Write operation of the Flash
memory’s Command I nterface. The data and ad­dress inputs are latched on the rising edge of Chip Enable, EF
, or Write Enable, WF, whichever oc-
curs first.
Flash Write Protect (WPF
). Write Protect is an
input that gives an additional hardware protection for each block. When Write Protect is at V
IL
, the Lock-Down is enabled and the protection status of the block cannot be changed. When Write Protect is at V
, the Lock-Down is disabled and the block
IH
can be locked or unlocked. (refer to T able 6, Read Protection Register and Protection Register Lock).
Flash Reset (RPF
). The Reset input provides a
hardware reset of the Flash memory. When Reset is at V
, the memory is in reset mode: the outputs
IL
are high impedance and the current consumption is minimized. After Reset all blocks are in the Locked state. When Reset is at V
, the device is
IH
in normal operation. Exiting reset mode the device enters read array mode, but a negative trans ition
of Chip Enable or a change of the address is re­quired to ensure valid data outputs.
SRAM Chip Enable (E1S
, E2S). The Chip En-
able inputs activate the SRAM memory control logic, input buffers and decoders. E1S E2S at V
deselects the memory and reduces the
IL
power consumption to the standby level. E1S
at VIH or
and E2S can also be used to control writing to the SRAM memory array, while WS is not allowed to set EF at V
at the same time.
IH
SRAM Write Enable (WS
at V
E1S at VIL and E2S
IL,
). The Write Enable in-
remains at V
IL.
It
put controls writing to the SRAM memory array.
is active low.
WS
SRAM Output Enable (GS)
. The Output Enable
gates the outputs through the data buffers during a read operation of t he SRAM memory. GS
is ac-
tive lo w .
SRAM Upper Byte Enable (UBS)
. The Upper
Byte Enable enables the upper bytes for SRAM (DQ8-DQ15). UBS
SRAM Lower Byte Enable (LBS
is active low.
). The Lower Byte Enable enables the lower bytes for SRAM (DQ0-DQ7). LBS
Supply Voltage (2.7V to 3.3V). V
V
DDF
is active low.
pro­vides the power supply to the internal core of the Flash Memory device. It is the main power s upply for all operations (Read, Program and Erase).
and V
V
DDQF
provides the power supply for the Flash
V
DDQF
memory I/O pins and V supply for
Supply Voltage (2.7V to 3.3V).
DDS
provides the power
DDS
the SRAM control pi ns. This allows all Outputs to be powered independently of the Flash core power supply, V V
DDS
V
Program Su pp ly V ol t age. V
PPF
. V
can be tied to
DDQF
PPF
is both a control input and a power suppl y pin for t he F lash memory. The two functions are selected by the voltage range applied to the pin. The S uppl y Volt­age V
and the Program Supply Vol tage V
DDF
PPF
can be applied in any order. If V
V age lower than V against program or erase, while V
is kept in a low voltage range (0V to 3.6V)
PPF
is seen as a control input. In this case a volt-
PPF
gives an absolute protection
PPLK
PPF
> V
PP1
en­ables these functions (see Table 15, DC Charac­teristics for the relevant values). V
PPF
is only sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect on Program or Erase, however for Double or Q uadruple Word Program the results are uncertain.
If V power supply pin. In this con dition V
is in the range 11.4V to 12.6V it acts as a
PPF
PPF
must be stable until the Program/Erase algorit hm is com­pleted (see Table 17 and 18).
8/64
Page 9
M36W832TE, M36W832BE
V
SSF
and V
Ground. V
SSS
SSF
and V
SSS
are the ground reference for all voltage measurements in the Flash and SRAM chips, respectively.
Note: Each device in a system should have V
DF
, V
DDQF
and V
decoupled with a 0.1µF ca-
PPF
D-

FUNCTIONAL DESCRIPTION

The Flash and SRAM components have separate power supplies and grounds and are distinguished by three chip enable inputs: EF ory and, E1S
and E2S for the SRAM.
for the Flash mem-
Recommended operating conditions do not allow both the Flash and the SRAM to be in active mode at the same time. The most common example is

Figure 4. Funct i on a l Bl ock D i agram

V
DDF
EF GF
WF
RPF
WPF
Flash Memory
32 Mbit (x16)
pacitor close to the pin. See Figure 9, AC Measurement Load Circuit. The PCB trace widths should be sufficient to carry the re­quired V
program and erase currents.
PPF
simultaneous read operations on the Flash and the SRAM which would resul t in a data bus con­tention. Therefore it is recommended to put the SRAM in the h igh impedance state whe n reading the Flash and vice versa (see Table 2 Main Oper­ation Modes for details).
V
DDQF
V
PPF
A19-A20
A0-A18
E1S E2S
GS
WS
UBS
LBS
V
DDS
SRAM
8 Mbit (x16)
V
SSS
V
SSF
DQ0-DQ15
AI90163
9/64
Page 10
M36W832TE, M36W832BE

Table 2. Main Operation Modes

Operation
Mode
Read
Write
Block Locking
Standby
Flash Memory
Reset X X X Output
Disable
Read Flash must be disabled
Write Flash must be disabled
Standby/
SRAM
Power Down
Data Retention
Output Disable
Note: X = VIL or VIH, V
EF
GF WF RPF WPF
V
ILVILVIHVIH
V
ILVIHVILVIH
V
XX
IL
V
XX
IH
V
ILVIHVIHVIH
V
IH
V
IH
V
IL
Any Flash mode is allowable
Any Flash mode is allowable
Any Flash mode is allowable
= 12V ± 5%.
PPFH
V
E1S E2S WS GS UBS LBS DQ15-D Q8 DQ7-DQ0
PPF
X Don’t care SRAM must be disabled Data Output
V
or
DDF
X
V
PPFH
V
Don’t care SRAM must be disabled X
IL
SRAM must be disabled Data Input
X Don’t care Any SRAM mode is allowed Hi-Z X Don’t care Any SRAM mode is allowed Hi-Z
X Don’t care Any SRAM mode is allowed Hi-Z
XXV
V
ILVIHVIHVILVIHVIL
V
ILVIHVIHVILVILVIH
V
ILVIHVIL
V
ILVIHVIL
V
ILVIHVIL
V
IH
X
V
IH
X
V
ILVIHVIHVIH
IHVILVIL
X X X
X X X X X Hi-Z
V
XX
IL
X X X X X Hi-Z
V
X X X X Hi-Z
IL
V
IL
Data out
Hi-Z Data out
Data out Hi-Z
V
IL
V
IHVIL
V
ILVIH
V
IHVIH
V
IL
Data in
Hi-Z Data in
Data in Hi-Z
Hi-Z
X X Hi-Z
10/64
Page 11
M36W832TE, M36W832BE

Flash Memory Componen t

The Flash Memory is a 32 Mbit (2 Mbit x 16) device that can be erased electrically at block level and programmed in-system on a Word-by-Word basis. These operations can be performed using a single low voltage (2.7 to 3.6V) supply. V
DDQF
allows to drive the I/O pin down to 1.65V. An optional 12V V
power supply is provided to speed up cus-
PPF
tomer programming. The device features an asymmetrical blocked ar-
chitecture with an array of 71 blocks: 8 Parameter Blocks of 4 KWords and 63 Main Blocks of 32 KWords. The M36W832TE has the Parameter Blocks at the top of the memory address space while the M36W832BE locates the Parameter Blocks starting from the bottom. The memory maps are shown in Figure 5, Block Addresses.
The Flash Memory features an instant, individual block locking scheme that allo ws any block to be locked or unlocked with no latency, enabling in­stant code and data protection. All blocks have three levels of protection. They can be locked and locked-down individually preventing any acciden­tal programming or erasure. There is an additional hardware protection against program and erase. When V
PPF
≤ V
all blocks are protected
PPLK
against program or erase. All blocks are locked at Power Up.
Each block can be erased separately. Erase can be suspended in order to perform either read or program in any other block and then resumed. Program can be s uspended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles.
The device includes a Protection Register to in­crease the pro tection of a syste m design. The Pro­tection Register is divided into two segments, t he first is a 64 bit area which contains a unique device number written by ST, while the second is a 128 bit area, one-time-programmable by the user. The user programmable segment can be permanent ly protected. Figure 6, shows the Flash Security Block and Protection Register Memory Map.
Program and Erase command s are written to the Command Interface of the memory. An on-chip Program/Erase Controller takes care of the tim­ings necessary for program and erase operations. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.

Figure 5. Flash Block Addresses

Top Boot Block Addresses
1FFFFF
1FF000
1F8FFF
1F8000
1F7FFF
1F0000
00FFFF
008000
007FFF
000000
4 KWords
4 KWords
32 KWords
32 KWords
32 KWords
Total of 8
4 KWord Blocks
Total of 63
32 KWord Blocks
Bottom Boot Block Addresses
1FFFFF
1F8000
1F7FFF
1F0000
00FFFF
008000
007FFF
007000
000FFF
000000
32 KWords
32 KWords
32 KWords
4 KWords
4 KWords
Total of 63
32 KWord Blocks
Total of 8
4 KWord Blocks
Note: Also see Appendix A, Tab l es 26 and 27 for a ful l l is t i ng of the Flash B l ock Address es.
AI90164
11/64
Page 12
M36W832TE, M36W832BE

Figure 6. Flash Security Block and Protection Registe r Memory Ma p

PROTECTION REGISTER
8Ch
User Programmable OTP
85h 84h
81h 80h
Note: 1. Bit 2 of the Protection Registe r Lock must no t be program m ed to 0.
Unique device number
Protection Register Lock 2
(1)
10
AI90165b
12/64
Page 13
M36W832TE, M36W832BE

SRAM C o m pone nt

The SRAM is an 8 Mbit asynchronous random ac­cess memory which features a super lo w voltage operation and low current consumption with an ac-

Figure 7. SRAM Block Diagram

DATA IN DRIVERS
A0-A10
ROW DECODER
512Kb x 16 RAM Array
2048 x 4096
COLUMN DECODER
A11-A18
cess time of 70ns in all conditions. The memory operations can be performed using a single low voltage supply, 2.7V to 3.3V, which is the same as the Flash voltage supply.
DQ0-DQ7
SENSE AMPS
DQ8-DQ15
UBS WS
GS
LBS
E2S E1S
POWER-DOWN
CIRCUIT
UBS LBS
E2S E1S
AI07964
13/64
Page 14
M36W832TE, M36W832BE
OPERATING MODES Flash Bus Operations
There are six standard bus operations that control the device. These are Bus Read, Bus Wri te, Out­put Disable, Standby, Automatic Standby and Re­set. See Table 2, Main Operation Modes, for a summary.
Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.

Read. Read Bus operations are used to output the contents of the Memory Array, the Electronic Signature, the Status Register and the Common Flash Interface. Both Chip Enable and Output En­able must be at VIL in order to perform a read op­eration. The Chip Enable in put should be us ed to enable the device. Out put E nable shoul d be used to gate data onto the output. The data read de­pends on the previous command written to the memory (see Command Interface section). See Figure 10, Flash Read Mode AC Waveforms, and Table 16, Flash Read AC Cha racteristics, for de­tails of when the output becomes valid.

Read mode is the default state of the device when exiting Reset or after power-up.

Write. Bus Write operations write Commands to the memory or latch Input Data to be programmed. A write operation is initiated when Chip Enable and Write Enable are at V V

. Commands, Input Data and Addresses are
IH
latched on the rising edge of Write Enable or Chip Enable, whichever occurs first.
with Output Enable at
IL
See Figures 11 and 12, Flash Write AC Wave­forms, and Tables 17 and 18, Write AC Character­istics, for details of the timing requirements.

Output Disa bl e . The data outputs are high im­pedance when the Output Enable is at V

.
IH

Standby. Stan dby disables most of the inte rnal circuitry allowing a substantial reduction of the cur­rent consumption. The memory is in stand-by when Chip Enable is at V

and the device is in
IH
read mode. The power consumption is reduced to the stand-by level and the o utputs are set to high impedance, independently from the Output Enable or Write Enable inputs. If Chip Enable switches to V
during a program or erase operation, t he de-
IH

vice enters Standby mode when finished. Automatic Standby. Automatic Standby pro-

vides a low power consumption state during Read mode. Following a read operation, the device en­ters Automatic Standby after 150ns of bus inactiv­ity even if Chip Enable is Low, V current is reduced to I
. The data I nputs/Out-
DD1
, and the supply
IL
puts will still output data if a bus Read operation is in progress.

