Datasheet M36W416TG, M36W416BG Datasheet (SGS Thomson Microelectronics)

16 Mbit (1Mb x16, Boot Block) Flash Memory
and 4Mbit (256Kb x16) SRAM, Multiple Memory Product
MULTIPLE MEMORY PRODUCT
– 16 Mbit (1Mb x 16) Boot Block Flash Memory – 4 Mbit (256Kb x 16) SRAM
SUPPLY VOLTAGE
–V –V –V
ACCESS TIME: 70ns, 85ns
LOW POWER CONSUMPTION
ELECTRONIC SIGNATURE
= V
DDF DDQF
= 12V for Fast Program (optional)
PPF
– Manufacturer Code: 20h – Top Device Code, M36W416TG: 88CEh – Bottom Device Code, M36W416BG: 88CFh
FLASH MEMORY
MEMORY BLOCKS
– Parameter Blocks (Top or Bottom location) – Main Blocks
PROGRAMMING TIME
– 10µs typical – Double Word Programming Option
BLOCK LOCKING
– All blocks locked at Power up – Any combination of blocks can be locked –WP
AUTOMATIC STAND-BY MODE
PROGRAM and ERASE SUSPEND
100,000 PROGRAM/ERASE CYCLES per
for Block Lock-Down
F
BLOCK
COMMON FLASH INTERFACE
– 64 bit Security Code
SECURITY
– 64 bit user programmable OTP cells – 64 bit unique device identifier – One parameter block permanently lockable
= 2.7V to 3.3V
DDS
= V
DDS
= 2.7V to 3.3V
M36W416TG
M36W416BG
PRELIMINARY DATA
SRAM
4 Mbit (256Kb x 16)
ACCESS TIME: 70ns
LOW V
POWER DOWN FEATURES USING TWO
CHIP ENABLE INPUTS
Figure 1. Packages
DATA RETENTION: 1.5V
DDS
FBGA
Stacked LFBGA66 (ZA)
12 x 8mm
November 2002
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
1/62
M36W416TG, M36W416BG
TABLE OF CONTENTS
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. LFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Address Inputs (A0-A17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Address Inputs (A18-A19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Inputs/Outputs (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Chip Enable (EF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Output Enable (GF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Write Enable (WF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Write Protect (WPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Reset (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Chip Enable (E1S, E2S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Write Enable (WS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Output Enable (GS).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Upper Byte Enable (UBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Lower Byte Enable (LBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
V
and VDDS Supply Voltages.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
DDF
and V
V
DDQF
V
Program Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
PPF
V
and V
SSF
Supply Voltage (2.7V to 3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
DDS
Ground.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SSS
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Main Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2
Table 4. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 6. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. Device Capaci ta n ce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 6. DC Character i stics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 7. Stacked LFBGA66-12x8mm , 8x8 ball array, 0.8mm pitch, Bottom Vi ew Package Ou tline15 Table 7. Stacked LFBGA66 - 12x8mm, 8x8 ball array, 0.8 mm pitch, Package Mechanical Data . 15 Figure 8. Stacked LFBGA66 Daisy Chain - Package Connections (Top view through package) . . 16 Figure 9. Stac k ed LFBGA6 6 Daisy C hain - PC B Connect ions proposal (Top view through package).17
2/62
M36W416TG, M36W416BG
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 9. Daisy Chain Orde r ing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
FLASH DEVICE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
FLASH SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 10. Flash Block Ad d re sse s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 11. Flash Security Block and Protection Register Memory Map . . . . . . . . . . . . . . . . . . 20
FLASH BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Read.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1
Write.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Output Disable.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Automatic Standby.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
FLASH COMMAND INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Read Electronic Signature Comma nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Clear Status Regist e r Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Program/Erase Suspend Comm and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Program/Eras e Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Protection Regi ste r Pr o g ra m Comman d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Block Lock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4
Block Lock-Down Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 10. Flash Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 11. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 12. Read Block Lock Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 13. Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 14. Program, Erase Times and Program/E rase Endu ranc e Cycles . . . . . . . . . . . . . . . . 26
FLASH BLOCK LOCKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Lock-Down State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Locking Operatio n s Durin g Erase Su sp e nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 15. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 16. Protection Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3/62
M36W416TG, M36W416BG
FLASH STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Erase Status (Bit 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
V
Status (Bit 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
PP
Program Suspend Status (Bit 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Block Protection Status (Bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Reserved (Bit 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0
Table 17. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 12. Flash Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 18. Flash Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 13. Flash Write AC Wavefo r ms, Write Enable Control l e d . . . . . . . . . . . . . . . . . . . . . . . 32
Table 19. Flash Write AC Chara cte ristics, Write En a ble Controlled. . . . . . . . . . . . . . . . . . . . . 33
Figure 14. Flash Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 20. Flash Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . 35
Figu r e 1 5 . Flash Power -Up an d R e set AC W a veforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 21. Flash Power-Up and Reset AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
SRAM DEVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7
SRAM SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 16. SRAM Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
SRAM OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Standby/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Data Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8
Figure 17. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V
. . . 39
IL
Figure 18. SRAM Read AC Waveforms, GS Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 19. SRAM Standby AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 22. SRAM Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Figure 20. SRAM Write AC Waveforms, WS Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figu r e 2 1 . SRAM Write A C Wav e forms, E1S Con trolle d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 22. SRAM Write AC Waveforms, WS Controlled with GS Low . . . . . . . . . . . . . . . . . . . 43
Figure 23. SRAM Write Cycle Waveform, UBS and LBS Controlled, GS Low . . . . . . . . . . . . . 43
Table 23. SRAM Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 24. SRAM Low V Table 24. SRAM Low V
Data Retention AC Waveforms, E1S or UBS / LBS Controlled . . 45
DDS
Data Retention Characte r i stic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DDS
APPENDIX A. BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 25. Top Boot Block Addresses, M36W416TG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 26. Botto m Boo t Bl oc k Addre sse s, M36W416BG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4/62
M36W416TG, M36W416BG
APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 27. Query Stru cture Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 28. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 29. CFI Query System Interface Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 30. Device Geome try Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Table 31. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 32. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
APPENDIX C. FLOWCHARTS AND PSEUDO CODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 25. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 26. Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 27. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 54
Figure 28. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 29. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 30. Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE . . . . . . . 59
Table 33. Write State Machine Current/Next, sheet 1 of 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 34. Write State Machine Current/Next, sheet 2 of 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 35. Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
5/62
M36W416TG, M36W416BG
SUMMARY DESCRIPTION
The M36W416TG is a low voltage Multiple Memo­ry Product which combines two me mory devices; a 16 Mbit boot block F lash memory and a 4 Mbit SRAM. Recommended operating conditions do not allow both the F lash memory and the S RAM memory to be active at the same time.
The memory is offered in a Stacked LFBGA66 (12x8mm, 8 x 8 active ball, 0.8 mm pitch) package and is supplied with all the bits erased (set to ‘1’).
Table 1. Signal Names
A0-A17 Flash and SRAM Address Inputs A18-A19 Address Inputs for Flash Chip only DQ0-DQ15 Data Input/Output V
DDF
V
DDQF
Flash Power Supply Flash Power Supply for I/O Buffers
Figure 2. Logic Diagram
V
DDQF
V
M36W416TG M36W416BG
A0-A19
E
G
W
RP
WP
E1
E2
G
W
UB
LB
V
DDF
20
F F F F F
S
S
S S S S
PPF
V
DDS
16
DQ0-DQ15
V
V V V
PPF
SSF
DDS
SSS
Flash Optional Supply V oltage for Fast Program & Erase
Flash Ground SRAM Power Supply SRAM Ground
NC Not Connected Internally
Flash control functions
E
F
G W RP WP
F
F
F
F
Chip Enable input Output Enable input Write Enable input Reset input Write Protect input
SRAM control functions
, E2
E1 G W
S
S
S
S
Chip Enable inputs Output Enable input Write Enable input
6/62
V
SSF
V
SSS
AI07940
UB LB
S
S
Upper Byte Enable input Lower Byte Enable input
Figure 3. LFBGA Connections (Top view through package)
#4#387
NCNC
M36W416TG, M36W416BG
AI90254
NC
NCNCGF
654321#2#1
DDQF
V
SSF
V
A12
A13A11NCNCNC
A15 A14
DQ7
DQ14
WS
DQ15A9A16
A8 A10
DQ5
DQ4
DQ6DQ13NCWF
DDF
V
DDS
V
E2SDQ12V
RPF
SSS
DQ3DQ2
DQ10
DQ11A19WPF
PPF
V
DQ1DQ0
DQ8DQ9GSLBS
UBS
E1SA1
A2A3A6A7A18
A17
SSF
EFA0A4NCNC
A5
NC V
A
B
C
D
E
F
G
H
7/62
M36W416TG, M36W416BG
SIGNAL DESCRIPTION
See Figure 2 Logic Diagram and Table 1, Sign al Names, for a brief overview of the signals connect­ed to this de vice.
Address Inputs (A0-A17). Addresses A0-A17 are common inputs for the Flash an d the SRAM components. The Address Inputs select the cells in the memory array to access during Bu s Read operations. During Bus Write operations they con­trol the commands sent to the Command Interface of the internal state machine. The Flash memory is accessed through the Chip Enable ( Enable (W
) signals, while the SRAM i s acce sse d
F
through two Chip Enable ( ES (W
) signals.
S
Address Inputs (A18-A19). Addresses A18-A19 are inputs for the Flash component only. The Flash memory is acc essed through the Chip E n-
E
able (
) and Write Enable (WF) signals
F
Data Inputs/Outputs (DQ0-DQ15). The Data I/ O output the d ata stored at the selected addres s during a Bus Read operation or in put a c om m and or the data to be programmed durin g a Write Bus operation.
E
Flash Chip Enable (
). The Chip Enable input
F
activates the Flash memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is at V
and Reset is at VIH the device
IL
is in active mode. When Chip Enable is at V memory is deselected, the outputs are high imped­ance and the power consumption is reduced to the standby level.
Flash Output Enable (G
). The Output Enable
F
controls the data outputs during the Bus Read op­eration of the Flash memory.