Reset. During Reset mode when Output Enable is Low, V

, the memory is deselected and the out-
IL
puts are high impedance. The memory is in Reset mode when Reset is at V
. The power consump-
IL
tion is reduced to the Standby level, independently from the Chip Enable, Output Enable or Write En­able inputs. If Reset is pulled t o V
during a Pro-
SSF
gram or Erase, this operation is aborted and the memory content is no longer valid.
14/64
Page 15

Flash Command Interface

All Bus Write operations t o the me mory are in ter­preted by the Command Interface. Commands consist of one or more sequential Bus Write oper­ations. An internal Program/Erase Controller han­dles all timings and verifies the correct execution of the Program and Erase commands. The Pro­gram/Erase Controller provides a S tatus Register whose output may be read at any time during, to monitor the progress of the operation, or the P ro­gram/Erase states. See Table 4, Command Codes, for a summary o f the c ommands and see Appendix 31, Table 34, Write State Machine Cur­rent/Next, for a summa ry of the Command Inter­face.
The Command Interface is reset to Read mode when power is first applied, when exiting from Re­set or whenever V
is lower than V
DDF
LKO
. Com­mand sequences must be followed exactly. Any invalid combination of commands will reset the de­vice to Read mode . Refe r to Table 3, Flas h Com ­mand Codes, in conjunction with the following text descriptions.

Table 3. Flash Command Codes

Hex Code Command
01h
10h Program 20h Erase
2Fh
30h 40h Program
50h Clear Status Register 55h Reserved 56h
60h
70h Read Status Register 90h Read Electronic Signature 98h Read CFI Query B0h Program/Erase Suspend C0h Protection Register Program
D0h
FFh Read Memory Array
Block Lock confirm
Block Lock-Down confirm Double Word Program
Quadruple Word Program Block Lock, Block Unlock, Block Lock-
Down
Program/Erase Resume, Block Unlock confirm
M36W832TE, M36W832BE
Read Memory Array Command. The Read
command returns the memory to its Read mode. One Bus Write cycle is required to issue the Read Memory Array command and return the memory to Read mode. Subsequent read operations will read the addressed location and output the data. When a device Reset occurs, the memory defaults to Read mode.
Read Status Register Command. The Status Register indicates when a program or erase oper­ation is complete and the success or failure of the operation itself. Issue a Read Status Register
command to read the Status Register’s cont ents. Subsequent Bus Read operations read the Status Register at any address, until another command is issued. See Table 11, Status Register Bits, for de­tails on the definitions of the bits.
The Read Status Register comm and may be is­sued at any time, even during a Program/Erase operation. Any Read attempt during a Program/ Erase operation will automatically output the con­tent of the Status Register.
Read Electronic Signature Command. The Read Electronic Signature command reads the Manufacturer and Device Codes and the Block Locking Status, or the Protection Register.
The Read Electronic Signature command consists of one write cycle, a subsequent read will output the Manufacturer Code, the Device Code, the Block Lock and Lock-Down Status, or the Protec­tion and Lock Register. See Tables 5, 6 and 7 for the valid address.
Read CFI Query Command. The Read Query Command is used to read data from the Common Flash Interface (CFI) Memory Area, allowing pro­gramming equipment or applications to automati­cally match their interface to the characteristics of the device. One Bus Write cycle is required to is­sue the Read Query Command. Once the com­mand is issued subsequ ent Bus Read operations read from the Common Flash Interface Memory Area. See Appendix B, Common Flash Interface, Tables 28, 29, 30, 31, 32 and 33 for details on the information contained in the Common Flash Inter­face memory area.
Block Erase Command. The Block Erase com­mand can be used to erase a bloc k. It set s all t he bits within the selected block to ’1’. All previous data in the block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the S tatus Regi ster will output the e rr o r.
Two Bus Write cycles are required to issue the command.
The first bus cycle sets up the Erase command.
15/64
Page 16
M36W832TE, M36W832BE
The second latches the block address in the
internal state machine and starts the Program/ Erase Controller.
If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits b4 and b5 a re s et and the command aborts.
Erase aborts if Reset turns to V
. As data integrity
IL
cannot be guaranteed when the Erase operation is aborted, the block must be erased again.
During Erase operations the memory will accept the Read Status Re gister com mand and the P ro­gram/Erase Suspend command, all other com­mands will be ignored. Typical Erase times are given in Table 8, Flash Program, Erase Times and Program/Erase Endurance Cycles.
See Appendix C, Figure 30 , Erase Flowchart and Pseudo Code, for a suggested flowchart for using the Erase command.
Program Command. T he memory array can be programmed word-by-word. Two bus write cycles are required to issue the Program Command.
The first bus cycle sets up the Program
command.
The second latches the Address and the Data to
be written and starts the Program/Erase Controller.
During Program operations the memory will ac­cept the Read Status Register command and the Program/Erase Suspend command. Typical Pro­gram times are given in Table 8, Flash Program, Erase Times and Program/Erase Endurance Cy­cles .
Programming aborts if Reset goe s to V
. As data
IL
integrity cannot be guaranteed when the program operation is aborted, the block containing the memory location must be erased and repro­grammed.
See Appendix C, Figure 26, Program Flowchart and Pseudo Code, for the f lowchart for using the Program command.
Doubl e Word Program Comm a nd. This feature is offered to improve the programming throughput, writing a page of two adjacent words in paral­lel.The two words mus t di ffer on ly f or the address A0. Programming should n ot be attempted when V
is not at V
PPF
PPH
.
Three bus write cycles are necessary to issue the Double Word Program command.
The first bus cycle sets up the Double Word
Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and the
Data of the second word to be written and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has s tarted. Program­ming aborts if Reset goes to V
. As data integrity
IL
cannot be guaranteed when the program opera­tion is aborted, the block containing the memory location must be erased and reprogrammed.
See Appendix C, Figure 27, Double Word Pro­gram Flowchart and Pseudo Code, for the flow­chart for using the Double Word Program command.
Quadruple Word Program Command. This feature is offered to improve the programming throughput, writing a page of four adjacent words in parallel.The four words must differ only for the addresses A0 and A1. Programming should not be attempted when
is not at V
PPF
PPH
.
V
Five bus write cycles are necessary to issue the Quadruple Word Program command.
The first bus cycle sets up the Quadruple Word
Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and the
Data of the second word to be written.
The fourth bus cycle latches the Address and
the Data of the third word to be written.
The fifth bus cycl e latches the Addres s and th e
Data of the fourth word to be written and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has s tarted. Program­ming aborts if Reset goes to V
. As data integrity
IL
cannot be guaranteed when the program opera­tion is aborted, the block containing the memory location must be erased and reprogrammed.
See Appendix C, Figure 28, Quadruple Word Pro­gram Flowchart and Pseudo Code, for the flow­chart for using the Quadruple Word Program command.
Clear Status Register Command. The Clear Status Register command can be used to reset
bits 1, 3, 4 and 5 in the Status Register to ‘0’. One bus write cycle is required to issue the Clear Sta­tus Register command.
The bits in the Status Register do not automatical­ly return to ‘0’ when a new Program or Erase com­mand is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command.
Program/Erase Suspend Command. The Pro­gram/Erase Suspend comm and is used to pause a Program or Erase operation. One bus write cycle is required to issue the Program/Erase c ommand and pause the Program/Erase controller.
During Program/Erase Suspend the Command In­terface will accept the Program/Erase Resume,
16/64
Page 17
M36W832TE, M36W832BE
Read Array, Read Status Register, Read Electron­ic Signature and Read CFI Query commands. Ad­ditionally, if the suspend operation was Erase then the Program, Double Word Program, Quadruple Word Program, Block Lock, Block Lock -Down or Protection Program commands will also be ac­cepted. The block being erased may be protected by issuing the Block Protect, Block Lock or Protec­tion Program commands. When the Program/ Erase Resume com mand is issued the operation will complete. Only the blocks not being erased may be read or programmed correctly.
During a Program/Erase Suspend, the device can be placed in a pseudo-standby mode by taking Chip Ena ble to V Reset turns to V
. Program/Erase is aborted if
IH
.
IL
See Appendix C, Figure 2 9, Program or Doub le Word Program Suspend & Resume Flowchart and Pseudo Code, an d Figure 31, Erase Sus pend & Resume Flowchart and Pseudo Code for flow­charts for using the Program/Erase Suspend com­mand.
Program/Erase Resume Command. The Pro­gram/Erase Resume command can be used to re­start the Program/Erase Controller after a Program/Erase Suspend operat ion h as paused it. One Bus Write cycle is required to issue the com­mand. Once the command is issued subsequent Bus Read operations read the Status Register.
See Appendix C, Figure 2 9, Program or Doub le Word Program Suspend & Resume Flowchart and Pseudo Code, an d Figure 31, Erase Sus pend & Resume Flowchart and Pseudo Code for flow­charts for using the Program/Erase Resume com­mand.
Protection Regist er Program Command. The Protection Register Program c omm and is used to Program the 128 bit user One-Time-Programma­ble (OTP) segment of the Protection Register. The segment is programmed 16 bits at a time. When
shipped all bits in the segment are set to ‘1’. The user can only program the bits to ‘0’.
Two write cycles are required to issue the Protec­tion Register Program command.
The first bus cycle sets up the Protection
Register Program command.
The second latches the Address and the Data to
be written to the Protection Register and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has started.
The segment can be protected by programming bit 1 of the Protection Lock Register (see Figure 6, Flash Security Block and Protection Register Memory Map). Attempting to program a previously protected Protection Register will result in a Status
Register error. The protection of the Protection Register is not reversible.
The Protection Register Program cannot be sus­pended.
Block Lock Command. The Block Lock com­mand is used to lock a block and prevent Program or Erase operations from changing the data i n it. All blocks are locked at power-up or reset.
Two Bus Write cycles are required to issue the Block Lock command.
The first bus cycle sets up the Block Lock
command.
The second Bus Write cycle latc hes the block
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Table. 10 shows the protection status after issuing a Block Lock command.
The Block Lock bits are vo latile, once set they re­main set until a hardware reset or power-down/ power-up. They are cleared by a Blocks Unlock command. Refer to the section, Block Locking, for a detailed explanation.
Block Unlock Command. The Blocks Unlock command is used to unlock a block, allowing the block to be programmed or erased. Two Bus Write cycles are required to issue the Blocks Unlock command.
The first bus cycle sets up the Block Unlock
command.
The second Bus Write cycle latc hes the block
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Table. 10 shows the protection status after issuing a Block Unlock command. Refer to the “Flash Block Locking” section, for a detailed explanation.
Block Lock-Down Command. A locked block cannot be Programmed or Erased, or have its pro­tection status changed when WPF When WPF
is high, V
the Lock-Down function is
IH,
is low, VIL.
disabled and the locked blocks can be individually unlocked by the Block Unlock command.
Two Bus Write cycles are required to issue the Block Lock-Down command.
The first bus cycle sets up the Block Lock
command.
The second Bus Write cycle latc hes the block
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Locked-Down blocks revert to the locked (and not locked-down) state when the device is reset on power-down. Table. 10 sho ws the protection sta­tus after issuing a Block Lock-Down command.
17/64
Page 18
M36W832TE, M36W832BE
Refer to the “Flash Block Locking” section for a de­tailed explanation.

Table 4. Flash Commands

Bus Write Operations
Commands
Read Memory Array
Read Status Register
Read Electronic Signature
Read CFI Query 1+ Write X 98h Read QA QD Erase 2 Write X 20h Write BA D0h
Program 2 Write X
Double Word Program
Quadruple Word Program
Clear Status Register
Program/Erase Suspend
Program/Erase Resume
Block Loc k 2 Write X 60h Write Block Unlock 2 Write X 60h Write Block Loc k-Down 2 Write X 60h Write Protection
Register Program
Note: X = Don’t Care.
(3)
(4)
1. The signature a ddresses are l i st ed in Tables 5, 6 and 7.
2. Addr 1 and Addr 2 must be consecu tive Addresses differi ng only for A0.
3. Program Addres ses 1 and 2 must be consecutive Addresses differing onl y for A0.
4. Program Addres ses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.
5. 55h is reserved.
6. To be characterized.
1+ Write X FFh
1+ Write X 70h Read X SRD
1+ Write X 90h Read
1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 5th Cycle
Cycles
Op. Add Data Op. Add Data Op. Add Data Op. Add Data Op. Add Data
RA RD
Read
(2)
IDh
SA
40h
or
Write PA PD
10h
3 Write X 30h Write PA1 PD1 Write PA2 PD2
5Write X
1 Write X 50h
1Write X B0h
1Write X D0h
(6)
Write PA1 PD1 Write PA2 PD2 Write PA3 PD3 Write PA4 PD4
56h
BA 01h
D0h
BA BA 2Fh
2 Write X C0h Write
PRA
PRD
18/64
Page 19
M36W832TE, M36W832BE

Table 5. Flash Read Electronic Signature

Code Device EF GF WF A0 A1 A2-A7 A8-A11 A12-A20 DQ0-DQ7 DQ8-DQ15
Manufacture Code
Device Code
Note: RPF = VIH.
M36W832TE M36W832BE

Table 6. Flash Read Block Lock Signature

Block Status EF GF WF A0 A1 A2-A7 A8-A20 A12-A20 DQ0 DQ1 DQ2-DQ15
Locked Block Unlocked Block Locked-Down
Block
Note: 1. A Locked Block can be protected "DQ0 = 1" or unprotected "DQ0 = 0" ; see Block Locking section.

Table 7. Flash Read Protection Register and Lock Register

Word EF
Lock
Unique ID 0 Unique ID 1 Unique ID 2 Unique ID 3 OTP 0 OTP 1 OTP 2 OTP 3
GF WF A0-A7 A8-A20 DQ0 DQ1 DQ2 DQ3-DQ7 DQ8-DQ15
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIHVILVIL
V
ILVILVIHVIHVIL
V
ILVILVIHVIHVIL
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
80h Don’t Care Don’t Care
81h Don’t Care ID data ID data ID data ID data ID data 82h Don’t Care ID data ID data ID data ID data ID data 83h Don’t Care ID data ID data ID data ID data ID data 84h Don’t Care ID data ID data ID data ID data ID data 85h Don’t Care OTP data OTP data OTP data OTP data OTP data 86h Don’t Care OTP data OTP data OTP data OTP data OTP data 87h Don’t Care OTP data OTP data OTP data OTP data OTP data 88h Don’t Care OTP data OTP data OTP data OTP data OTP data
0 Don’t Care 20h 00h
0 Don’t Care BAh 88h 0 Don’t Care BBh 88h
0 Don’t Care Block Address 1 0 00h 0 Don’t Care Block Address 0 0 00h
0 Don’t Care Block Address
OTP Prot.
data
Don’t Care
See note (1)
X
(1)
1 00h
Don’t Care
Don’t Care
V
IL
V
IL
V
IL
19/64
Page 20
M36W832TE, M36W832BE

Table 8. Flash Program, Erase Times and Program /Era se Endu ranc e Cycles

Parameter Test Conditions
Min Typ Max
V
Word Program
Double Word Program Quadruple Word Program
Main Block Program
Parameter Block Program
Main Block Erase
Parameter Block Erase
= V
PPF
V
= 12V ±5%
PPF
V
= 12V ±5%
PPF
V
= 12V ±5%
PPF
= V
V
PPF
= 12V ±5%
V
PPF
= V
V
PPF
= 12V ±5%
V
PPF
= VDDV
V
PPF
V
= 12V ±5%
PPF
V
= V
PPF
DDF
DDF
DDF
DDF
DDF
Program/Erase Cycles (per Block) 100,000 cycles
Note: 1. Typical time to program a Main or Parameter Block using the Double Word Program and the Quadruple Word Program commands
respectively.
Flash Device
10 200 µs 10 200 µs 10 200 µs
0.16/0.08
(1)
5s
0.32 5 s
0.02/0.01
(1)
4s
0.04 4 s 110s 110s
0.4 10 s
0.4 10 s
Unit
20/64
Page 21
M36W832TE, M36W832BE

Flash Block Locking

The Flash Memory features an instant, individual block locking scheme that allo ws any block to be locked or unlocked with no latency. This locking scheme has three levels of protection.
Lock/Unlock - this first level allows software-
only control of block locking.
Lock-Down - this second level requires
hardware interaction before locking can be changed.
V
PPF
≤ V
- the third level offers a complete
PPLK
hardware protection against program and erase on all blocks.
The protection status of each block can be set to Locked, Unlocked, and Lock-Down. Table 10, de­fines all of the possible protection states (WPF DQ1, DQ0), and Appendi x C, Figure 32, shows a flowchart for the locking operations.
Reading a Block’s Lock Status. The lock status of every block can be read in the Read Electronic Signature mode of the device. To ent er this m ode write 90h to the device. S ubsequent reads at the address specified in Table 6, will output the protec­tion status of that block. The lock status is repre­sented by DQ0 and DQ1. DQ0 indicates the Block Lock/Unlock status and is set by the Lock com­mand and cleared by the Unlo ck command. It is also automatically set when entering Lo ck-Down. DQ1 indicates the Lock-Down status and is set by the Lock-Down command. It cannot be cleared by software, only by a hardware reset or power-down.
The following sections explain the operation of the locking system.
Locked State. The default status of all blocks on power-up or after a hardware reset is Locked (states (0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any pro­gram or erase operations attempted on a locked block will return an error in the Status Register. The Status of a Loc ked block can be chan ged to Unlocked or Lock-Down using the appropriate software commands. An Unlocked block can be Locked by issuing the Lock command.
Unlocked State. Unlocked blocks (states (0 ,0 ,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked blocks return to the Locked state after a hardware reset or when the device is powered­down. The status of an unlocked block can be changed to Locked or Locked-Down using the ap-
propriate software commands. A locked block can be unlocked by issuing the Unlock command.
Lock-Down State. Blocks that are Locked-Down (state (0,1,x))are protected from program and erase operations (as for Locked blocks) but their protection status cannot be changed using soft­ware commands alone. A Locked or Unlocked block can be L ocked-Down by issuing the Lo ck­Down command. Locked-Down blocks revert to the Locked state when the device is reset or pow­ered-down.
The Lock-Down function is dependent on the WPF input pin. When WPF=0 (VIL), the blocks in the Lock-Down state (0,1,x) are protected from pro­gram, erase and protection status changes. When WPF
=1 (VIH) the Lock-Down function is disabled (1,1,1) and Locked-Down blocks can be ind ividu­ally unlocked to the (1,1,0) state by issuing the
,
software command, where they can be erased and programmed. These blocks can then be relocked (1,1,1) and unlocked (1,1,0) as desired while WPF remains high. When WPF is low , blocks that were previously Locked-Down return to the Lock-Down state (0,1,x) regardless of any changes made while WP F
was high. Device reset or power-down resets all blocks , including those in Lock-Down, to the Locked state.
Locking Operations During Erase Suspend.
Changes to block lock status can be performed during an erase suspend by using the standard locking command sequences to unlock, lock or lock-down a block. This is useful in the case when another block needs to be updated while an erase operation is in progress.
To change block locking during an erase opera­tion, first write the Erase Suspend command, then check the status register until it indicates that the erase operation has been suspended. Next write the desired Lock com mand sequence to a block and the lock status will be changed. After complet­ing any desired lock, read, or program operations, resume the erase operation with the Erase Re­sume command.
If a block is locked or locked-down during an erase suspend of the same block, the locking status bits will be changed immediately, b ut when the erase is resumed, the erase operation will complete.
Locking operations cannot be performed du ring a program suspend. Refer to Appendix D, Com­mand Interface and Program/Erase Controller State, for detailed information on which com­mands are valid during erase suspend.
21/64
Page 22
M36W832TE, M36W832BE

Table 9. Block Lock Status

Item Address Data
Block Lock Configuration
LOCK
Block is Unlocked DQ0=0
xx002
Block is Locked DQ0=1
Block is Locked-Down DQ1=1

Table 10. Protection Status

Lock Status
(WPF, DQ1, DQ0)
Current State
Current
Program/Erase
(1)
Allowed
After
Block Lock
Command
Next Lock Status
(WPF, DQ1, DQ0)
After
Block Unlock
Command
1,0,0 yes 1,0,1 1,0,0 1,1,1 0,0,0
1,0,1
(2)
no 1,0,1 1,0,0 1,1,1 0,0,1
1,1,0 yes 1,1,1 1,1,0 1,1,1 0,1,1 1,1,1 no 1,1,1 1,1,0 1,1,1 0,1,1 0,0,0 yes 0,0,1 0,0,0 0,1,1 1,0,0
0,0,1
(2)
no 0,0,1 0,0,0 0,1,1 1,0,1
0,1,1 no 0,1,1 0,1,1 0,1,1
Note: 1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block) as read
in the Read El ectronic Si gnature command with A1 = V
2. All blocks are loc ked at power-up, so the defa ul t configura tion is 001 or 101 according to WPF
3. A WPF
transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.
and A0 = VIL.
IH
(1)
After Block Lock-Down
Command
status.
After
transition
WPF
1,1,1 or 1,1,0
(3)
22/64
Page 23
M36W832TE, M36W832BE

Flash Status Register

The Status Register provides information on the current or previous Program or Erase operation. The various bits convey information and errors on the operation. To read the Status register the Read Status Register command can be issued, re­fer to Read Status Register Command section. To output the contents, the Status Register is latched on the falling edge of the Chip Enable or Output Enable signals, and can be read until Chip Enable or Output Enable returns to V
. Either Chip En-
IH
able or Output Enable must be toggled to updat e the latched data.
Bus Read operations from any address always read the Status Register during Program and Erase operations.
The bits in the Status Register are summarized in Table 11, Status Register Bits. Refer to Table 11 in conjunction with the following text descriptions.
Program/Erase Controller Status (Bit 7). The Pro­gra m/Erase Controller Status bit indicates whether the Program/Erase Controller is active or inactive. When the Program/Erase Controller Status bit is
Low (set to ‘0’), the Program/Erase Controller is active; when the bit is High (set to ‘1’), the Pro­gram/Erase Controller is inactive, and the device is ready to process a new command.
The Program/Erase Controller Status is Low im­mediately after a Program/Erase Suspend com­mand is issued until the Program/Erase Controller pauses. After the Program/Erase Controller paus­es the bit is High .
During Program, Erase, o perations the Program/ Erase Controller Status bit can be polled to find the end of the operation. Other bits in the Status Reg­ister should not be tested until the Program/Erase Controller completes the operation and the bit is High.
After the Program/Erase Cont roller completes its operation the Erase Status, Program Status, V
PPF
Status and Block Lock Status bits should be tested for errors.
Erase Suspend Status (Bit 6). The Erase Sus­pend Status bit indicates that an Erase o peration has been suspended or is going to be suspended. When the Erase Suspend Status bit is High (set to ‘1’), a Program/Erase Suspend command has been issued and the memory is waiting for a Pro­gram/Erase Resume command.
The Erase Suspend Status should only be consid­ered valid when the Program/Erase Controller Sta­tus bit is High (Program/Erase Controller inactive). Bit 7 is set within 30µs of the Program/Erase Sus­pend command being issued therefore the memo­ry may still complete the operation rather than entering the Suspend mode.
When a Program/Erase Re sume command is is­sued the Erase Suspend Status bit returns Low.
Erase Status (Bit 5). The Erase Status bit can be used to identify if the memory has failed to verify that the block has erased correctly. When the Erase Status bit is High (set to ‘1’), the Program/ Erase Controller has applied the m aximum num­ber of pulses to the block and still failed to verify that the block has erased correctly. The Erase Sta­tus bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Con­troller inactive).
Once set High, the Erase Status bit can only be re­set Low by a Clear Status Register command or a hardware reset. If set High it should be reset be­fore a new Program or Erase command is issued, otherwise the new command will appear to fail.
Program Status (Bit 4). The Program Status bit is used to identify a Program failure. When the Program Status bit is High (set to ‘1’), the Pro­gram/Erase Controller has applied the maximum number of pulses to the byte and still failed to ver­ify that it has programmed correctly. The Program Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Con­troller inactive).
Once set High, the Program Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset be­fore a new command is issued, otherwise the new command will appear to fail.
Status (Bit 3). Th e V
V
PPF
used to identify an invalid voltage on the V during Program and Erase operations. The V
Status bit can be
PPF
PPF
pin
PPF
pin is only sampled at the beginning of a Program or Erase operation. Indeterminate results can oc­cur if V
When the V voltage on the V voltage; when the V ‘1’), the V V
PPF
becomes invalid during an operation.
PPF
Status bit is Low (set to ‘0’), the
PPF
pin has a voltage that is below the
PPF
Lockout Voltage, V
pin was sampled at a valid
PPF
Status bit is High (set to
PPF
, the memory is pro-
PPLK
tected and Program and Erase operations cannot be performed.
Once set High, the V
Status bit c an only be re-
PPF
set Low by a Clear Status Register command or a hardware reset. If set High it should be reset be­fore a new Program or Erase command is issued, otherwise the new command will appear to fail.
Program Suspend Status (Bit 2). The Program Suspend Status bit indicates that a Program oper­ation has been suspended. When the Program Suspend Status bit is High (set to ‘1’), a Program/ Erase Suspend command has been issued and the memory is waiting for a Program/Erase Re­sume command. The Program Suspend Status should only be considered valid when the Pro-
23/64
Page 24
M36W832TE, M36W832BE
gram/Erase Controller Status bit is High (Program/
Erase Controller inactive). Bit 2 is set wi thin 5µs of the Program/Erase Suspend comm and being is­sued therefore the memory may still complete t he operation rather than entering the Suspend mode.
When a Program/Erase Re sume command is is­sued the Program Suspend Status bit returns Low.
Block Protection Status (Bit 1). The Block Pro­tection Status bit can be used to identify if a Pro­gram or Erase operation has tried to modify the contents of a locked block.
When the Block Protection Status bit is High (set to ‘1’), a Program or Erase operation has been at­tempted on a locked block.
Once set High, the Block Protection Status bit can only be reset Low by a Clear Status Register com­mand or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail.
Reserved (Bit 0). Bit 0 of the Status Register is reserved. Its value must be masked.
Note: Refer to Appendix C, Flowcharts and Pseudo Codes, for using the Status Register.