W
Flash Write Enable (
). The Write Enable con-
F
trols the Bus Write operation of the Flash m emo­ry’s Command Interface. The data and address inputs are latched on the rising e dge of Chip En­able,
E
, or Write Enable, WF, whichever occurs
F
first .
Flash Write Protect (WP
). Write Protect is an
F
input that gives an additional hardware protection for each block. When Write Protect is at V Lock-Down is enabled and the protection status of the block cannot be changed. When Write Protect is at V
, the Lock-Down is disabled and the block
IH
can be locked or unlocked. (refer to T able 6, Read Protection Register and Protection Register Lock).
Flash Reset (RP
). The Reset input provides a
F
hardware reset of the Flash memory. When Reset is at V
, the memory is in reset mode: the outputs
IL
are high impedance and the current c onsumption is minimized. After Reset all blocks are in the Locked state. When Reset is at V in normal operation. Exiting reset mode the device enters read array mode, but a negative t ransition
E
) and Write
F
) and Write Enable
the
IH
, the
IL
, the device is
IH
of Chip Enable or a change of the address is re­quired to ensure valid data outputs.
SRAM Chip Enable (E1
, E2S). The Chip En-
S
able inputs activate the SRAM memory control logic, input buffers and decoders. E1 E2
at VIL deselects the memory and reduces the
S
power consumption to the standby level. E1
can also be used to control writing to the
E2
S
SRAM memory array, while W is not allowed to set E2
at VIL at the same time.
S
SRAM Write Enable (W
E
at VIL and, E1S at VIL or
F
S
rema in s at V
S
). The Write Enable in-
at VIH or
S
S
IL.
or
It
put controls writing to the SRA M memory array.
is active low .
W
S
SRAM Output E nable (G
). The Output Enable
S
gates the outputs through the data buffers during a read operation of the SRAM m emory. G
is ac-
S
tive low.
SRAM Upper Byte Enable (UB
). The Upper
S
Byte Enable enables the upper bytes for SRAM (DQ8-DQ15). UB
SRAM Lower Byte Enable (LB
is acti v e low.
S
). The Lower
S
Byte Enable enables the lower bytes for SRAM (DQ0-DQ7). LB
and V
V
DDF
is active low.
S
Supply Voltages. V
DDS
DDF
pro­vides the power supply to the internal core of the Flash Memory device. It is the main power s upply for all operations (Read, Program and Erase).
and V
V
DDQF
provides the power supply for the Flash
V
DDQF
memory I/O pins and V
Supply Voltage (2.7V to 3.3V).
DDS
provides the power
DDS
supply for t he SRAM control pins. This a llows all Outputs to be powered independently of the Flash core power supply, V V
DDS.
V
Program Supp ly Vol tage. V
PPF
DDF
. V
can be tied to
DDQF
PPF
is both a control input and a power suppl y pin for t he F lash memory. The two functions are selected by the voltage range applied to the pin. The Supply Volt­age V
and the Program Supply Vol tage V
DDF
PPF
can be applied in any order. If V
V age lower than V against program or erase, while V
is kept in a low voltage range (0V t o 3.6V)
PPF
is seen as a control input. In this case a volt-
PPF
gives an absolute protection
PPLK
PPF
> V
PP1
en­ables these functions (see Table 6, DC Character­istics for the relevant values). V
is only
PPF
sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect and program or erase op­erations continue.
If V power supply pin. In this condition V
is in the range 11.4V to 12.6V it acts as a
PPF
PPF
must be stable until the Program/Erase algorithm i s com­pleted (see Table 19 and 20).
8/62
M36W416TG, M36W416BG
V
SSF
and V
Ground. V
SSS
SSF
and V
SSS
are the ground reference for all voltage measurements in the Flash and SRAM chips, respectively.
Note: Each device in a system should have V
DF
, V
DDQF
and V
decoupled with a 0.1µF ca-
PPF
D-
FUNCTIONAL DESCRIPTION
The Flash and SRAM components have separate power supplies and grounds and are distinguished
E
by three chip enable inputs: ory and E1
and E2S for the SRAM.
S
for the Flash mem-
F
Recommended operating conditions do not allow both the Flash and the SRAM to be in active mode at the same time. The most common example is
Figure 4. Func ti onal Block Di a gram
V
DDF
E
F
G
F
W
F
RP
WP
F F
Flash Memory
16 Mbit (x16)
pacitor close to the pin. See Figure 9, AC Measurement Load Circuit. The PCB trace widths should be sufficient to carry the re­quired V
program and erase currents.
PPF
simultaneous read operations on the Flash and the SRAM which would resul t in a data bus con­tention. Therefore it is recommended to put the SRAM in the h igh impedance state whe n reading the Flash and vice versa (see Table 2 Main Oper­ation Modes for details).
V
DDQF
V
PPF
A18-A19
A0-A17
E1
E2
G
W
UB
LB
V
V
DDS
S
S
S S S S
SRAM
4 Mbit (x16)
V
SSS
SSF
DQ0-DQ15
AI07941
9/62
M36W416TG, M36W416BG
Table 2. Main Operation Modes
Operation
Mode
Read Write Block
Locking Standby
Flash Memory
Reset X X X Output
Disable
E
FGFWF
V
ILVILVIHVIH
V
ILVIHVILVIH
V
XX
IL
V
XX
IH
V
ILVIHVIHVIH
Flash must be disabled
Read
Flash must be disabled Flash must be disabled Flash must be disabled
Write
Flash must be disabled Flash must be disabled
Standby/ Power
SRAM
Down Data
Retention
Any Flash mode is allowable
Any Flash mode is allowable
Any Flash mode is allowable Output Disable
Any Flash mode is allowable
Any Flash mode is allowable
Note: X = Don’t care = VIL or VIH, V
RPFWP
V
IH
V
IH
V
IL
= 12V ± 5%.
PPFH
V
F
PPF
E1SE2SGSWSUBSLB
DQ7-DQ0 DQ15-DQ8
S
X Don’t care SRAM must be disabled Data Output
V
or
X
V
DDF
V
PPFH
Don’t care SRAM must be disabled X
IL
SRAM must be disabled Data Input
X Don’t care Any SRAM mode is allowed Hi-Z X Don’t care Any SRAM mode is allowed Hi-Z
X Don’t care Any SRAM mode is allowed Hi-Z
V
ILVIHVILVIHVIL
V
ILVIHVILVIHVIHVIL
V
ILVIHVILVIHVIL
V
ILVIH
V
ILVIH
V
ILVIH
V
IHVIL
XVILV XVILV XVILV X X X X Hi-Z
XXXX
V
IHVIL
X X X X Hi-Z
XXXX
V
ILVIHVIHVIHVIL
V
ILVIHVIHVIHVIHVIL
V
ILVIHVIHVIHVIL
IL IHVIL IL
V
IHVIH
V
IHVIH
V
Data out Word Read
IL
Data out Hi-Z V V
Hi-Z Data out
IH
Data in Word Write
IL
Data in Hi-Z
V
V
V
Hi-Z Data in
IH
IL
IH
Hi-Z
Hi-Z Hi-Z Hi-Z Hi-Z
10/62
MAXIMUM RATIN G
Stressing the device above the rating l isted in the Absolute Maximum Ratings table m ay cause per­manent damage to the device. These are stress ratings only and operation of the device at t hese or any other conditions ab ove those i ndicated in t he Operating sections of this specificat ion is not im-
Table 3. Absolute Maximum Ratings
Symbol Parameter
T
A
T
BIAS
T
STG
V
IO
V
, V
DDF
DDQF
V
PPF
V
DDS
Note: 1. Depends on range.
Ambient Operating Temperature Temperature Under Bias –40 125 °C Storage Temperature –55 150 °C Input or Output Voltage –0.5 Flash Supply Voltage –0.5 3.8 V Program Voltage –0.6 13 V SRAM Supply Voltage –0.5 3.8 V
(1)
M36W416TG, M36W416BG
plied. Exposure to Absolute Maximum Rating con­ditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality docu­ments.
Value
Min Max
–40 85 °C
V
+0.3
DDQF
Unit
V
11/62
M36W416TG, M36W416BG
DC AND AC PARAMETERS
This section summarizes the operat ing and mea­surement conditions, and the DC and AC charac­teristics of the device. The parameters in the DC and AC characteristics Tables that follow, are de­rived from tests performed under the Measure-
Table 4. Operating and AC Measurement Conditions
ment Conditions summarized in Table 4, Operating and AC Measurem ent Conditions. De­signers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters.
SRAM Flash Memory
Parameter
Min Max Min Max
V
Supply Voltage
DDF
= V
V
DDQF
DDS
Supply Voltage
– – 2.7 3.3 V
2.7 3.3 2.7 3.3 V Ambient Operating Temperature – 40 85 – 40 85 °C Load Capacitance (C
)
L
30 50 pF Input Rise and Fall Times 1V/ns 5ns Input Pulse Voltages Input and Output Timing Ref. Voltages
Figure 5. AC Measurement I/O Waveform
V
DDQ
V
0V
AI90258
Note: V
DDQ
means V
DDQF
= V
DDS
DDQ
0 to V
DDQF
V
/2 V
DDQF
Figure 6. AC Me asureme nt Load Circuit
/2
V
DDQF
V
DDF
0 to V
DEVICE UNDER
TEST
DDQF
DDQF
/2
V
DDQF
25k
Units70 70/85
V V
0.1µF
0.1µF
CL includes JIG capacitance
C
Table 5. Device Capacitance
Symbol Parameter Test Condition Typ Max Unit
V
C
IN
C
OUT
Note: Sampled o nl y, not 100% test ed.