Table 11. Flash Status Register Bits

Bit Name Logic Level Definition
7 P/E.C. Status
6 Erase Suspend Status
5 Erase Status
4 Program Status
’1’ Ready ’0’ Busy ’1’ Suspended ’0’ In progress or Completed ’1’ Erase Error ’0’ Erase Success ’1’ Program Error ’0’ Program Success
V
3
2 Program Suspend Status
1 Block Protection Status
0 Reserved
Note: Logic level ’1’ is High, ’0’ is Low.
PPF
Status
V
’1’ ’0’ ’1’ Suspended
’0’ In Progress or Completed ’1’ Program/Erase on protected Block, Abort ’0’ No operation to protected blocks
Invalid, Abort
PPF
V
OK
PPF
24/64
Page 25
M36W832TE, M36W832BE

SRAM Operations

There are five standard operations that control the SRAM component. These are Bus Read, Bus Write, Standby/Power-down, Data Retention and Output Disable. A summary is shown in Table 2, Main Operation Modes
Read. Read operations are used to output the contents of the SRAM Array.
The SRAM is in Byte Read mode wh enev er Write Enable, WS Chip Enable, E1S at V
IH
, is at VIH, Output Enable, GS, is a t VIL,
, is at VIL, Chip Enable, E2S, is
, and UBS or LBS is at VIL.
The SRAM is in Word Read mode whenever Write Enable, WS Byte Enable inputs UBS
, is at VIH, Output Enable, GS, is a t VIL,
and LBS are both at V
and the two Chip Enable inputs, E1S, and E2S are
Don’t Care. Valid data will be available on the output pins after
a time of t
after the last stable address. If the
AVQV
Chip Enable or Output Enable access times are not met, data access will be measured from the limiting parameter (t
E1LQV
, t
E2HQV
, or t
GLQV
) rath­er than the address. Dat a out may be inde termi­nate at t
E1LQX
, t
will always be valid at t
E2HQX
and t
(see Table 20, Figures
AVQV
, but data lines
GLQX
14 and 15). Write. Write operations are used to write da ta to
the SRAM. The SRAM is in Write mode whenever
and E1S are at VIL, and E2S is at VIH. Either
WS the Chip Enable inputs, E1S Enable input, WS
, must be deas serted during ad-
and E2S, or the Write
dress transitions for subsequent write cycles.
A Write operation is initiated when E1S E2S is at V o the falling edge of E1S the falling edge of WS
and WS is at VIL. The data is latched
IH
, the rising edge of E2S or
, whichever occurs last. The Write cycle is terminated on the rising edge of E1S
, the rising edge of WS or the falling edge of
E2S, whichever occurs first. If the Output is enabled ( E1S
=VIL), then WS will return the outputs to high
GS impedance within t
WLQZ
=VIL, E2S=VIH and
of its falling edge. Care must be taken to avoid bus content ion in this type of operation. The Data input mu st be valid for t
before the rising edge of Write Enable, for
VWH
t
before the rising edge of E1S or for t
DVE1H
before the fallin g edge of E2S, whi chever occurs
IL
first, and remain valid for t
WHDX
, t
E1HAX
(see Table 21, Figure 17, 18, 19 and 20). Standby/Power-Down . The SRAM component
has a chip enabled power-down feature wh ich in­vokes an automatic standby m ode (see Table 20 and Figure 16). The SRAM is in Standby mode whenever either Chip Enable is deasserted, E1S at VIH or E2S at VIL.
Data Retention. The SRAM data retention per­formance as V
goes down to VDR are de-
DDS
scribed in Table 22, Figures 21 and 22, SRAM Low V Controlled and SRAM Low V
Data Retention AC Waveforms, E1S
DDS

Data Retention

DDS
AC Waveforms, E2S Controlled, respectively. Output Disable. The data outputs are high im-
pedance when the Output Enable, GS with Write Enable, WS, at VIH.
is at VIL,
DVE2L
or t
E2LAX
, is at V
D-
IH
25/64
Page 26
M36W832TE, M36W832BE

MAXIMUM RATIN G

Stressing the device ab ove the rating listed in the Absolute Maximum Ratings table m ay cause per­manent damage to the device. These are stress ratings only and operation of the device at these or any other conditions ab ove those i ndicated in t he Operating sections of this specificat ion is not im-

Table 12. Absolute Maximum Ratings

Symbol Parameter
T
A
T
BIAS
T
STG
V
IO
V
, V
DDF
DDQF
V
PPF
V
DDS
Note: 1. Depends on range.
Ambient Operating Temperature
Temperature Under Bias –40 125 °C Storage Te mperat ure –55 150 °C Input or Output Voltage –0.5 Flash Supply Voltage –0.6 4.1 V Program Voltage –0.6 13 V SRAM Supply Voltage –0.5 3.6 V
(1)
plied. Exposure to Absolute Maximum Rating con­ditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and ot her relevant quality docu­ments.
Value
Min Max
–40 85 °C
V
+0.5
DDQF
Unit
V
26/64
Page 27

DC AND AC PARAMETERS

This section summarizes the operat ing and mea­surement conditions, and the DC and AC charac­teristics of the device. The parameters in t he DC and AC characteristics Tables that follow, are de­rived from tests performed under the Measure­ment Conditions summarized in Table 13, Operating and AC Measurem ent Conditions. De­signers should check that the operating conditions
in their circuit match the measurement conditions when relying on the quoted parameters.
The operating and A C measurement parame ters given below (see Table 13, Operating and AC Measurement Conditions) a re those of t he stand­alone Flash and SRAM devices and some differ from those of the stacked product.

Table 13. Operating and AC Measurement Conditions

M36W832TE, M36W832BE
SRAM Flash Memory
Parameter
Min Max Min Max
V
Supply Voltage
DDF
Supply Voltage
V
DDQF
Supply Voltage
V
DDS
– – 2.7 3.6 V – – 2.7 3.6 V
2.7 3.3 – – V Ambient Operating Temperature – 40 85 – 40 85 °C Load Capacitance (C
)
L
50 50 pF Input Rise and Fall Times 3.3 5 ns Input Pulse Voltages Input and Output Timing Ref. Voltages

Figure 8. AC Measurement I/O Waveform

V
DDQ
V
0V
AI90166
DDQ
0 to V
DDQF
V
/2 V
DDQF

Figure 9. AC Me asurement Load Circuit

/2
V
DDQF
V
DDF
0 to V
DDQF
DDQF
/2
V
DDQF
25k
Units70 70 / 85
V V
Note: V
DDQ
means V
DDQF
= V
DDS
0.1µF
0.1µF
DEVICE UNDER
TEST
CL includes JIG capacitance

Table 14. Device Capacitance

Symbol Parameter Test Condition Max Unit
V
C
IN
C
OUT
Note: Sampled only, not 100% tested.
Input Capacitance Output Capacitance
= 0V, f=1 MHz
IN
V
= 0V, f=1 MHz
OUT
12 pF 16 pF
CL
25k
AI90167
27/64
Page 28
M36W832TE, M36W832BE

Table 15. DC Characteristics

Symbol Parameter Device Test Condition Min Typ Max Unit
I
LI
I
LO
I
DDS
I
DDD
I
DD
Input Leakage Current
Flash &
SRAM
Flash
Output Leakage Current
SRAM
Flash
V
Standby Current
DD
SRAM
Supply Current (Reset)
Flash
Supply Current SRAM
0V ≤ V
0V
0V
SRAM Outputs Hi-Z
EF
= V
V
DDQF
E1S
or E2S ≤ 0.3V
V
V
IN
DDS
f = f
(Address and Data
max
inputs only)
f = 0 (GS
, WS, UBS and LBS)
E1S
or E2S ≤ 0.3V
V
V
IN
DDS
f = 0, V
RPF
V
f = f
= 1/t
max
V
DDS
I
= 0 mA, f = 1MHz, CMOS
OUT
V
IN
DDQF
VOUT ≤ VDDQF,
VOUT ≤ VDDQF,
± 0.2V
DDQF
= V
≥ V
– 0.3V or V
≥ V
– 0.3V or V
DDS
= V
OUT
AVAV
= V
max
DDF
– 0.3V
DDS
IN
– 0.3V
DDS
IN
= V
max
DDS
± 0.2V
SSF
= 0mA
, CMOS levels
max
DDS
Levels
0.3V
0.3V
±2 µA
±10 µA
±1 µA
15 50 µA
82A
82A
15 50 µA
715mA
12mA
I
DDR
I
DDW
I
DDE
I
DDES
I
PP
I
PP1
I
PP2
I
PPW
Supply Current (Read)
Supply Current
(Program)
Supply Current (Erase)
Supply Current (Program/Erase Suspend)
Program Current (Read or Standby)
Program Current (Reset)
Program Current (Program)
Flash
Flash
Flash
Flash
Flash
Flash
Flash
EF
= VIL, GF
=
Program in progress
= 12V ± 5%
V
PPF
Program in progress
= V
V
PPF
Erase in progress
= 12V ± 5%
V
PPF
Erase in progress
= V
V
PPF
E
F = V
DDQF
Erase suspended
> V
V
PPF
V
≤ V
PPF
F = V
RP
Program in progress
= 12V ± 5%
V
PPF
Program in progress
= V
V
PPF
V
SSF
f = 5 MHz
IH,
DDF
DDF
± 0.2V,
DDF
DDF
± 0.2V
DDF
918mA
510mA
10 20 mA
520mA
10 20 mA
15 50 µA
400 µA
15µA
15µA
110mA
15µA
28/64
Page 29
M36W832TE, M36W832BE
Symbol Parameter Device Test Condition Min Typ Max Unit
I
PPE
V
IL
V
IH
V
OL
V
OH
V
PPL
V
PPH
V
PPLK
Program Current (Erase)
Input Low Voltage
Input High Voltage
Output Low Voltage
Output High Voltage
Program Voltage (Program or Erase operations)
Program Voltage (Program or Erase operations)
Program Voltage (Program and Erase lock-out)
Erase in progress
= 12V ± 5%
V
Flash
PPF
Erase in progress
= V
V
PPF
DDF
Flash &
SRAM
Flash &
SRAM
Flash &
SRAM
Flash &
SRAM
V
DDQF
V
DDQF
V
DDQF
V
DDQF
= V
= V
= V I
OL
= V
I
= –100µA
OH
DDS
= 100µA
DDS
DDS
DDS
= V
= V
2.7V
2.7V
DD
DD
min
min
–0.3 0.8 V
0.7V
QF
2.4 V
Flash 1.65 3.6 V
Flash 11.4 12.6 V
Flash 1 V
310mA
15µA
DD
V
DDQF
+0.4
0.1 V
V
V
Supply Voltage
V
LKO
DDF
(Program and Erase
Flash 2 V
lock-out)
29/64
Page 30
M36W832TE, M36W832BE