Input Capacitance Output Capacitance
12/62
= 0V, f=1 MHz
IN
V
= 0V, f=1 MHz
OUT
12 pF 15 pF
L
25k
AI90259
M36W416TG, M36W416BG
Table 6. DC Characteristics
Symbol Parameter Device Test Condition Min Typ Max Unit
I
LI
I
LO
I
DDSVDD
I
DDD
I
DD
I
DDR
I
DDW
I
DDE
I
DDES
I
PP1
Input Leakage Current Flash & SRAM
Flash
Output Leakage Current
SRAM
Flash
Standby Current
SRAM
Supply Current (Reset) Flash
Supply Current SRAM
Supply Current (Read) Flash
Supply Current (Program)
Flash
Supply Current (Erase) Flash
Supply Current
(Program/Erase Suspend)
Program Current
(Read or Standby)
Flash
Flash
0V≤ V
0V≤V
0V ≤V
SRAM Outputs Hi-Z
E
= V
F
RP
F
E1
S
V
V
IN
f = fmax (A0-A17 and DQ0-
DQ15 only)
f = 0 (G
S
E1
S
V
IN
V
IN
RP
F
f = fmax = 1/
0.2V, I
V
IN
0.2V, I
V
IN
E
= VIL, G
F
Program in progress
V
PPF
Program in progress
V
Erase in progress V
PPF
Erase in progress
V
EF = V
Erase suspended
V
V
IN
DDQF
V
OUT
DDQF
V
OUT
DDQF,
± 0.2V
DDQF
= V
DDQ
V
DDS
– 0.2V or V
DDS
0.2V
± 0.2V
– 0.2V
IN
, WS, UBS and LBS)
V
– 0.2V
DDS
V
– 0.2V or
DDS
0.2V, f = 0
= V
SSF
OUT
± 0.2V
AVAV
= 0 mA
,
f = 1MHz,
= 0 mA
OUT
=
V
F
f = 5 MHz
IH,
= 12V ± 5%
= V
PPF
DDF
= 12V ± 5%
= V
PPF
DDF
± 0.2V,
DDQF
> V
PPF
DDF
±1 µA
±10 µA
±1 µA
15 50 µA
71A
71A
15 50 µA
5.5 12 mA
1.5 3 mA
10 20 mA
10 20 mA
10 20 mA
520mA
520mA
50 µA
400 µA
I
PP2
I
PPR
I
PPW
Program Current
(Read or Standby)
Flash
Program Current (Reset) Flash
Program Current (Program)
Flash
V
V
PPF
DDF
RP
= V
F
V
PPF
± 0.2V
SSF
= 12V ± 0.5V
Program in progress
V
= V
PPF
DDF
Program in progress
A
A
10 mA
5mA
13/62
M36W416TG, M36W416BG
Symbol Parameter Device Test Condition Min Typ Max Unit
V
= 12V ± 0.5V
I
PPE
Program Current (Erase) Flash
PPF
Erase in progress
V
= V
PPF
DDF
Erase in progress
10 mA
A
V
IL
V
IH
V
OL
V
OH
V
PP1
V
PPFH
V
PPLK
V
LKO
Input Low Voltage Flash & SRAM
Input High Voltage Flash & SRAM
Output Low Voltage Flash & SRAM
Output High Voltage Flash & SRAM
Program Voltage (Program or Erase
Flash 1.65 3. 6 V
operations) Program Voltage
(Program or Erase
Flash 11.4 12 .6 V
operations) Program Voltage
(Program and Erase lock-
Flash 1 V
out) V
Supply Voltage
DDF
(Program and Erase lock-
Flash 2 V
out)
V
DDQF
V
DDQF
V
DDQF
V
DDQF
= V I
= V
I
OH
= V
= V
OL
DDS
DDS
= VDDmin
DDS
= 100µA
= VDDmin
DDS
= –100µA
2.7V
2.7V
–0.3 0.8 V
V
DDQF
0.7
V
+0.3
DDQF
0.1 V
V
DDQ
–0.1
V
V
14/62
M36W416TG, M36W416BG
PACKAGE MECHANICAL
Figure 7. Stacked LFBGA66-12x8mm, 8x8 ball arra y, 0.8mm pitch, Bottom View Package Outline
D D2 D1
E
E1
Note: Drawing is not to scale.
SE
BALL "A1"
A
FDFE
SD
e
b
e
ddd
A2
A1
BGA-Z12
Table 7. Stacked LFBGA66 - 12x8mm, 8x8 ball array, 0.8 mm pitch, Pack age Mechanical Data
Symbol
Typ Min Max Typ Min Max
A 1.400 0.0551 A1 0.300 0.0118 A2 1.100 0.0433
b 0 .400 0.300 0.500 0.0157 0.0118 0.0197
D 12.000 0.47 24 – D1 5.600 0.2205 – D2 8.800 0.3465
ddd 0.100 0.0039
E 8.000 0.3150
E1 5.600 0.22 05
e 0 .800 0.0315 – FD 1.600 0.0630 – FE 1.200 0.0472
SD 0 .400 0.0157
SE 0.400 0.0157
millimeters inches
15/62
M36W416TG, M36W416BG
Figure 8. Stacked LFBGA66 Daisy Chain - Package Connections (Top view through package)
AI90273
#4#3
8761
5
4
32#1 #2
A
B
C
D
E
F
G
H
16/62
M36W416TG, M36W416BG
Figure 9. Stacked LFBGA66 Daisy Chain - PCB Connections proposal (Top view through package)
#4#3
AI90274
END
POINT
POINT
START
87615
4
32#2
#1
A
B
C
D
E
F
G
H
17/62
M36W416TG, M36W416BG
PART NUMBERING Table 8. Ordering Information Scheme
Example: M36W416 T G 70 ZA 6 T
Device Type
M36 = MMP (Flash + SRAM)
Operating Voltage
W = V
SRAM Chip Size & Organization
4 = 4 Mbit (256Kb x 16 bit)
Flash Chip Size & Organization
16 = 16 Mbit (x16), Boot Block
Array Matrix
T = Top Boot B = Bottom Boot
SRAM Component
G = 4Mb, 0.16µm, 70ns, 3V
= 2.7V to 3.3V, V
DDF
DDS
= V
= 2.7V to 3.3V
DDQF
Speed
70 = 70ns 85 = 85ns
Package
ZA = LFBGA66: 12x8mm, 0.8mm pitch
Temperature Range
1 = 0 to 70°C 6 = –40 to 85°C
Option
T = Tape & Reel packing
Devices are shipped from the factory with the memory content bits erased to ’1’.
Table 9. Daisy Chain Ordering Scheme
Example: M36W416TG -ZA T
Device Type
M36W416TG
Daisy Chain
-ZA = LFBGA66: 12x8mm, 0.8mm pitch
Option
T = Tape & Reel Packing
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.
18/62
FLASH DEVICE
The M36W416TG contains one 16 Mbit Flash memory. This section describes how to use the
FLASH SUMMARY DESCRIPTION
The Flash Memory is a 16 Mb it (1 Mb it x 16) non­volatile device that can be erased electrically at the block level and prog rammed in-system on a Word-by-Word basis. These operations can be performed using a single low voltage (2.7 to 3.6V) supply. V
1.65V. An optional 12V V vided to speed up customer programming.
The device features an asymmetrical blocked ar­chitecture with an array of 39 blocks: 8 Parameter Blocks of 4 KWords and 31 Main Blocks of 32 KWords. The M36W416TG has the Parameter Blocks at the top of the memory address space while the M36W416BG locates the Parameter Blocks starting from the bottom. The memory maps are shown in Figure 10, Block Addresses.
The Flash Memory features an instant, individual block locking scheme that allows any block to be locked or unlocked with no latency, enabling in­stant code and data protection. All blocks have three levels of protection. They can be locked and locked-down individually preventing any acciden­tal programming or erasure. There is an additional hardware protection against program and erase. When V against program or erase. All blocks are locked at Power Up.
is used to drive the I/O pin down to
DDQF
PPF
V
PPLK
power supply is pro-
PPF
all blocks are protected
M36W416TG, M36W416BG
Flash device and all signals refer to the Flash de­vice .
Each block can be erased separately. Erase can be suspended in order to perform either read or program in any other block and then resumed. Program can be suspended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles.
The device includes a 128 b it Protection Register and a Security Block to increase the protection of a system design. The Protection Register is divid­ed into two 64 bit segments, the first one contains a unique device number written by ST, while the second one is one-time-programmable by the us­er. The user programmable segm ent can be per­manently protected. The Security Block, parameter block 0, can be permanentl y protected by the user. Figure 11, shows the Flash Security Block Memory Map.
Program and Erase command s are written to the Command Interface of the memory. An on-chip Program/Erase Controller takes care of the tim­ings necessary for program and erase operations. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.
19/62
M36W416TG, M36W416BG
Figure 10. Flash Block Addresses
Top Boot Block Addresses
FFFFF
FF000
F8FFF
F8000
F7FFF
F0000
0FFFF
08000
07FFF
00000
Note: Also see Appendix A, Tables 25 and 26 f or a full listing of the Flash Bl ock Addresses.
4 KWords
Total of 8
4 KWord Blocks
4 KWords
32 KWords
Total of 31
32 KWord Blocks
32 KWords
32 KWords
Bottom Boot Block Addresses
FFFFF
F8000
F7FFF
F0000
0FFFF
08000
07FFF
07000
00FFF
00000
32 KWords
32 KWords
Total of 31
32 KWord Blocks
32 KWords
4 KWords
Total of 8
4 KWord Blocks
4 KWords
AI90256
Figure 11. Flash Security Block and Protection Register Memory Map
PROTECTION REGISTER
SECURITY BLOCK
Parameter Block # 0
88h
85h 84h
81h 80h
User Programmable OTP
Unique device number
Protection Register Lock 2 1 0
AI07905
20/62
FLASH BUS OPERATIONS
There are six standard bus operations that control the device. These are Bus Read, Bus Wri te, Out­put Disable, Standby, Automatic Standby and Re­set. See Table 2, Main Operation Modes, for a summary.
Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.
Read. Read Bus operations are used to output the contents of the Memory Array, the Electronic Signature, the Status Register and the Common Flash Interface. Both Chip Enable and Output En­able must be at V
in order to perform a read op-
IL
eration. The Chip Enable input should be used t o enable the device. Out put E nable shoul d be used to gate data onto th e output. The data read de­pends on the previous command written to the memory (see Command Interface section). See Figure 12, Flash Read Mode AC W av eforms , and Table 18, Flash Read AC Chara cteristics, for de­tails of when the output becomes valid.
Read mode is the default state of the device when exiting Reset or after power-up.