Figure 10. Flash Read Mode AC Waveforms

A0-A20
tAVAV VALID
tAVQV
EF
tELQV
tELQX
GF
tGLQX
DQ0-DQ15
ADDR. VALID
CHIP ENABLE

Table 16. Flash Read AC Characteristics

OUTPUTS
ENABLED
Symbol Alt Parameter
t
AVAV
t
AVQV
t
AXQX
t
EHQX
t
EHQZ
t
ELQV
t
ELQX
t
GHQX
t
GHQZ
t
GLQV
t
GLQX
Note: 1. Sampled only, not 100% tested.
2. GF
t
Address Valid to Next Address Valid Min 70 85 ns
RC
t
Address Valid to Output Valid Max 70 85 ns
ACC
(1)
t
Address Transition to Output Transition Min 0 0 ns
OH
(1)
t
(1)
(2)
(1)
(1)
(1)
(2)
(1)
may be delayed by up to t
Chip Enable High to Output Transition Min 0 0 ns
OH
t
Chip Enable High to Output Hi-Z Max 20 20 ns
HZ
t
Chip Enable Low to Output Valid Max 70 85 ns
CE
t
Chip Enable Low to Output Transition Min 0 0 ns
LZ
t
Output Enable High to Output Transition Min 0 0 ns
OH
t
Output Enable High to Output Hi-Z Max 20 20 ns
DF
t
Output Enable Low to Output Valid Max 20 20 ns
OE
t
Output Enable Low to Output Transition Min 0 0 ns
OLZ
ELQV
- t
after the fal l in g edge of EF without increasing t
GLQV
tGLQV
tEHQX
tEHQZ
tGHQX
tGHQZ
VALID
DATA VALID STANDBY
Flash Device
70 85
.
ELQV
tAXQX
AI90168b
Unit
30/64
Page 31

Figure 11. Flash Write AC Waveforms, Write Enable Controlled

M36W832TE, M36W832BE
AI90169b
tWHAX
PROGRAM OR ERASE
tAVAV
VALID
tAVWH
tWHGL
tELQV
tWHEL
tQVWPL
tQVVPL
READ
1st POLLING
STATUS REGISTER
OR DATA INPUT
A0-A20
EF
tELWL tWHEH
GF
tWHWL
WF
tWLWH
tWHDX
COMMAND CMD or DATA STATUS REGISTER
tDVWH
DQ0-DQ15
tWPHWH
WPF
tVPHWH
PPF
V
SET-UP COMMAND CONFIRM COMMAND
31/64
Page 32
M36W832TE, M36W832BE

Table 17. Flash Write AC Characteristics, Write Enable Controlled

Symbol Alt Parameter
Flash Device
Unit
70 85
t
AVAV
t
AVWH
t
DVWH
t
ELWL
t
ELQV
(1,2)
t
QVVPL
t
QVWPL
t
VPHWH
t
WHAX
t
WHDX
t
WHEH
t
WHEL
t
WHGL
t
WHWL
t
WLWH
t
WPHWH
Note: 1. Sampled only, not 100% tested.
2. Applicable if V
(1)
t
Write Cycle Time Min 70 85 ns
WC
t
Address Valid to Write Enable High Min 45 45 ns
AS
t
Data Valid to Write Enable High Min 45 45 ns
DS
t
Chip Enable Low to Write Enable Low Min 0 0 ns
CS
Chip Enable Low to Output Valid Min 70 85 ns Output Valid to V Output Valid to Write Protect Low Min 0 0 ns
t
VPSVPPF
t
AH
t
DH
t
CH
High to Write Enable High
Write Enable High to Address Transition Min 0 0 ns Write Enable High to Data Transition Min 0 0 ns Write Enable High to Chip Enable High Min 0 0 ns Write Enable High to Chip Enable Low Min 25 25 ns Write Enable High to Output Enable Low Min 20 20 ns
t
Write Enable High to Write Enable Low Min 25 25 ns
WPH
t
Write Enable Low to Write Enable High Min 45 45 ns
WP
Write Protect High to Write Enable High Min 45 45 ns
is seen as a logic input (V
PPF
PPF
Low
PPF
Min 0 0 ns
Min 200 200 ns
< 3.6V).
32/64
Page 33

Figure 12. Flash Write AC Waveforms, Chip Enable Controlled

M36W832TE, M36W832BE
AI90170b
tEHAX
PROGRAM OR ERASE
tAVAV
VALID
tAVEH
tEHGL
tELQV
tQVWPL
CMD or DATA STATUS REGISTER
tQVVPL
READ
1st POLLING
STATUS REGISTER
OR DATA INPUT
CONFIRM COMMAND
A0-A20
WF
tWLEL tEHWH
GF
tEHEL
EF
tELEH
tEHDX
tDVEH
DQ0-DQ15
tWPHEH
COMMAND
WPF
tVPHEH
PPF
V
POWER-UP AND
SET-UP COMMAND
33/64
Page 34
M36W832TE, M36W832BE

Table 18. Flash Write AC Characteristics, Chip Enable Controlled

Symbol Alt Parameter
Flash Device
Unit
70 85
t
AVAV
t
AVEH
t
DVEH
t
EHAX
t
EHDX
t
EHEL
t
EHGL
t
EHWH
t
ELEH
t
ELQV
(1,2)
t
QVVPL
t
QVWPL
t
VPHEH
t
WLEL
t
WPHEH
Note: 1. Sampled only, not 100% tested.
2. Applicable if V
(1)
t
Write Cycle Time Min 70 85 ns
WC
t
Address Valid to Chip Enable High Min 45 45 ns
AS
t
Data Valid to Chip Enable High Min 45 45 ns
DS
t
Chip Enable High to Address Transition Min 0 0 ns
AH
t
Chip Enable High to Data Transition Min 0 0 ns
DH
t
Chip Enable High to Chip Enable Low Min 25 25 ns
CPH
Chip Enable High to Output Enable Low Min 25 25 ns
t
Chip Enable High to Write Enable High Min 0 0 ns
WH
t
Chip Enable Low to Chip Enable High Min 45 45 ns
CP
Chip Enable Low to Output Valid Min 70 85 ns Output Valid to V Data Valid to Write Protect Low Min 0 0 ns
t
VPSVPPF
t
CS
High to Chip Enable High
Write Enable Low to Chip Enable Low Min 0 0 ns Write Protect High to Chip Enable High Min 45 45 ns
is seen as a logic input (V
PPF
PPF
Low
PPF
Min 0 0 ns
Min 200 200 ns
< 3.6V).
34/64
Page 35

Figure 13. Flash Power-Up and Reset AC Waveforms

EF,GF
WF,
RPF
tPHWL
tPHEL
tPHGL
M36W832TE, M36W832BE
tPHWL
tPHEL
tPHGL
tVDHPH
VDDF, VDDQF
Power-Up Reset

Table 19. Flash Power-Up and Reset AC Characteristics

Symbol Parameter Test Condition
t
PHWL
t
PHEL
t
PHGL
t
PLPH
t
VDHPH
Note: 1. The de vice Reset is possible but not guarant eed if t
2. Sampled only, not 100% tested.
3. It is important to ass ert RPF
Reset High to Write Enable Low, Chip Enable Low, Output Enable Low
(1,2)
Reset Low to Reset High Min 100 100 ns
(3)
Supply Voltages High to Reset High Min 50 50 µs
in order to all ow proper CP U i ni tializat i on during power up or reset .
PLPH
< 100ns.
During
Program and
Erase
others Min 30 30 ns
tPLPH
AI90171
Flash Device
Unit
70 85
Min 50 50 µs
35/64
Page 36
M36W832TE, M36W832BE
Figure 14. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V
tAVAV
A0-A18
tAVQV
tAXQX
DQ0-DQ15
Note: E1S = Low, E2 S = High, GS = Low, WS = High.
VALID
DATA VALIDDATA VALID
AI90180

Figure 15. SRAM Read AC Waveforms, GS Controlled

tAVAV
A0-A18
tE1LQV tE1HQZ
E1S
tE1LQX
tE2HQV
E2S
VALID
IL
tE2LQZ
tE2HQX
tGLQV
GS
tGLQX
DQ0-DQ15
tPU
V
DDS
Note: Write Enable (WS) = High. Address Valid prior to or at the same time as E1S goes Low and E2S goes High.
50% 50%
DATA VALID
tGHQZ
tPD

Figure 16. SRAM Standby AC Waveforms

E1S
E2S
I
DD
I
DDS
tPU
50%
AI07965
tPD
AI07985
36/64
Page 37

Table 20. SRAM Read AC Characteristics

Symbol Alt Parameter
M36W832TE, M36W832BE
SRAM
Unit
Min M ax
t
AVAV
t
AVQV
t
AXQX
t
E1HQZ
t
E2LQZ
t
E1LQV
t
E2HQV
t
E1LQX
t
E2HQX
t
GHQZ
t
GLQV
t
GLQX
(1)
t
PD
(1)
t
PU
Note: 1. Sampled on l y. Not 100% test ed.
t
RC
t
ACC
t
OH
t
CHZ1
t
ACS1
t
CLZ1
t
OHZ
t
OE
t
OLZ
Read Cycle Time 70 ns Address Valid to Output Valid 70 ns Address Transition to Output Transition 10 ns
Chip Enable 1 High to Output Hi-Z 25 ns
Chip Enable 1 Low or Chip Enable 2 High to Output Valid 70 ns
Chip Enable 1 Low to Output Transition 10 ns
Output Enable High to Output Hi-Z 25 ns Output Enable Low to Output Valid 35 ns Output Enable Low to Output Transition 5 ns Chip Enable 1 High or Chip Enable 2 Low to Power Down 70 ns
Chip Enable 1 Low or Chip Enable 2 High to Power Up 0 ns

Figure 17. SRAM Write AC Waveforms, E1S or E2S Controlled

tAVAV
tAVE1L
ADDRESS VALID
tAVE1H
tAVE2L
tE1LE1H
A0-A18
tE1HAX
E1S
E2S
WS
DQ0-DQ15
Note: 1. DQ0-DQ1 5 ar e hi gh impedanc e if GS = VIH.
2. If E1S
or E2S an d WS are deasse rted at the same time, DQ0-DQ15 rema in hi gh impedanc e.
tWLE1H
tWLE2L
tDVE1H
tDVE2L
tE2HE2L
tE1HDZ
tE2LDZ
INPUT VALID
tAVE2H tE2LAX
AI07966
37/64
Page 38
M36W832TE, M36W832BE

Figure 18. SRAM Write AC Waveforms, WS Controlled, GS High during Write

tAVAV
A0-A18
E1S
E2S
WS
GS
DQ0-DQ15
tAVWL
tGHQZ tWHDZ
Note 2
VALID
tAVWH
tE1LWH
tE2HWH
tWLWH
tDVWH
INPUT VALID
tWHAX
Note: 1. DQ0-DQ1 5 ar e hi gh impedanc e if GS = VIH.
or E2s an d WS are deasserted at the same tim e, DQ0-DQ15 rem ai n high impe dance.
2. If E1S

Figure 19. SRAM Write AC Waveforms, WS Controlled with GS Low

tAVAV
A0-A18
E1S
E2S
WS
DQ0-DQ15
tWLQZ
Note 3
VALID
tAVWH
tE1LWH tE2HWH
tWLWHtAVWL
tDVWH
INPUT VALID
AI07967
tWHAX
tWHQX
tWHDZ
Note: 1. If E1S, E2S and WS are deasserted at the same time, DQ0-DQ15 remain high impedance.
2. The minimum writ e cycle time (t
3. During this per i od, the I/O pins are i n output mode and input signals should not be applie d.
) is the sum of t
AVAV
WLQZ
and t
DVWH
.
38/64
AI07968
Page 39
M36W832TE, M36W832BE

Figure 20. SRAM Write Cycle Waveform, UBS and LBS Controlled GS Low,

tAVAV
A0-A18
E1S
E2S
UBS, LBS
tAVWL
WS
tWLQZ
DQ0-DQ15
Note: 1. During this period, the I/O pins are in output mode and input signals should not be applied.
Note 1
VALID
tAVBH
tBLBH
tDVBH
INPUT VALID
tBHAX
tBHQX
tBHDZ
AI07969
39/64
Page 40
M36W832TE, M36W832BE