Write. Bus Write operations write Comm ands to the memory or latch Input Data to be programmed. A write operation is initiated when Chip Enable and Write Enable are at V V
. Commands, Input Data and Addresses are
IH
with Output Enable at
IL
latched on the rising edge of Write Enable or Chip Enable, whichever occurs first.
See Figures 13 and 14, Flash Write AC Wave­forms, and Tables 19 and 20, Flash Write AC
M36W416TG, M36W416BG
Characteristics, for details of the timing require­ments.
Output Disa bl e . The data outputs are high im­pedance when the Output Enable is at V
Standby. Stan dby disables most of the inte rnal circuitry allowing a substantial reduction of the cur­rent consumption. The memory is in stand-by when Chip Enable is at V
and the device is in
IH
read mode. The power consumption is reduced to the stand-by level and the o utputs are set to high impedance, independently from the Output Enable or Write Enable inputs. If Chip Enable switches to
during a program or erase operation, t he de-
V
IH
vice enters Standby mode when finished. Automatic Standby. Automatic Standby pro-
vides a low power consumption state during Read mode. Following a read operation, the device en­ters Automatic Standby after 150ns of bus inactiv­ity even if Chip Enable is Low, V current is reduced to I
. The data I nputs/Out-
DD1
, and the supply
IL
puts will still output data if a bus Read operation is in progress.
Reset. During Reset mode when Output Enable is Low, V
, the memory is deselected and the out-
IL
puts are high impedance. The memory is in Reset mode when Reset is at V
. The power consump-
IL
tion is reduced to the Standby level, independently from the Chip Enable, Output Enable or Write En­able inputs. If Reset is pulled to V
SS
gram or Erase, this operation is aborted and the memory content is no longer valid.
.
IH
during a Pro-
21/62
M36W416TG, M36W416BG
FLASH COMMAND INTERFACE
All Bus Write operations t o the me mory are in ter­preted by the Command Interface. Commands consist of one or more sequential Bus Write oper­ations. An internal Program/Erase Controller han­dles all timings and verifies the correct execution of the Program and Erase commands. The Pro­gram/Erase Controller provides a Status Regi ster whose output may be read at any time during, to monitor the progress of the operat ion, or the Pro­gram/Erase states. See Appendix 29, Table 33, Write State Machine Current/Next, for a summary of the Command Interface.
The Command Interface is reset to Read mode when power is first applied, when exiting from Re­set or whenever V mand sequences must be followed exactly. Any invalid combination of commands will reset the de­vice to Read mode. Refer to Table 10, Com­mands, in conjunction with the text descriptions below.
Read Memory Array Command
The Read command returns the memory to its Read mode. One Bus Write cycle is required to is­sue the Read Memory Array command and return the memory to Read mode. Subsequ ent read op­erations will read the addressed location and out­put the data. When a device Reset occurs, the memory defaults to Read mode.
Read Status Register Command
The Status Register indicates when a program or erase operation is complete and the success or failure of the operation itself. Issue a Read Status Register command to rea d the Status Register’s contents. Subsequent Bus Read op erations read the Status Register at any address, u ntil another command is issued. See Table 17, Status Register Bits, for details on the definitions of the bits.
The Read Status Register command m ay be is­sued at any time, even during a Program/Erase operation. Any Read attempt during a Program/ Erase operation will automatically output the con­tent of the Status Register.
Read Electronic Signature Command
The Read Electronic Signature command reads the Manufacturer and Device Codes and the Block Locking Status, or the Protection Register.
The Read Electronic Signature command consists of one write cycle, a subsequent read will ou tput the Manufacturer Code, the Device Code, the Block Lock and Lock-Down Status, or the Protec­tion and Lock Register. See Tables 11, 12 and 13 for the valid address.
Read CFI Query Command
The Read Query Command is used to read dat a from the Common Flash Interface (CFI) Memory
is lower than V
DD
LKO
. Com-
Area, allowing programming equi pment or appli­cations to automatically match their interface to the characteristics of the device. One Bus Write cycle is required to issue the Read Query Com­mand. Once the command is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area. See Appendix B, Common Flash Inte rface, Tables 27, 28, 29, 30, 31 and 32 for details on the information contained in the Common Flash Interface memory area.
Block Erase Command
The Block Erase com mand can be used to erase a block. It sets all the bits within the selected block to ’1’. A ll previous data in t he block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error.
Two Bus Write cycles are required to issue the command.
The first bus cycle sets up the Erase command.
The second latches the block address in the
internal state machine and starts the Program/ Erase Controller.
If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits b4 and b5 are set and the command aborts.
Erase aborts if Reset turns to V
. As data integrity
IL
cannot be guaranteed when the Erase operation is aborted, the block must be erased again.
During Erase operations the memory will accept the Read Status Re gister com mand and the P ro­gram/Erase Suspend command, all other com­mands will be ignored. Typical Erase times are given in Table 14, Program, Erase Times and Pro­gram/Erase Endurance Cycles.
See Appendix C, Figure 28 , Erase Flowchart and Pseudo Code, for a suggested flowchart for us ing the Erase command.
Program Command
The memory array can be programmed word-by­word. Two bus write cycles are required to issue the Program Command.
The first bus cycle sets up the Program
command.
The second latches the Address and the Data to
be written and starts the Program/Erase Controller.
During Program operations the memory will ac­cept the Read Status Register command and the Program/Erase Suspend command. Typical Pro­gram times are given in Table 14, Program, Erase Times and Program/Erase Endurance Cycles.
Programming aborts if Reset goe s to V
. As data
IL
integrity cannot be guaranteed when the program
22/62
M36W416TG, M36W416BG
operation is aborted, the block containing the memory location must be erased and repro­grammed.
See Appendix C, Figure 25, Program Flowchart and Pseudo Code, for the f lowchart for using the Program command.
Double Word Program Command
This feature is offered to improve the programming throughput, writing a page of two adjacent words in parallel.The two words m ust differ only for the address A0. Programm ing s hould not b e at t emp t­ed when V
is not at V
PP
be executed if V
is below V
PP
. The command can
PPFH
but the result is
PPFH
not guaranteed. Three bus write cycles are necessary to issue the
Double Word Program command.
The first bus cycle sets up the Double Word
Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and the
Data of the second word to be written and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has s tarted. Program­ming aborts if Res et goes to V
. As data integrity
IL
cannot be guaranteed when the program opera­tion is aborted, the block containing the memory location must be erased and reprogrammed.
See Appendix C, Figure 26, Double Word Pro­gram Flowchart and Pseudo Code, for the flow­chart for using the Double Word Program command.
Clear Status Register Command
The Clear Status Register comm and can be used to reset bits 1, 3, 4 and 5 in the Status Register to ‘0’. One bus write cycle is required to issue the Clear Status Register command.
The bits in the Status Register do not automatical­ly return to ‘0’ when a new Program or Erase com­mand is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command.
Program/Erase Suspend Command
The Program/Erase Suspend command is used to pause a Program or Erase operation. One bus write cycle is required to issue the Program/Erase command and pau se the Prog ram/Erase control­ler.
During Program/Erase Suspend the Command In­terface will accept the Program/Erase Resume, Read Array, Read Status Register, Read Electron­ic Signature and Read CFI Query commands. Ad­ditionally, if the suspend operation was Erase then the Program, Block Lock, Block Lock-Down or
Protection Program commands will also be ac­cepted. The block being erased may be protected by issuing the Block Protect, Block Lock or Protec­tion Program commands. When the Program/ Erase Resume comm and is issued the operation will complete. Only the blocks not being erased may be read or programmed correctly.
During a Program/Erase Suspend, the device can be placed in a pseudo-standby mode by taking Chip Ena ble to V Reset turns to V
. Program/Erase is aborted if
IH
.
IL
See Appendix C, Figure 27 , Program Suspend & Resume Flowchart and Pseudo Code, and Figure 29, Erase Suspend & Resume Flowchart and Pseudo Code for flowcharts for using the Program/ Erase Suspend command.
Program/Er ase Resume Command
The Program/Erase Resume command can be used to restart the Program/Erase Controller after a Program/Erase Suspend operation has paused it. One Bus Write cycle is required to issue the command. Once the command is issued subse­quent Bus Read operations read the Status Reg­ister.
See Appendix C, Figure 27 , Program Suspend & Resume Flowchart and Pseudo Code, and Figure 29, Erase Suspend & Resume Flowchart and Pseudo Code for flowcharts for using the Program/ Erase Resume command.
Prot e ction R e gister P rogram C om m and
The Protection Register Program command is used to Program the 64 bit user One-Time-Pro­grammable (OTP) segment of the Protection Reg­ister. The segment is programmed 16 bits at a time. When shipped all bits in the segment are set to ‘1’. The user can only program the bits to ‘0’.
Two write cycles are required to issue the Protec­tion Register Program command.
The first bus cycle sets up the Protection
Register Program command.
The second latches the Address and the Data to
be written to the Protection Register and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has started.
The segment can be protected by programming bit 1 of the Protection Lock Register. Bit 1 of the Pro­tection Lock Register prote cts bit 2 of the P rotec­tion Lock Register. Programming bit 2 of the Protection Lock Register will result in a permanent protection of the Security Block (see Figure 11, Flash Security Block and Protection Register Memory Map). Attempting to program a previously protected Protection Register will result in a Status Register error. The protection of the Protection
23/62
M36W416TG, M36W416BG
Register and/or the Security Block is not revers­ible.
The Protection Register Program cannot be sus­pended. See Appendix C, Figure 31, Protection Register Program Flowchart and Pseudo Code, for the flowchart for using the P rotection Register Program command.
Block Lock Command
The Block Lock command is used to lock a block and prevent Program or Erase operations from changing the data in it. All blocks are locked at power-up or reset.
Two Bus Write cycles are required to issue the Block Lock command.
The first bus cycle sets up the Block Lock
command.
The second Bus Write cycle latc hes the blo ck
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Table. 16 shows the protection status after issuing a Block Lock command.
The Block Lock bits are volatile, once set they re­main set until a hardware reset or power-down/ power-up. They are cleared by a Blocks Unlock command. Refer to the section, Block Locking, for a detailed explanation.
Block Unlock Command
The Blocks Unlock command i s used to unlock a block, allowing the block to be programmed or
erased. Two Bus Write cycles are requ ired to is­sue the Blocks Unlock command.
The first bus cycle sets up the Block Unlock
command.
The second Bus Write cycle latc hes the blo ck
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Table. 16 shows the protection status after issuing a Block Unlock command. Refer to the section, Block Locking, for a detailed explanation.
Block Lock-Down Command
A locked block cannot be Programmed or Erased, or have its protection status changed when WP low, V
. Whe n WPF is high, V
IL
the Lock-Down
IH,
is
F
function is disabled and the lock ed blocks can be individually unlocked by the Block Unlock com­mand.
Two Bus Write cycles are required to issue the Block Lock-Down command.
The first bus cycle sets up the Block Lock
command.
The second Bus Write cycle latc hes the blo ck
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Locked-Down blocks revert to the locked (and not locked-down) state when the device is reset on power-down. Table. 16 sho ws the protection sta­tus after issuing a Block Lock-Down command. Refer to the section, Block Locking, for a detailed explanation.
24/62
M36W416TG, M36W416BG
Table 10. Flash Commands
Bus Write Operations
Commands
Read Memory Array 1+ Write X FFh
Read Status Regist er 1+ Write X 70h
Read Electro nic Signature 1+ Write X 90h
Read CFI Query 1+ Write X 98h Read CFI Addr Query
Erase 2 Write X 20h Wr ite
Program 2 Write X
Double Word Program
Clear Status Register 1 Write X 50h Program/Erase Suspend 1 Write X B 0h Program/Erase Resume 1 Write X D0h
Block Loc k 2 Write X 60h Write
Block Unlock 2 Write X 60h Write
Block Loc k-Down 2 Write X 60h Write
Protection Register Program
Note: 1. X = Don’t Care.
2. The s i gnature addresses are li st e d in Tables 11, 12 and 13.
3. Addr 1 and Addr 2 must be consecutive Addresses differing only for A0.
No. of
Cycles
(3)
3 Write X 30h Write Addr 1
2 Write X C0h Write
1st Cycle 2nd Cycle 3nd Cycle
Bus
Op.
Addr Data
40h or
10h
Bus Op.
Read
Read
Read
Write Addr
Addr Data
Read
Addr
X
Signature
Addr
Block
Addr
Block
Address
Block
Address
Block
Address Address
(2)
Data
Status
Register
Signature
D0h
Data Input
Data Input
01h
D0h
2Fh
Data Input
Bus
Op.
Write Addr 2
Addr Data
Data Input
Table 11. Read Electronic Signature
E
Code Device
Manufacture. Code
M36W416TG
Device Code
M36W416BG
Note: RPF = VIH.
GFW
F
V
V
IL
V
V
IL
V
V
IL
A0 A1 A2-A7 A8-A19 DQ0-DQ7 DQ8-DQ15
F
ILVIH
ILVIHVIH
ILVIHVIH
V
V
IL
V V
0 Don’t Care 20h 00h
IL
0 Don’t Care CEh 88h
IL
0 Don’t Care CFh 88h
IL
25/62
M36W416TG, M36W416BG
Table 12. Read Block Lock Signature
E
Block Status
Locked Block Unlocked Block Locked-Down
Block
Note: 1. A Locked-Down Blo ck can be locked "D Q0 = 1" or unlocked "DQ0 = 0"; see Block Locking sec tion.
Table 13. Read Protection Register and Lock Register
Word
Lock
Unique ID 0 Unique ID 1 Unique ID 2 Unique ID 3 OTP 0 OTP 1 OTP 2 OTP 3
E
F
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
GFW
F
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
GFW
A0-A7 A8-A19 DQ0 DQ1 DQ2 DQ3-DQ7 DQ8-DQ15
F
A0 A1 A2-A7 A8-A11 A12-A19 DQ0 DQ1 DQ2-DQ15
F
80h Don’t Care 0
81h Don’t Care ID data ID data ID data ID data ID data 82h Don’t Care ID data ID data ID data ID data ID data 83h Don’t Care ID data ID data ID data ID data ID data 84h Don’t Care ID data ID data ID data ID data ID data 85h Don’t Care OTP data OTP data OTP data OTP data OTP data 86h Don’t Care OTP data OTP data OTP data OTP data OTP data 87h Don’t Care OTP data OTP data OTP data OTP data OTP data 88h Don’t Care OTP data OTP data OTP data OTP data OTP data
0 Don’t Care Block Address 1 0 00h 0 Don’t Care Block Address 0 0 00h
0 Don’t Care Block Address
OTP Prot.
data
Security
prot. data
(1)
X
00h 00h
1 00h
Table 14. Program, Erase Times and Program /Eras e Endur ance Cycles
Parameter Test Conditions
V
Word Program Double Word Program
Main Block Program
Parameter Block Program
Main Block Erase
Parameter Block Erase
PP
V
= 12V ±5%
PP
= 12V ±5%
V
PP
V
PP
V
= 12V ±5%
PP
V
PP
V
= 12V ±5%
PP
V
PP
V
= 12V ±5%
PP
V
PP
= V
= V
= V
= V
= V
DD
DD
DD
DD
DD
Program/Erase Cycles (per Block) 100,000 cycles
M36W416TG
Unit
Min Typ Max
10 200 µs 10 200 µs
0.16 5 s
0.32 5 s
0.02 4 s
0.04 4 s 110 s 110 s
0.8 10 s
0.8 10 s
26/62
FLASH BLOCK LOCKING
The Flash memory features an instant, individual block locking scheme that allows any block to be locked or unlocked with no latency. This locking scheme has three levels of protection.
Lock/Unlock - this first level allows software-
only control of block locking.
Lock-Down - this second level requires
hardware interaction before locking can be changed.
V
PP
V
- the third level offers a complete
PPLK
hardware protection against program and erase on all blocks.
The lock status of each block can be set to Locked, Unlocked, and Lock-Down. Table 16, de­fines all of the possible protection states (WP DQ1, DQ0), and Appendi x C, Figure 30, shows a flowchart for the locking operations.
Reading a Block’s Lock Status
The lock status of every block can be read in the Read Electronic Signature mode of the device. To enter this mode write 90h t o the device. Subse­quent reads at the a ddress s pecified in Table 12, will output the lock status of that block. The lock status is represented by DQ0 and DQ1. DQ0 indi­cates the Block Lock/Unlock status and is se t by the Lock command and cleared by the Unlock command. It is also automatically set when enter­ing Lock-Down. DQ1 indicates the Lock-Down sta­tus and is set by the Lock-Down command. It cannot be cleared by software, only by a hardware reset or power-down.
The following sections explain the operation of the locking system.
Locked State
The default status of all blocks on power-up or af­ter a hardware reset is Locked (states (0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any program or erase oper­ations attempted on a locked block will return an error in the Status Register. The Status of a Locked block can be changed to Unlocked or Lock-Down using the appropriate software com­mands. An Unlocked block can be Locked by issu­ing the Lock command.
Unlocked State
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked blocks return to the Locked state a ft er a hardware reset or when the device is powered-down. The status of an unlocked block can be changed to Locked or Locked-Down using the appropriate
M36W416TG, M36W416BG
software commands. A locked block can be un­locked by issuing the Unlock command.
Lock-Down State
Blocks that are Locked-Down (state (0,1,x))are protected from program and erase operations (as for Locked blocks) but their lock status cannot be changed using software commands alone. A Locked or Unlocked block can be Locked-Down by issuing the Lock-Down com mand. Locked-Down blocks revert to the Locked state when the device is reset or powered-down.
The Lock-Down function is dependent on the WP input pin. When WPF=0 (VIL), the blocks in the Lock-Down state (0,1,x) are protected from pro­gram, erase and protection status changes. When WP
=1 (VIH) the Lock-Down function is disabled
,
F
F
(1,1,1) and Locked-Down blocks can be ind ividu­ally unlocked to the (1,1,0) state by issuing the software command, where they can be erased and programmed. These blocks can then be relocked (1,1,1) and unlocked (1,1,0) as desired while WP remains high. When WPF is low , blocks that were previously Locked-Down return to the Lock-Down state (0,1,x) regardless of any changes made while WP
was high. Device reset or power-down
F
resets all blocks , including those in Lock-Down, to the Locked state.
Locking Operations During Erase Suspend
Changes to block lock status can be performed during an erase suspend by using the standard locking command sequences to unlock, lock or lock-down a block. This is useful in the case when another block needs to be updated while an erase operation is in progress.
To change block locking during an erase opera­tion, first write the Erase Suspend command, then check the status register until it indicates that the erase operation has been suspended. Next write the desired Lock com mand sequence to a block and the protection status will be changed. After completing any desired lock, read, or program op­erations, resume the erase operation with the Erase Resume command.
If a block is locked or locked-down during an erase suspend of the same block, the locking status bits will be changed immediately , but when the eras e is resumed, the erase operation will complete.
Locking operations cannot be performed du ring a program suspend. Refer to Appendix D, Com­mand Interface and Program/Erase Controller State, for detailed information on which com­mands are valid during erase suspend.
F
F
27/62
M36W416TG, M36W416BG
Table 15. Block Lock Status
Item Address Data
Block Lock Configuration
LOCK
Block is Unlocked DQ0=0
xx002
Block is Locked DQ0=1
Block is Locked-Down DQ1=1
Table 16. Protection Status
Protection Status
(WPF, DQ1, DQ0)
Current State
Current
Program/Erase
(1)
Allowed
After
Block Lock
Command
Next Protection Status
(WPF, DQ1, DQ0)
After
Block Unlock
Command
1,0,0 yes 1,0,1 1,0,0 1,1,1 0,0,0
1,0,1
(2)
no 1,0,1 1,0,0 1,1,1 0,0,1
1,1,0 yes 1,1,1 1,1,0 1,1,1 0,1,1 1,1,1 no 1,1,1 1,1,0 1,1,1 0,1,1 0,0,0 yes 0,0,1 0,0,0 0,1,1 1,0,0
0,0,1
(2)
no 0,0,1 0,0,0 0,1,1 1,0,1
0,1,1 no 0,1,1 0,1,1 0,1,1
Note: 1. The p rotection st atus is de fined by th e write prot ect pin and by DQ1 (‘1’ for a l ocked-dow n block) and DQ0 (‘1’ for a locked block)
as read in the Read Electroni c Signatu re command with A1 = V
2. All blocks are loc ked at power-up, so the default config uration is 00 1 or 101 accor di ng to WP
3. A WP
transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.