Table 21. SRAM Write AC Characteristics

Symbol Alt Parameter
SRAM
Unit
Min Max
t
AVAV
t
AVE1L
t
AVE2H
t
AVWL,
t
AVE1H
t
AVE2L
t
AVBH
t
AVWH
t
BLBH
t
DVE1H
t
DVE2L
t
DVWH
t
DVBH
t
E1HAX
t
E2LAX
t
WHAX
t
BHAX
t
E1HDZ
t
E2LDZ
t
WHDZ
t
BHDZ
t
E1LE1H,
t
E1LWH
t
E2HE2L,
t
E2HWH
t
GHQZ
t
WHQX
t
BHQX
t
WLQZ
t
WLWH
t
WLE1H
t
WLE2L
t
WC
Write Cycle Time 70 ns
,
,
,
t
t
t
t
AS
AW
AW
BW
Address Valid to Beginning of Write 0 ns
Address Valid to Chip Enable 1 Low or Chip Enable 2 High
60 ns
Address Valid to Write Enable High 60 ns UBS, LBS Low to UBS, LBS High 60 ns
,
,
t
DW
Input Valid to End of Write 30 ns
,
,
t
WR
End of Write to Address Change 0 ns
,
,
t
t
CW1
t
CW2
t
GHZ
t
t
WHZ
t
HD
DH
WP
Address Transition to End of Write 0 ns
Chip Enable 1 Low to End of Write 60 ns
Chip Enable 2 High to End of Write 60 ns
Output Enable High to Output Hi-Z 25 ns
Write Enable High to Input Transition 10 ns
Write Enable Low to Output Hi-Z 20 ns
Write Enable Pulse Width 50 ns
40/64
Page 41
M36W832TE, M36W832BE
Figure 21. SRAM Low V
V
DDS
E1S
Figure 22. SRAM Low V
V
DDS
E2S
Data Retention AC Waveforms, E1S Controlled
DDS
DATA RETENTION MODE
V
DDS (min)
tCDR
E1S > V
Data Retention AC Waveforms, E2S Controlled
DDS
V
DDS (min)
tCDR
VDR > 1.5V
- 0.3V and E2S < 0.3V
DDS
or E2S > V
DATA RETENTION MODE
VDR > 1.5V
E2S < 0.3V
DDS
- 0.3V
V
DDS (min)
tR
AI07970
V
DDS (min)
tR
AI07982
Table 22. SRAM Low V
Data Retention Characteristic
DDS
Symbol Parameter Test Condition Min Typ Max Unit
V
I
DDDR
V
t
CDR
Note: 1. Sampled only. Not 100% tested.
Supply Current (Data Retention)
Supply Voltage (Data Retention) 1.5 3.3 V
DR
Chip Disable to Power Down 0 ns
t
Operation Recovery Time
R
= 1.5V, E1S ≥ V
DDS
V
IN
≥ V
– 0.3V or V
DDS
No input may exceed V
DDS
IN
DDS
– 0.3V,
0.3V
+ 0.3V
42A
70
ns
41/64
Page 42
M36W832TE, M36W832BE

PACKAGE MECHANICAL

Figure 23. Stacked LFBGA66 12x8mm, 8x8 array, 0.8mm pitch, Bottom View Package Outline

D D2 D1
E
E1
BALL "A1"
Note: Drawing is not to scale.
SE
A
FDFE
SD
e
b
e
ddd
A2
A1
BGA-Z12

Table 23. Stacked LFBGA66, 12x8m m, 8x8 ball arra y, 0.8mm pitch, Package Mechan ica l Data

Symbol
A 1.400 0.0551 A1 0.300 0.0118 A2 1.100 0.0433
b 0 .400 0.300 0.500 0.0157 0.0118 0.0197
D 12.000 0.4724
D1 5.600 0.2205 – D2 8.800 0.3465
ddd 0.100 0.0039
E 8.000 0.3150
E1 5.600 0.2205
e 0 .800 0.0315 – FD 1.600 0.0630 – FE 1.200 0.0472
SD 0.400 0.0157
SE 0.400 0.0157
Typ Min Ma x Typ Min Max
millimeters inches
42/64
Page 43
M36W832TE, M36W832BE

Figure 24. Stacked LFBGA66 Daisy Chain - Package Connections (Top view through package )

1211
10983
7
6
5412
AI90172b
A
B
C
D
E
F
G
H
43/64
Page 44
M36W832TE, M36W832BE

Figure 25. Stacked LFBGA66 Daisy Chain - PCB Connections proposal (Top view through package)

END
POINT
1211
109837
6
542
AI90173b
44/64
POINT
START
1
A
B
C
D
E
F
G
H
Page 45
M36W832TE, M36W832BE

PART NUMBERING

Table 24. Ordering Information Scheme

Example: M36 W 8 32T E 70 ZA 6 T
Device Type
M36 = MMP (Flash + SRAM)
Operating Voltage
W = V
SRAM Chip Size & Organization
8 = 8 Mbit (512Kb x 16 bit)
Flash Chip Size & Organization
32T = 32 Mbit (x16), Boot Block, Top configuration 32B = 32 Mbit (x16), Boot Block, Bottom configuration
SRAM Component
E = 8Mb, 0.16µm, 70ns, 3.0V
Speed
70 = 70ns 85 = 85ns
= 2.7V to 3.3V, V
DDF
DDS
= V
= 2.7V to 3.3V
DDQF
Package
ZA = LFBGA66: 12x8mm, 0.8mm pitch
Temperature Range
1 = 0 to 70°C 6 = –40 to 85°C
Option
T = Tape & Reel packing S = Special Tape
Devices are shipped from the factory with the memory content bits erased to ’1’.

Table 25. Daisy Chain Ordering Scheme

Example: M36W832TE -ZA T
Device Type
M36W832TE
Daisy Chain
-ZA = LFBGA66: 12x8mm, 0.8mm pitch
Option
T = Tape & Reel Packing
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.
45/64
Page 46
M36W832TE, M36W832BE

APPENDIX A. FLASH MEMORY BLOCK ADDRESS TABLES

Table 26. Top Boot Block Addresses, M36W832TE

#
0 4 1FF000-1FFFFF 1 4 1FE000-1FEFFF 2 4 1FD000-1FDFFF 3 4 1FC000-1FCFFF 4 4 1FB000-1FBFFF 5 4 1FA000-1FAFFF 6 4 1F9000-1F9FFF 7 4 1F8000-1F8FFF 8 32 1F0000-1F7FFF
9 32 1E8000-1EFFFF 10 32 1E0000-1E7FFF 11 32 1D8000-1DFFFF 12 32 1D0000-1D7FFF 13 32 1C8000-1CFFFF 14 32 1C0000-1C7FFF 15 32 1B8000-1BFFFF 16 32 1B0000-1B7FFF 17 32 1A8000-1AFFFF 18 32 1A0000-1A7FFF 19 32 198000-19FFFF 20 32 190000-197FFF 21 32 188000-18FFFF 22 32 180000-187FFF 23 32 178000-17FFFF 24 32 170000-177FFF 25 32 168000-16FFFF 26 32 160000-167FFF 27 32 158000-15FFFF 28 32 150000-157FFF 29 32 148000-14FFFF 30 32 140000-147FFF 31 32 138000-13FFFF 32 32 130000-137FFF 33 32 128000-12FFFF
Size
(KWord)
Address Range
34 32 120000-127FFF 35 32 118000-11FFFF 36 32 110000-117FFF 37 32 108000-10FFFF 38 32 100000-107FFF 39 32 0F8000-0FFFFF 40 32 0F00000-F7FFF 41 32 0E8000-0EFFFF 42 32 0E0000-0E7FFF 43 32 0D8000-0DFFFF 44 32 0D0000-0D7FFF 45 32 0C8000-0CFFFF 46 32 0C0000-0C7FFF 47 32 0B8000-0BFFFF 48 32 0B0000-0B7FFF 49 32 0A8000-0AFFFF 50 32 0A0000-0A7FFF 51 32 098000-09FFFF 52 32 090000-097FFF 53 32 088000-08FFFF 54 32 080000-087FFF 55 32 078000-07FFFF 56 32 070000-077FFF 57 32 068000-06FFFF 58 32 060000-067FFF 59 32 058000-05FFFF 60 32 050000-057FFF 61 32 048000-04FFFF 62 32 040000-047FFF 63 32 038000-03FFFF 64 32 030000-037FFF 65 32 028000-02FFFF 66 32 020000-027FFF 67 32 018000-01FFFF 68 32 010000-017FFF 69 32 008000-00FFFF 70 32 000000-007FFF
46/64
Page 47
M36W832TE, M36W832BE

Table 27. Bottom Boot Block Addresses, M36W832BE

#
70 32 1F8000-1FFFFF 69 32 1F0000-1F7FFF 68 32 1E8000-1EFFFF 67 32 1E0000-1E7FFF 66 32 1D8000-1DFFFF 65 32 1D0000-1D7FFF 64 32 1C8000-1CFFFF 63 32 1C0000-1C7FFF 62 32 1B8000-1BFFFF 61 32 1B0000-1B7FFF 60 32 1A8000-1AFFFF 59 32 1A0000-1A7FFF 58 32 198000-19FFFF 57 32 190000-197FFF 56 32 188000-18FFFF 55 32 180000-187FFF 54 32 178000-17FFFF 53 32 170000-177FFF 52 32 168000-16FFFF 51 32 160000-167FFF 50 32 158000-15FFFF 49 32 150000-157FFF 48 32 148000-14FFFF 47 32 140000-147FFF 46 32 138000-13FFFF 45 32 130000-137FFF 44 32 128000-12FFFF 43 32 120000-127FFF 42 32 118000-11FFFF 41 32 110000-117FFF 40 32 108000-10FFFF 39 32 100000-107FFF 38 32 0F8000-0FFFFF 37 32 0F0000-0F7FFF
Size
(KWord)
Address Range
36 32 0E8000-0EFFFF 35 32 0E0000-0E7FFF 34 32 0D8000-0DFFFF 33 32 0D0000-0D7FFF 32 32 0C8000-0CFFFF 31 32 0C0000-0C7FFF 30 32 0B8000-0BFFFF 29 32 0B0000-0B7FFF 28 32 0A8000-0AFFFF 27 32 0A0000-0A7FFF 26 32 098000-09FFFF 25 32 090000-097FFF 24 32 088000-08FFFF 23 32 080000-087FFF 22 32 078000-07FFFF 21 32 070000-077FFF 20 32 068000-06FFFF 19 32 060000-067FFF 18 32 058000-05FFFF 17 32 050000-057FFF 16 32 048000-04FFFF 15 32 040000-047FFF 14 32 038000-03FFFF 13 32 030000-037FFF 12 32 028000-02FFFF 11 32 020000-027FFF 10 32 018000-01FFFF
9 32 010000-017FFF 8 32 008000-00FFFF 7 4 007000-007FFF 6 4 006000-006FFF 5 4 005000-005FFF 4 4 004000-004FFF 3 4 003000-003FFF 2 4 002000-002FFF 1 4 001000-001FFF 0 4 000000-000FFF
47/64
Page 48
M36W832TE, M36W832BE

APPENDIX B. COMMON FLASH INTERFACE (CFI)

The Common Flash Interface is a JEDEC ap­proved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to det ermine various electrical and t iming parameters, density information and functions supported by the mem­ory. The system can interface easily with the de­vice, enabling the software to upgrade itself when necessary.
When the CFI Query Co mmand (RCFI) is issued the device enters CFI Query mode and the data

Table 28. Query Structure Overvi ew

Offset Sub-section Name Description
00h Reserved Reserved for algorithm-specific information 10h CFI Query Identification String Command set ID and algorithm data offset 1Bh System Interface Information Device timing & voltage information 27h Device Geometry Definition Flash device layout
P Primary Algorithm-specific Extended Query table
A Alternate Algorithm-specific Extended Query table
Note: Query data are always presented on the lowest order data outputs.
structure is read from the memory. Tables 28 , 29, 30, 31, 32 and 33 show the addresses used to re­trieve the data.
The CFI data structure also contains a security area where a 64 bit unique security number is writ­ten (see Table 33, Security Code area). This area can be accessed only in Read mode by the final user. It is impossible to change t he secu rity num­ber after it has been written by ST. Issue a Read command to return to Read mode.
Additional information specific to the Primary Algorithm (optional)
Additional information specific to the Alternate Algorithm (optional)