F
and A0 = VIL.
IH
(1)
After Block Lock-Down
Command
status.
F
After
transition
WP
F
1,1,1 or 1,1,0
(3)
28/62
FLASH STATUS REGISTER
The Status Register provides information on t he current or previous Program or Erase operation. The various bits convey information and errors on the operation. To read the Status register the Read Status Register command can be issued, re­fer to Read Status Register Command section. To output the contents, the Status Register is latched on the falling edge of the Chip Enable or Output Enable signals, and can be read until Chip Enable or Output Enable returns to V
. Either Chip En-
IH
able or Output Enable must be toggled to update the latched data.
Bus Read operations from any address always read the Status Register during Program and Erase operations.
The bits in the Status Register are summarized in Table 17, Status Register Bits. Refer to Table 17 in conjunction with the following text descriptions.
Program/Erase Controller Status (Bit 7). The Pro­gra m/Erase Controller Status bit indicates whether the Program/Erase Controller is active or inactive. When the Program/Erase Controller Status bit is Low (set to ‘0’), the Program/Erase Controller is active; when the bit is High (set to ‘1’), the Pro­gram/Erase Controller is inactive, and the device is ready to process a new command.
The Program/Erase Controller Status is Low im­mediately after a Program/Erase Suspend com­mand is issued until the Program/Erase Controller pauses. After the Program/Erase Controller paus­es the bit is High .
During Program, Erase, operations the Program/ Erase Controller Status bit can be polled to find the end of the operation. Other bits in the Status Reg­ister should not be tested until the Program/Erase Controller completes the operation and the bit is High.
After the Program/Erase Cont roller completes its operation the Erase Status, Prog ram Status, V
PP
Status and Block Lock Status bits should be tested for errors.
Erase Suspend Status (Bit 6). The Erase Sus­pend Status bit indicates that an Erase o peration has been suspended or is going to be suspended. When the Erase Suspend Status bit is High (set to ‘1’), a Program/Erase Suspend command has been issued and the memory is waiting for a Pro­gram/Erase Resume command.
The Erase Suspend Status should only be consid­ered valid when the Program/Erase Controller Sta­tus bit is High (Program/Erase Controller inactive). Bit 7 is set within 30µs of the Program/Erase Sus­pend command being issued therefore the memo­ry may still complete the operation rather than entering the Suspend mode.
M36W416TG, M36W416BG
When a Program/Erase Re sume command is is­sued the Erase Suspend Status bit returns Low.
Erase Status (Bit 5). The Erase Status bit can be used to identify if the memory has failed to verify that the block has erased correctly. When the Erase Status bit is High (set t o ‘1’), the Program/ Erase Controller has applied the max imum num­ber of pulses to the block and still failed to verify that the block has erased correctly. The Erase Sta­tus bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Con­troller inactive).
Once set High, the Erase Status bit can only be re­set Low by a Clear Status Register command or a hardware reset. If set High it should be reset be­fore a new Program or Erase command is issued, otherwise the new command will appear to fail.
Program Status (Bit 4). The Program Status bit is used to identify a Program failure. When the Program Status bit is High (set to ‘1’), the Pro­gram/Erase Controller has applied the maximum number of pulses to the byte and still failed to ver­ify that it has programmed correctly. The Program Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Con­troller inactive).
Once set High, the Program Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset be­fore a new command is issued, otherwise the new command will appear to fail.
Status (Bit 3). The VPP Status bit can be
V
PP
used to identify an invalid volt age on the V during Program and Erase operations. The V pin is only sampled at the beginning of a Program or Erase operation. Indeterminate results can oc­cur if V
When the V age on the V when the V
becomes invalid during an operation.
PP
Status bit is Low (set to ‘0’), the volt-
PP
pin was sampled at a valid voltage;
PP
Status bit is High (set to ‘1’), the V
PP
pin has a voltage that is below the VPP Lockout Voltage, V
, the memory is protected and Pro-
PPLK
gram and Erase operations cannot be performed. Once set High, the V
Status bit can only be reset
PP
Low by a Clear Status Register command or a hardware reset. If set High it should be reset be­fore a new Program or Erase command is issued, otherwise the new command will appear to fail.
Program Suspend Status (Bit 2). The Program Suspend Status bit indicates that a Program oper­ation has been suspended. When the Program Suspend Status bit is High (set to ‘1’), a Program/ Erase Suspend command has been issued and the memory is waiting for a Program/Erase Re­sume command. The Program Suspend Status should only be considered valid when the Pro-
PP
pin
PP
PP
29/62
M36W416TG, M36W416BG
gram/Erase Controller Status bit is High (Program/ Erase Controller inactive). Bit 2 is set wi thin 5µs of the Program/Erase Suspend comm and being is­sued therefore the memory may still complete t he operation rather than entering the Suspend mode.
When a Program/Erase Re sume command is is­sued the Program Suspend Status bit returns Low.
Block Protection Status (Bit 1). The Block Pro­tection Status bit can be used to identify if a Pro­gram or Erase operation has tried to modify the contents of a locked block.
When the Block Protection Status bit is High (set to ‘1’), a Program or Erase operation has been at­tempted on a locked block.
Once set High, the Block Protection Status bit can only be reset Low by a Clear Status Register com­mand or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail.
Reserved (Bit 0). Bit 0 of the Status Register is reserved. Its value must be masked.
Note: Refer to Appendix C, Flowcharts and Pseudo Codes, for using the Status Register.
Table 17. Status Register Bits
Bit Name Logic Level Definition
7 P/E.C. Status
6 Erase Suspend Status
5 Erase Status
4 Program Status
Status
3
2 Program Suspend Status
1 Block Protection Status
0 Reserved
Note: Logic level ’1’ is High, ’0’ is Low.
V
PP
’1’ Ready ’0’ Busy ’1’ Suspended ’0’ In progress or Completed ’1’ Erase Error ’0’ Erase Success ’1’ Program Error ’0’ Program Success
V
’1’ ’0’ ’1’ Suspended ’0’ In Progress or Completed ’1’ Program/Erase on protected Block, Abort ’0’ No operation to protected blocks
Invalid, Abort
PP
V
OK
PP
30/62
Figure 12. Flash Read Mode AC Waveforms
A0-A19
M36W416TG, M36W416BG
tAVAV VALID
tAVQV
E
F
tELQV
tELQX
G
F
tGLQX
DQ0-DQ15
ADDR. VALID
CHIP ENABLE
OUTPUTS
Table 18. Flash Read AC Characteristics
Symbol Alt Parameter
t
AVAV
t
AVQV
t
AXQX
t
EHQX
t
EHQZ
t
ELQV
t
ELQX
t
GHQX
t
GHQZ
t
GLQV
t
GLQX
Note: 1. Sampled only, not 100% tested.
2. G
t
Address Valid to Next Address Valid Min 70 85 ns
RC
t
Address Valid to Output Valid Max 70 85 ns
ACC
(1)
t
Address Transition to Output Transition Min 0 0 ns
OH
(1)
t
Chip Enable High to Output Transition Min 0 0 ns
OH
(1)
(2)
(1)
(1)
(1)
(2)
(1)
t
Chip Enable High to Output Hi-Z Max 20 20 ns
HZ
t
Chip Enable Low to Output Valid Max 70 85 ns
CE
t
Chip Enable Low to Output Transition Min 0 0 ns
LZ
t
Output Enable High to Output Transition Min 0 0 ns
OH
t
Output Enable High to Output Hi-Z Max 20 20 ns
DF
t
Output Enable Low to Output Valid Max 20 20 ns
OE
t
Output Enable Low to Output Transition Min 0 0 ns
OLZ
may be delayed by up to t
F
ELQV
- t
after the falling edge of EF without increasing t
GLQV
tGLQV
ENABLED
tEHQX
tEHQZ
tGHQX
tGHQZ
VALID
DATA VALID STANDBY
Flash
70 85
.
ELQV
tAXQX
AI07906
Unit
31/62
M36W416TG, M36W416BG
Figure 13. Flash Write AC Waveforms, Write Enable Contro lled
AI07907
tWHAX
PROGRAM OR ERASE
tAVAV
VALID
tAVWH
tWHGL
tELQV
tWHEL
tQVWPL
STATUS REGISTER
tQVVPL
READ
1st POLLING
STATUS REGISTER
OR DATA INPUT
A0-A19
tVPHWH
tWHWL
tWPHWH
tWHDX
tWLWH
COMMAND CMD or DATA
tELWL tWHEH
SET-UP COMMAND CONFIRM COMMAND
tDVWH
F
E
F
G
F
W
DQ0-DQ15
F
WP
V
PPF
32/62
Table 19. Flash Write AC Characteristics, Write Enable Controlled
Symbol Alt Parameter
M36W416TG, M36W416BG
Flash
Unit
70 85
t
AVAV
t
AVWH
t
DVWH
t
ELWL
t
ELQV
(1,2)
t
QVVPL
t
QVWPL
t
Note: 1. Sampled only, not 100% tested.
(1)
VPHWH
t
WHAX
t
WHDX
t
WHEH
t
WHEL
t
WHGL
t
WHWL
t
WLWH
t
WPHWH
2. Appl i cable if V
t
Write Cycle Time Min 70 85 ns
WC
t
Address Valid to Write Enable High Min 45 45 ns
AS
t
Data Valid to Write Enable High Min 45 45 ns
DS
t
Chip Enable Low to Write Enable Low Min 0 0 ns
CS
Chip Enable Low to Output Valid Min 70 85 ns Output Valid to V Output Valid to Write Protect Low Min 0 0 ns
t
VPSVPPF
t
AH
t
DH
t
CH
High to Write Enable High
Write Enable High to Address Transition Min 0 0 ns Write Enable High to Data Transition Min 0 0 ns Write Enable High to Chip Enable High Min 0 0 ns Write Enable High to Output Enable Low Min 25 25 ns Write Enable High to Output Enable Low Min 20 20 ns
t
Write Enable High to Write Enable Low Min 25 25 ns
WPH
t
Write Enable Low to Write Enable High Min 45 45 ns
WP
Write Protect High to Write Enable High Min 45 45 ns
is seen as a logic input (V
PPF
PPF
Low
PPF
Min 0 0 ns
Min 200 200 ns
< 3.6V).