Table 29. CFI Query Identification String

Offset Data Description Value
00h 0020h Manufacturer Code ST
01h
02h-0Fh reserved Reserved
10h 0051h "Q" 11h 0052h Query Unique ASCII String "QRY" "R" 12h 0059h "Y" 13h 0003h 14h 0000h 15h 0035h 16h 0000h 17h 0000h 18h 0000h 19h 0000h 1Ah 0000h
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
88BAh 88BBh
Device Code
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code defining a specific algorithm
Address for Primary Algorithm extended Query table (see Table 31) P = 35h
Alternate Vendor Command Set and Control Interface ID Code second vendor ­specified algorithm supported (0000h means none exists)
Address for Alternate Algorithm extended Query table (0000h means none exists)
compatible
Top
Bottom
Intel
NA
NA
48/64
Page 49
M36W832TE, M36W832BE

Table 30. CFI Query System Interface Information

Offset Data Description Value
V
Logic Supply Minimum Program/Erase or Write voltage
1Bh 0027h
1Ch 0036h
1Dh 00B4h
1Eh 00C6h
1Fh 0004h
20h 0004h 21h 000Ah 22h 0000h 23h 0005h 24h 0005h 25h 0003h 26h 0000h
DDF
bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 mV
Logic Supply Maximum Program/Erase or Write voltage
V
DDF
bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 mV
V
[Programming] Supply Minimum Program/Erase voltage
PPF
bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV
[Programming] Supply Maximum Program/Erase voltage
V
PPF
bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV
n
ms
n
times typical
n
µs
n
n
ms
Typical time-out per single word program = 2
Typical time-out for Double/ Quadruple Word Program = 2 Typical time-out per individual block erase = 2 Typical time-out for full chip erase = 2 Maximum time-out for word program = 2 Maximum time-out for Double/ Quadruple Word Program = 2 Maximum time-out per individual block erase = 2 Maximum time-out for chip erase = 2
n
times typical
n
times typical
µs
n
times typical
2.7V
3.6V
11.4V
12.6V
16µs 16µs
1s
NA 512µs 512µs
8s
NA
49/64
Page 50
M36W832TE, M36W832BE

Table 31. Device Geometry Definition

Offset Word
Mode
27h 0016h 28h
29h 2Ah
2Bh
2Ch 0002h
Data Description Value
Device Size = 2
0001h 0000h
0003h 0000h
Flash Device Interface Code description
Maximum number of bytes in multi-byte program or page = 2 Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing contiguous Erase Blocks of the same size.
n
in number of bytes
4 MByte
x16
Async.
n
8
2
2Dh 2Eh
2Fh
30h 31h
32h
M28W320ECT
33h 34h
2Dh 2Eh
2Fh
30h 31h
32h
M28W320ECB
33h 34h
003Eh
0000h 0000h
0001h 0007h
0000h 0020h
0000h 0007h
0000h 0020h
0000h
003Eh
0000h 0000h
0001h
Region 1 Information Number of identical-size erase block = 003Eh+1
Region 1 Information Block size in Region 1 = 0100h * 256 byte
Region 2 Information Number of identical-size erase block = 0007h+1
Region 2 Information Block size in Region 2 = 0020h * 256 byte
Region 1 Information Number of identical-size erase block = 0007h+1
Region 1 Information Block size in Region 1 = 0020h * 256 byte
Region 2 Information Number of identical-size erase block = 003Eh=1
Region 2 Information Block size in Region 2 = 0100h * 256 byte
63
64 KByte
8
8 KByte
8
8 KByte
63
64 KByte
50/64
Page 51

Table 32. Primary Algorithm-Sp ecific Extend ed Qu ery Ta ble

Offset
P = 35h
(1)
Data Description Value
M36W832TE, M36W832BE
(P+0)h = 35h 0050h
(P+1)h = 36h 0052h "R"
Primary Algorithm extended Query table unique ASCII string “PRI”
"P"
(P+2)h = 37h 0049h "I" (P+3)h = 38h 0031h Major version number, ASCII "1"
(P+4)h = 39h 0030h Minor version number, ASCII "0" (P+5)h = 3Ah 0066h Extended Query table contents for Primary Algorithm. Address (P+5)h (P+6)h = 3Bh 0000h
(P+7)h = 3Ch 0000h (P+8)h = 3Dh 0000h
contains less significant byte.
bit 0 Chip Erase supported (1 = Yes, 0 = No) bit 1 Suspend Erase supported (1 = Yes, 0 = No) bit 2 Suspend Program supported (1 = Yes, 0 = No) bit 3 Legacy Lock/Unlock supported (1 = Yes, 0 = No) bit 4 Queued Erase supported (1 = Yes, 0 = No) bit 5 Instant individual block locking supported (1 = Yes, 0 = No) bit 6 Protection bits supported (1 = Yes, 0 = No) bit 7 Page mode read supported (1 = Yes, 0 = No) bit 8 Synchronous read supported (1 = Yes, 0 = No) bit 31 to 9 Reserved; undefined bits are ‘0’
No Yes Yes
No
No Yes Yes
No
No
(P+9)h = 3Eh 0001h Supported Functions after Suspend
Read Array, Read Status Register and CFI Query are always supported during Erase or Program operation
bit 0 Program supported after Erase Suspend (1 = Yes, 0 = No) bit 7 to 1 Reserved; undefined bits are ‘0’ Yes
(P+A)h = 3Fh 0003h Block Lock Status
(P+B)h = 40h 0000h
Defines which bits in the Block Status Register section of the Query are implemented. Address (P+A)h contains less significant byte
bit 0 Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0 = No) bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)
Yes Yes
bit 15 to 2 Reserved for future use; undefined bits are ‘0’
(P+C)h = 41h 0030h V
Logic Supply Optimum Program/Erase voltage (highest performance)
DDF
3V
bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV
(P+D)h = 42h 00C0h V
Supply Optimum Program/Erase voltage
PPF
12V bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV
(P+E)h = 43h 0001h Number of Protection register fields in JEDEC ID space.
01
"00h," indicates that 256 protection bytes are available
(P+F)h = 44h 0080h Protection Field 1: Protection Description (P+10)h = 45h 0000h 00h (P+11)h = 46h 0003h 8 Byte (P+12)h = 47h 0003h 8 Byte
This field describes user-available. One Time Programmable (OTP) Protection register bytes. Some are pre-programmed with device unique serial numbers. Others are user programmable. Bits 0–15 point to the Protection register Lock byte, the section’s first byte. The following bytes are factory pre-programmed and user-programmable.
80h
bit 0 to 7 Lock/bytes JEDEC-plane physical low address bit 8 to 15 Lock/bytes JEDEC-plane physical high address bit 16 to 23 "n" such that 2n = factory pre-programmed bytes
n
bit 24 to 31 "n" such that 2
= user programmable bytes
(P+13)h = 48h Reserved
Note: 1. See Table 29, offset 15 for P poin ter definiti on.
51/64
Page 52
M36W832TE, M36W832BE

Table 33. Security Code Area

Offset Data Description
80h 00XX Protection Register Lock 81h XXXX 82h XXXX 83h XXXX 84h XXXX 85h XXXX 86h XXXX 87h XXXX 88h XXXX
89h XXXX 8Ah XXXX 8Bh XXXX 8Ch XXXX
64 bits: unique device number
128 bits: User Programmable OTP
52/64
Page 53

APPENDIX C. FLASH MEMORY FLOWCHARTS AND PSEUDO CODES

Figure 26. Program Flow c hart and Pseud o C ode

Start
M36W832TE, M36W832BE
Write 40h or 10h
Write Address
& Data
Read Status
Register
b7 = 1
YES
b3 = 0
YES
b4 = 0
YES
b1 = 0
YES
End
NO
NO
NO
NO
V
Error (1, 2)
Error (1, 2)
Program to Protected
Block Error (1, 2)
Invalid
PPF
Program
program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0x40) ; /*or writeToFlash (any_address, 0x10) ; */
writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*V error_handler ( ) ;
if (status_register.b4==1) /*program error */ error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
invalid error */
PPF
Note: 1. Status check of b1 (Protected Block), b3 (V
a sequence.
2. If an error is foun d, the Status Register m ust be cleared before furt her Program / Erase Con troller ope rations.
Invalid) and b4 (Program Error) can be made after each program operation or after
PPF
AI90174b
53/64
Page 54
M36W832TE, M36W832BE

Figure 27. Dou bl e W or d Pr ogram Flowc hart and Pseudo Code

Start
Write 30h
Write Address 1
& Data 1 (3)
Write Address 2
& Data 2 (3)
Read Status
Register
b7 = 1
YES
b3 = 0
YES
b4 = 0
NO
NO
NO
V
Invalid
PPF
Error (1, 2)
Program
Error (1, 2)
double_word_program_command (addressToProgram1, dataToProgram1, addressToProgram2, dataToProgram2) { writeToFlash (any_address, 0x30) ;
writeToFlash (addressToProgram1, dataToProgram1) ; /*see note (3) */ writeToFlash (addressToProgram2, dataToProgram2) ; /*see note (3) */ /*Memory enters read status state after the Program command*/
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*V error_handler ( ) ;
if (status_register.b4==1) /*program error */ error_handler ( ) ;
invalid error */
PPF
YES
NO
b1 = 0
YES
End
Note: 1. Status check of b1 (Protected Block), b3 (V
a sequence.
2. If an error is foun d, the Status Register m ust be cleared before furt her Program / Erase operations.
3. Address 1 and Address 2 must be consecuti ve addresses differing only for bit A0.
Program to Protected
Block Error (1, 2)
PPF
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
Invalid) and b4 (Program Error) can be made after each program operation or after
54/64
AI90175b
Page 55

Figure 28. Quadruple W o rd P rogram Flowc hart and Pseudo Code

Start
M36W832TE, M36W832BE
Write 56h
Write Address 1
& Data 1 (3)
Write Address 2
& Data 2 (3)
Write Address 3
& Data 3 (3)
Write Address 4
& Data 4 (3)
Read Status
Register
b7 = 1
YES
quadruple_word_program_command (addressToProgram1, dataToProgram1, addressToProgram2, dataToProgram2, addressToProgram3, dataToProgram3, addressToProgram4, dataToProgram4) { writeToFlash (any_address, 0x56) ;
writeToFlash (addressToProgram1, dataToProgram1) ; /*see note (3) */
writeToFlash (addressToProgram2, dataToProgram2) ; /*see note (3) */
writeToFlash (addressToProgram3, dataToProgram3) ; /*see note (3) */
writeToFlash (addressToProgram4, dataToProgram4) ; /*see note (3) */
/*Memory enters read status state after the Program command*/
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
NO
} while (status_register.b7== 0) ;
b3 = 0
b4 = 0
b1 = 0
End
Note: 1. Status check of b1 (Protected Block), b3 (V
a sequence.
2. If an error is foun d, the Status Register m ust be cleared before furt her Program / Erase operations.
3. Address 1 to Addr ess 4 must be consecutive addresses differing only for bits A0 and A1.
NO
YES
NO
YES
NO
YES
V
Invalid
PPF
Error (1, 2)
Program
Error (1, 2)
Program to Protected
Block Error (1, 2)
PPF
if (status_register.b3==1) /*V error_handler ( ) ;
if (status_register.b4==1) /*program error */ error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
Invalid) and b4 (Program Error) can be made after each program operation or after
PPF
invalid error */
AI07950
55/64
Page 56
M36W832TE, M36W832BE

Figure 29. Program Suspend & Resume Flowchart and Pseudo Code

Start
program_suspend_command ( ) {
Write B0h
Write 70h
Read Status
Register
writeToFlash (any_address, 0xB0) ; writeToFlash (any_address, 0x70) ;
/* read status register to check if program has already completed */
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
b7 = 1
YES
b2 = 1
YES
Write FFh
Read data from
another address
Write D0h
Program Continues
NO
NO
Program Complete
Write FFh
Read Data
} while (status_register.b7== 0) ;
if (status_register.b2==0) /*program completed */ { writeToFlash (any_address, 0xFF) ; read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/
} else { writeToFlash (any_address, 0xFF) ; read_data ( ); /*read data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume program*/ } }
AI90176b
56/64
Page 57