33/62
M36W416TG, M36W416BG
Figure 14. Flash Write AC Waveforms, Chip Enable Controlled
AI07908
tEHAX
PROGRAM OR ERASE
tAVAV
VALID
tAVEH
tEHGL
tELQV
tQVWPL
CMD or DATA STATUS REGISTER
tQVVPL
READ
1st POLLING
STATUS REGISTER
OR DATA INPUT
CONFIRM COMMAND
A0-A19
tVPHEH
tEHEL
tWPHEH
tEHDX
tELEH
COMMAND
tWLEL tEHWH
POWER-UP AND
SET-UP COMMAND
tDVEH
F
W
F
G
F
E
DQ0-DQ15
F
WP
V
PPF
34/62
Table 20. Flash Write AC Characteristics, Chip Enable Controlled
Symbol Alt Parameter
M36W416TG, M36W416BG
Flash
Unit
70 85
t
AVAV
t
AVEH
t
DVEH
t
EHAX
t
EHDX
t
EHEL
t
EHGL
t
EHWH
t
ELEH
t
ELQV
(1,2)
t
QVVPL
t
QVWPL
(1)
t
VPHEH
t
WLEL
t
WPHEH
Note: 1. Sampled only, not 100% tested.
2. Appl i cable if V
t
Write Cycle Time Min 70 85 ns
WC
t
Address Valid to Chip Enable High Min 45 45 ns
AS
t
Data Valid to Chip Enable High Min 45 45 ns
DS
t
Chip Enable High to Address Transition Min 0 0 ns
AH
t
Chip Enable High to Data Transition Min 0 0 ns
DH
t
Chip Enable High to Chip Enable Low Min 25 25 ns
CPH
Chip Enable High to Output Enable Low Min 25 25 ns
t
Chip Enable High to Write Enable High Min 0 0 ns
WH
t
Chip Enable Low to Chip Enable High Min 45 45 ns
CP
Chip Enable Low to Output Valid Min 70 85 ns Output Valid to V Data Valid to Write Protect Low Min 0 0 ns
t
VPSVPPF
t
CS
High to Chip Enable High
Write Enable Low to Chip Enable Low Min 0 0 ns Write Protect High to Chip Enable High Min 45 45 ns
is seen as a logic input (V
PPF
PPF
Low
PPF
Min 0 0 ns
Min 200 200 ns
< 3.6V).
35/62
M36W416TG, M36W416BG
Figure 15. Flash Power-Up and Reset AC Waveforms
EF,G
WF,
RP
V
Table 21. Flash Power-Up and Reset AC Characteristics
Symbol Parameter Test Condition
t
PHWL
t
PHEL
t
PHGL
t
PLPH
t
VDHPH
Note: 1. The de vice Reset is possible but not guaranteed if t
F
F
tVDHPH
, V
DDF
DDQF
Reset High to Write Enable Low, Chip Enable Low, Output Enable Low
(1,2)
Reset Low to Reset High Min 100 100 ns
(3)
Supply Voltages High to Reset High Min 50 50 µs
2. Sampled only, not 100% tested.
3. It is im portant to ass ert RP
in order to allow proper CPU initialization during power up or reset.
F
tPHWL
tPHEL tPHGL
Power-Up Reset
During
Program and
Eras e
others Min 30 30 ns
< 100ns.
PLPH
tPHWL
tPHEL
tPHGL
tPLPH
AI07909b
Flash
Unit
70 85
Min 50 50 µs
36/62
SRAM DEV ICE
This section describes ho w t o u se t he SRAM and all signals refer to it.
SRAM SUMMARY DESCRIPTION
The SRAM is a 4 Mbit asynchronous random ac­cess memory which features super low voltage op­eration and low current consumption with an access time of 70 ns under all conditions. The
Figure 16. SRAM Logic Diagram
DATA IN DRIVERS
M36W416TG, M36W416BG
memory operations can be performed using a sin­gle low voltage supply, 2.7V to 3.3V, which is the same as the Flash component’s voltage supply.
A0-A10
ROW DECODER
COLUMN DECODER
256Kb x 16 RAM Array
2048 x 2048
A11-A17
POWER-DOWN
CIRCUIT
SENSE AMPS
DQ0-DQ7
DQ8-DQ15
UB
S
W
S
G
S
LB
S
UB
S
LB
S
E1 E2
AI
S S
07939
37/62
M36W416TG, M36W416BG
SRAM OPERATIONS
There are five standard operations that control the SRAM component. These are Bus Read, Bus Write, Standby/Power-down, Data Retention and Output Disable. A summary is shown in Table 2, Main Operation Modes
Read. Read operations are used to output the contents of the SRAM Array. The SRAM is in Read mode whenever Write Enable, W put Enable, G V
, Chip Enable, E2S, is at VIH, and one or both of
IL
the Byte Enable inputs, UB
, is at VIL, Chip Enable , E1S, is at
S
S
Valid data will be available on the output pins after a time of t
after the last stable address. If the
AVQV
Chip Enable or Output Enable ac cess times are not met, data access will be measured fro m the limiting parameter (t
E1LQV
, t er than the address. Dat a out may be inde termi­nate at t will always be valid at t
E1LQX
, t
E2HQX
and t
(see Table 22, Figures
AVQV
17 and 18). Write. Write operations are used to write da ta to
the SRAM. The SRAM is in Write mode whenever
and E1S are at VIL, and E2S is at VIH. Either
W
S
the Chip Enable inputs, E1 Enable input, W
, must be deasserted durin g ad-
S
S
dress transitions for subsequent write cycles. A Write operation is initiated when E1
E2
is at VIH and WS is at VIL. The data is latched
S
on the falling edge of E1
, the rising edge of E 2
S
or the falling edg e of WS, whichever occurs last. The Write cycle is terminated on the ri sing edge of
, is a t VIH, Out-
S
and LBS is/are at VIL.
, or t
E2HQV
, but data lines
GLQX
GLQV
) rath-
and E2S, or the Write
is at VIL,
S
E1
, the rising edge of WS or the falling e dge of
S
E2
, whichever occurs first.
S
If the Output is enabled (E1 G pedance within t
), then WS will return the outputs to high im-
S=VIL
of its falling edge. Care must
WLQZ
, E2S=VIH and
S=VIL
be taken to avoid bus contention in this type of op­eration. The Data input must be valid for t fore the rising edge of Write Enable, for t before the rising edge of E 1S or for t the falling edge of E2 remain valid for t
, whichever occurs first, and
S
WHDX
, t
E1HAX
or t
E2LAX
23, Figures 20, 21, 22 and 23). Standby/Power-Down. The SRAM component
has a chip enabled power-down feature wh ich in­vokes an automatic standby mode (see Table 22, Figure 19). The SRAM is in Standby mode when­ever either Chip Enable is deas serted, E1 or E2S at VIL. It is also possible when UBS and LB are at VIH.
Data Retention. The SRAM data retention per­formance as V
goes down to VDR are de-
DDS
scribed in Table 24 and Figure 24. In E1 controlled data retention mode, the minimum standby current mode is entered when E1 E2
V
S
V
S
– 0.2V and E2S≤ 0.2V or
DDS
– 0.2V. In E2S controlled data reten-
DDS
tion mode, minimum standby current mode is en­tered wh en E2
Output Disa bl e . The data outputs are high im-
S
0.2V.
S
pedance when the Output Enable, G with Write Enable, WS, at VIH.
DVWH
DVE1H
before
DVE2L
(see Table
at V
S
, is at V
S
be-
IH
S
S
IH
38/62
M36W416TG, M36W416BG
Figure 17. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V
tAVAV
A0-A17
VALID
tAVQV
tAXQX
DQ0-DQ15
DATA VALIDDATA VALID
AI07942
Note: E1S = Low, E2S = High, GS = Low, WS = High.
Figure 18. SRAM Read AC Waveforms, GS Controlled
tAVAV
A0-A17
E1
S
E2
S
tE1LQV tE1HQZ
tE1LQX
tE2HQV
tE2HQX
tBLQV
VALID
tE2LQZ
tBHQZ
IL
, LB
UB
S
S
tBLQX
tGLQV
G
S
tGHQZ
tGLQX
DQ0-DQ15
DATA VALID
Note: Write Enable (WS) = High. Address Valid prior to or at the same time as E1S, UBS and LBS going Low.
Figure 19. SRAM Standby AC Waveforms
E1
S
E2
S
I
DD
tPU
50%
AI07943
tPD
AI07913
39/62
M36W416TG, M36W416BG
Table 22. SRAM Read AC Characteristics
Symbol Alt Parameter
SRAM
Unit
Min Max
t
AVAV
t
AVQV
t
AXQX
t
BHQZ
t
BLQV
t
BLQX
t
E1LQV
t
E2HQV
t
E1LQX
t
E2HQX
t
E1HQZ
t
E2LQZ
t
GHQZ
t
GLQV
t
GLQX
(1)
t
PD
(1)
t
PU
Note: 1. Sampl e d only. Not 100% tested.
t
RC
t
ACC
t
OH
t
BHZ
t
AB
t
BLZ
t
ACS1
t
CLZ1
t
HZCE
t
OHZ
t
OE
t
OLZ
Read Cycle Time 70 ns Address Valid to Output Valid 70 ns Address Transition to Output Transition 10 ns UBS, LBS Disable to Hi-Z Output UBS, LBS Access Time UBS, LBS Enable to Low-Z Output
Chip Enable 1 Low or Chip Enable 2 High to Output Valid 70 ns
Chip Enable 1 Low or Chip Enable 2 High to Output Transition
Chip Enable High or Chip Enable 2 Low to Output Hi-Z 25 ns
Output Enable High to Output Hi-Z 25 ns Output Enable Low to Output Valid 35 ns Output Enable Low to Output Transition 5 ns Chip Enable 1 High or Chip Enable 2 Low to Power Down 70 ns
Chip Enable 1 Low or Chip Enable 2 High to Power Up 0 ns
25 ns 70 ns
5ns
10 ns
40/62
Figure 20. SRAM Write AC Waveforms, WS Controlled
tAVAV
M36W416TG, M36W416BG
A0-A17
VALID
tAVWH
E1
E2
tE1LWH
S
S
tWHAX
tE2HWH
tAVWL
W
S
tWLWH
tBLWH
UB
, LB
S
S
G
S
tDVWH
INPUT VALID
AI07944
DQ0-DQ15
tGHQZ tWHDZ
Note 2
Note: WS, E1S, E2S, UBS and/or LBS must be asserted to initiate a write cycle. Ou tp ut Enable (GS) = Low (otherwis e , DQ0-DQ 15 are hig h
impedance). If E1
2. The I /O pins are in output mode and input signal s must not be applied.
, E2S and WS are deasserted at the s ame time, DQ0-DQ15 remai n high impedance.