Figure 30. Erase Flowchart and Pseudo Code

Start
Write 20h
Write Block
Address & D0h
M36W832TE, M36W832BE
erase_command ( blockToErase ) { writeToFlash (any_address, 0x20) ;
writeToFlash (blockToErase, 0xD0) ; /* only A12-A20 are significannt */ /* Memory enters read status state after
the Erase Command */
Read Status
Register
YES
YES
NO
YES
YES
NO
NO
YES
NO
NO
V
PPF
Error (1)
Command
Sequence Error (1)
Erase to Protected
Block Error (1)
b7 = 1
b3 = 0
b4, b5 = 1
b5 = 0 Erase Error (1)
b1 = 0
End
Invalid
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*V error_handler ( ) ;
if ( (status_register.b4==1) && (status_register.b5==1) ) /* command sequence error */ error_handler ( ) ;
if ( (status_register.b5==1) ) /* erase error */ error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
invalid error */
PPF
AI90177b
Note: If an error is found, the Status Register must be cleared before further Progr am/Erase o perations.
57/64
Page 58
M36W832TE, M36W832BE

Figure 31. Erase Suspend & Resume Flowchart and Pseudo Code

Start
Write B0h
Write 70h
Read Status
Register
b7 = 1
b6 = 1
Write FFh
Read data from
another block
Program/Protection Program
Block Protect/Unprotect/Lock
or or
Write D0h
Erase Continues
NO
YES
NO
YES
Erase Complete
Write FFh
Read Data
erase_suspend_command ( ) { writeToFlash (any_address, 0xB0) ;
writeToFlash (any_address, 0x70) ; /* read status register to check if erase has already completed */
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b6==0) /*erase completed */ { writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/
} else { writeToFlash (any_address, 0xFF) ; read_program_data ( ); /*read or program data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume erase*/ } }
58/64
AI90178b
Page 59

Figure 32. Lo ck i ng Ope rations Flowchart and Pseudo Cod e

Start
M36W832TE, M36W832BE
Write 60h
Write
01h, D0h or 2Fh
Write 90h
Read Status
Register
Locking change
confirmed?
YES
Write FFh
End
NO
locking_operation_command (address, lock_operation) { writeToFlash (any_address, 0x60) ; /*configuration setup*/
if (lock_operation==PROTECT) /*to protect the block*/ writeToFlash (address, 0x01) ; else if (lock_operation==UNPROTECT) /*to unprotect the block*/ writeToFlash (address, 0xD0) ; else if (lock_operation==LOCK) /*to lock the block*/ writeToFlash (address, 0x2F) ;
writeToFlash (any_address, 0x90) ;
if (readFlash (address) ! = locking_state_expected) error_handler () ; /*Check the locking state (see Read Block Signature table )*/
writeToFlash (any_address, 0xFF) ; /*Reset to Read Array mode*/ }
AI90179
59/64
Page 60
M36W832TE, M36W832BE

Figure 33. Protection Register Program Flowchart and Pseudo Code

Start
Write C0h
Write Address
& Data
Read Status
Register
b7 = 1
YES
b3 = 0
YES
b4 = 0
YES
b1 = 0
YES
End
NO
NO
NO
NO
V
Error (1, 2)
Error (1, 2)
Program to Protected
Block Error (1, 2)
Invalid
PPF
Program
protection_register_program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0xC0) ;
writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*V error_handler ( ) ;
if (status_register.b4==1) /*program error */ error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
invalid error */
PPF
AI07951
Note: 1. Status check of b1 (Protected Block), b3 (V
a sequence.
2. If an error is foun d, the Status Register m ust be cleared before furt her Program / Erase Con troller ope rations.
Invalid) and b4 (Program Error) can be made after each program operation or after
PPF
60/64
Page 61
M36W832TE, M36W832BE

APPENDIX D. FLASH MEMORY COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE

Table 34. Write State Machine Current/Next, sheet 1 of 2

Current
State
Read A rray “1” Ar ray Read Array Prog. Setup Ers. Setup Read A rray Read S t s. Read Array
Read
Status
Read
Elect.Sg.
Read CFI
Query
Lock Setup “1” Status Lock Command Error
Lock Cmd
Error Lock
(complete) Prot. Prog.
Setup
Prot. Prog.
(continue)
Prot. Prog. (complete)
Prog. Setup “1” Status Program
Program
(continue) Prog. Sus
Status
Prog. Sus
Read A rray
Prog. Sus
Read
Elect.Sg.
Prog. Sus
Read CFI
Program
(complete)
Erase Setup
Erase
Cmd.Error
Erase
(continue)
Erase Sus
Read Sts
Erase Sus
Read A rray
Erase Sus
Read
Elect.Sg.
Erase Sus
Read CFI
Erase
(complete)
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Er ase, Prog. = Program, Prot = Protec tion, Sus = Suspend.
SR
bit 7
Data
When
Read
“1” Status Read Array
Electronic
“1”
Signature
“1” CFI Read Array
“1” Status Read Array
“1” Status Read Array
“1” Status Protecti on Register P rogram
“0” Status Protectio n Register P rogram conti nue
“1” Status Read Array
“0” Status Program (continue )
“1” Status
“1” Array
Electronic
“1”
Signature
“1” CFI
“1” Status Read Array
“1” Status Erase Command Error
“1” Status Read Array
“0” Status Erase (cont i nue)
“1” Status
“1” Array
Electronic
“1”
Signature
“1” CFI
“1” Status Read Array
Read Array (FFh)
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Program
Setup
(10/40h)
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program Suspend to
Read Array
Program Suspend to
Read Array
Program Suspend to
Read Array
Program Suspend to
Read Array
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Command Input (and Next State)
Erase Setup
(20h)
Erase
Setup
Erase
Setup
Erase
Setup
Erase
Setup
Erase
Setup
Erase
Setup
Erase
Setup
Erase
Setup
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Setup
Erase
Confirm
(D0h)
Lock
(complete)
Program
(continue)
Program
(continue)
Program
(continue)
Program
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Prog/Ers Suspend
(B0h)
Read Array
Read Array
Read Array
Lock Cmd
Error
Read Array
Read Array
Read Array
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array Read Array
Erase
CmdError
Read Array
Erase Sus
Read Sts
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array Read Array
Prog/Ers
Resume
(D0h)
Lock
(complete)
Program
(continu e)
Program
(continu e)
Program
(continu e)
Program
(continu e)
Erase
(continue)
Erase
(continu e)
Erase
(continu e)
Erase
(continu e)
Erase
(continu e)
Read
Status
(70h)
Read
Status
Read
Status
Read
Status
Lock Command Error
Read
Status
Read
Status
Read
Status
Program (c ontinue)
Prog. Sus
Read Sts
Prog. Sus
Read Sts
Prog. Sus
Read Sts
Prog. Sus
Read Sts
Read
Status
Erase Command Error
Read
Status
Erase (con tinue)
Eras e Sus
Read Sts
Eras e Sus
Read Sts
Eras e Sus
Read Sts
Eras e Sus
Read Sts
Read
Status
Clear
Status
(50h)
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array Read Array
Read Array
Eras e Sus
Read Array
Eras e Sus
Read Array
Eras e Sus
Read Array
Eras e Sus
Read Array Read Array
61/64
Page 62
M36W832TE, M36W832BE

Table 35. Write State Machine Current/Next, sheet 2 of 2

Command Input (and Next State)
Current State
Read Array Read Elect.Sg. Read CFI Query Lock Setup
Read Status Read Elect.Sg. Read CFI Query Lock Set up
Read Ele ct .Sg. Read Elect.Sg. Read CFI Query Lock Se t up
Read CFI Query Read Elect.Sg. Read CFI Query Lock Setup
Lock S etup Lock Command Error Lock (com plete)
Lock Cmd Error Read Elect.Sg. Read CFI Query Lock Setup
Lock (complete) Re ad Elect.Sg. Read CFI Query Lock Setup
Prot. Prog.
Setup
Prot. Prog.
(continue)
Prot. Prog. (complete)
Prog. Setup Program
Program
(continu e)
Prog. Suspend
Read Status
Prog. Suspend
Read Array
Prog. Suspend Read El ect.Sg.
Prog. Suspend
Read CFI
Program
(complete)
Erase Setup Erase Command Error
Erase
Cmd.Error
Erase (con tinue) Erase (continue)
Erase Suspend
Read Ststus
Erase Suspend
Read Array
Erase Suspend
Read El ect.Sg.
Erase Suspend
Read CFI Query
Erase
(complete)
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Pro t = P rot ection.
Read Elect.Sg.
(90h)
Read Elec t. S g. Read CFI Query Lock Setup
Prog. Suspend Read Elec t.Sg.
Prog. Suspend Read Elec t.Sg.
Prog. Suspend Read Elec t.Sg.
Prog. Suspend Read Elec t.Sg.
Read Elect.Sg. Read CFIQuery Lock Setup
Read Elec t. S g. Read CFI Query Lock Setup
Erase Suspend Read Elec t.Sg.
Erase Suspend Read Elec t.Sg.
Erase Suspend Read Elec t.Sg.
Erase Suspend Read Elec t.Sg.
Read Elec t.Sg. R ead CFI Query Lock Setup
Read CFI
Query
(98h)
Prog. Suspend
Read CFI Query
Prog. Suspend
Read CFI Query
Prog. Suspend
Read CFI Query
Prog. Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Lock Setup
(60h)
Protectio n Register Program
Protection Register Program (continue)
Lock Setup Erase Suspend Read Array
Lock Setup Erase Suspend Read Array
Lock Setup Erase Suspend Read Array
Lock Setup Erase Suspend Read Array
Prot. Prog.
Setup (C0h)
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Program (c ontinue)
Program Suspend Read Array
Program Suspend Read Array
Program Suspend Read Array
Program Suspend Read Array
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Lock Confirm
(01h)
Confirm (2Fh)
Lock Down
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Unlock
Confirm
(D0h)
Program
(continue)
Program
(continue)
Program
(continue)
Program
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
62/64
Page 63

REVISION HIST ORY

Table 36. Document Revision History

Date Version Revision Details
16-Jul-2002 1.0 First Issue
Revision History moved to end of document. Flash and SRAM components updated. Table 2, Main Operation Modes, modified.
Flash Device: “Quadruple Word Program Command” added, “Double Word Program Command” clarified, V Program, Erase Times and Program/Erase Endurance Cycles, Table 15, DC
29-Nov-2002 2.0
24-Mar-2003 3.0
26-May-2003 3.1 Special tape option added to ordering information scheme
Characteristicss Table and to CFI Tables 30 and 31. Security block removed. Command Codes Table added, DQ0, DQ2, DQ3-DQ7 and DQ8-DQ15 parameters modified for Lock in Table 7, Flash Read Protection Register and Lock Register. 70ns Speed Class added. 100ns Speed Class removed. SRAM device: “Data Retention” on Page 25 and SRAM read and write AC characteristics (Figures 14, 15, 16, 17, 18, 19, 20, 21 and 22) modified. Figure 7, SRAM Block Diagram, added.
Document promoted to full Datasheet status. Minor corrections to SRAM Block Diagram. Input Rise and Fall Time for 70ns speed class modified in Operating and AC Measurement Conditions Table. LFBGA Connections and Daisy Chain pin numbers modified.
Maximum changed to 3.6V, Corrections to Table 8, Flash
DDQF
M36W832TE, M36W832BE
63/64
Page 64
M36W832TE, M36W832BE
Information furnished is believed to be ac curate and reliable. Howev er, STMicroel ectronics assumes no resp onsibility for t he consequ ences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implic ation or otherwise u nder any pat ent or pat ent rights of STMicroelectronics. Spec i fications mentioned in this publicatio n are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as cri t i cal compone nts in life support device s or systems without expre ss wri tten approval of STMicroelectronics.
The ST log o i s registered trademark of STMicro el ectronics
All other nam es are the pro perty of their respective owners
© 2003 STMicroelectronics - All Rights Reserved
Australi a - Brazil - Canada - China - F i nl and - France - Germany - Hong Kong - India - Israel - Ital y - Japan - Mal aysia - Malta -
Morocc o - Singapore - Spain - Sweden - Switzerl and - United Kingdom - Uni ted States
STMicroelect ro n ics GRO UP OF COMPANI ES
www.st.com
64/64
Loading...