S
41/62
M36W416TG, M36W416BG
Figure 21. SRAM Write AC Waveforms, E1S Controlled
tAVAV
A0-A17
E1
S
E2
S
W
S
UB
, LB
S
S
G
S
DQ0-DQ15
tGHQZ
Note 3
VALID
tAVE1H tAVE2L
tAVE1L
tAVE2H tE2LAX
tE1LE1H
tE2HE2L
tE1HAX
tWLE1H tWLE2L
tBLE1H
tBLE2L
tDVE1H tDVE2L
tE1HDZ
tE2LDZ
INPUT VALID
AI07945
Note: 1. WS, E1S, E2S, UBS and/or LBS must be asserted to initiate a write cycle. Output Enable (GS) = Low (otherwise, DQ0-DQ15 are high
impedance). If E1
, E2S and WS are deasserted at the sa m e time, DQ0-DQ15 remain high impe dance.
2. If E1
S
3. The I /O pins are in output mode and input signal s must not be applied.
, E2S and WS are deasserted at the same time, DQ0-DQ15 remain high impedance.
S
42/62
Figure 22. SRAM Write AC Waveforms, WS Controlled with GS Low
tAVAV
M36W416TG, M36W416BG
A0-A17
VALID
tAVWH
tE1LWH tE2HWH
E1
S
E2
S
tBLWH
UB
, LB
S
S
tWLWHtAVWL
W
S
tWLQZ
DQ0-DQ15
tDVWH
INPUT VALID
Note: 1. If E1S, E2S and WS are deasserted at the sa m e time, DQ0-DQ15 remain high impe dance.
tWHAX
tWHQX
tWHDZ
AI07946
Figure 23. SRAM Write Cycle Waveform, UBS and LBS Controlled, GS Low
tAVAV
A0-A17
E1
S
E2
S
tAVBL
, LB
UB
S
S
W
S
DQ0-DQ15
Note: 1. If E1S, E2S and WS are deasserted at the sa m e time, DQ0-DQ15 remain high impe dance.
VALID
tAVBH
tE1LBH tE2HBH
tWLBH
tBLBH
tDVBH
INPUT VALID
tBHDZ
tBHAX
AI07947
43/62
M36W416TG, M36W416BG
Table 23. SRAM Write AC Characteristics
Symbol Alt Parameter
SRAM
Unit
Min Max
t
AVAV
t
AVE1L
t
AVE2H
t
AVWL,
t
AVBL
t
AVE1H
t
AVE2L
t
AVWH
t
BLWH
t
BLE1H
t
BLE2L
t
AVBH
t
BLBH
t
DVE1H
t
DVE2L
t
DVWH
t
DVBH
t
E1HAX
t
E2LAX
t
WHAX
t
BHAX
t
E1HDZ
t
E2LDZ
t
WHDZ
t
BHDZ
t
E1LE1H
t
E1LBH
t
E1LWH
t
E2HE2L,
t
E2HBH,
t
E2HWH
t
GHQZ
t
WHQX
t
WLBH
t
WLQZ
t
WLWH
t
WLE1H
t
WLE2L
t
WC
Write Cycle Time 70 ns
,
,
,
t
t
t
t
t
AS
AW
AW
BW
BW
Address Valid to Beginning of Write 0 ns
Address Valid to Chip Enable 1 Low or Chip Enable 2 High
60 ns
Address Valid to Write Enable High 60 ns
UBS, LBS Valid to End of Write
UBS, LBS Low to UBS, LBS High
60 ns
60 ns
,
,
t
DW
Input Valid to End of Write 30 ns
,
,
t
WR
End of Write to Address Change 0 ns
,
,
t
HD
Address Transition to End of Write 0 ns
,
t
CW1
t
CW2
t
GHZ
t t
t
WHZ
t
DH
WP
WP
Chip Enable 1 Low to End of Write 60 ns
Chip Enable 2 High to End of Write 60 ns
Output Enable High to Output Hi-Z 25 ns Write Enable High to Input Transition 5 ns Write Enable Low to UBS, LBS High
50 ns
Write Enable Low to Output Hi-Z 25 ns
Write Enable Pulse Width 50 ns
44/62
M36W416TG, M36W416BG
Figure 24. SRAM Low V
V
DDS
E1S or UBS, LB
S
Table 24. SRAM Low V
Data Retention AC Waveforms, E1S or UBS / LBS Controlled
DDS
DATA RETENTION MODE
V
DDS (min)
tCDR
Data Retention Characteristic
DDS
V
tR
DDS (min)
AI07918
Symbol Parameter Test Condition Min Typ Max Unit
I
DDDR
V
t
CDR
t
Note: 1 . All other Inputs V
Supply Current (Data Retention)
Supply Voltage (Data
DR
Retention) Chip Disable to Power Down 0 ns Operation Recovery Time 70 ns
R
2. Sampled only. Not 100% tested.
= 1.5V, E1
V
DDS
V
V
IN
DDS
V
IH
–0.2V or V
DDS
0.2V.
IL
V
S
– 0.2V or V
DDS
– 0.2V,
IN
0.2V
31A
1.5 3.3 V
45/62
M36W416TG, M36W416BG
APPENDIX A. BLOCK ADDRESS TABLES
Table 25. Top Boot Block Addresses, M36W416TG
#
0 4 FF000-FFFFF 1 4 FE000-FEFFF 2 4 FD000-FDFFF 3 4 FC000-FCFFF 4 4 FB000-FBFFF 5 4 FA000-FAFFF 6 4 F9000-F9FFF 7 4 F8000-F8FFF
8 32 F0000-F7FFF 99 32 E8000-EFFFF 10 32 E0000-E7FFF 11 32 D8000-DFFFF 12 32 D0000-D7FFF 13 32 C8000-CFFFF 14 32 C0000-C7FFF 15 32 B8000-BFFFF 16 32 B0000-B7FFF 17 32 A8000-AFFFF 18 32 A0000-A7FFF 19 32 98000-9FFFF 20 32 90000-97FFF 21 32 88000-8FFFF 22 32 80000-87FFF 23 32 78000-7FFFF 24 32 70000-77FFF 25 32 68000-6FFFF 26 32 60000-67FFF 27 32 58000-5FFFF 28 32 50000-57FFF 29 32 48000-4FFFF 30 32 40000-47FFF 31 32 38000-3FFFF 32 32 30000-37FFF 33 32 28000-2FFFF 34 32 20000-27FFF 35 32 18000-1FFFF 36 32 10000-17FFF 37 32 08000-0FFFF 38 32 00000-07FFF
Size
(KWord)
Address Range
Table 26. Bottom Boot Block Addresses, M36W416BG
#
38 32 F8000-FFFFF 37 32 F0000-F7FFF 36 32 E8000-EFFFF 35 32 E0000-E7FFF 34 32 D8000-DFFFF 33 32 D0000-D7FFF 32 32 C8000-CFFFF 31 32 C0000-C7FFF 30 32 B8000-BFFFF 29 32 B0000-B7FFF 28 32 A8000-AFFFF 27 32 A0000-A7FFF 26 32 98000-9FFFF 25 32 90000-97FFF 24 32 88000-8FFFF 23 32 80000-87FFF 22 32 78000-7FFFF 21 32 70000-77FFF 20 32 68000-6FFFF 19 32 60000-67FFF 18 32 58000-5FFFF 17 32 50000-57FFF 16 32 48000-4FFFF 15 32 40000-47FFF 14 32 38000-3FFFF 13 32 30000-37FFF 12 32 28000-2FFFF 11 32 20000-27FFF 10 32 18000-1FFFF
9 32 10000-17FFF 8 32 08000-0FFFF 7 4 07000-07FFF 6 4 06000-06FFF 5 4 05000-05FFF 4 4 04000-04FFF 3 4 03000-03FFF 2 4 02000-02FFF 1 4 01000-01FFF 0 4 00000-00FFF
Size
(KWord)
Address Range
46/62
M36W416TG, M36W416BG
APPENDIX B. COMMON FLASH INTERFACE (CFI)
The Common Flash Interface is a JEDEC ap­proved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to det ermine various electrical and t iming parameters, density information and functions supported by the mem­ory. The system can interface easily with the de­vice, enabling the software to upgrade itself when necessary.
When the CFI Query Co mmand (RCFI) is issued the device enters CFI Query mode and the data
Table 27. Query Structure Overview
Offset Sub-section Name Description
00h Reserved Reserved for algorithm-specific information 10h CFI Query Identification String Command set ID and algorithm data offset 1Bh System Interface Information Device timing & voltage information 27h Device Geometry Definition Flash device layout
P Primary Algorithm-specific Extended Query table
A Alternate Algorithm-specific Extended Query table
Note: Query data are always presented on the lowest order data outputs.
structure is read from the memory. Tables 27, 28, 29, 30, 31 and 32 show the addresses used to re­trieve the data.
The CFI data structure also contains a security area where a 64 bit unique security number is writ­ten (see Table 32, Security Code area). This area can be accessed only in Read mode by the final user. It is impossible to change the security num ­ber after it has been written by ST. Issue a Read command to return to Read mode.
Additional information specific to the Primary Algorithm (optional)
Additional information specific to the Alternate Algorithm (optional)
Table 28. CFI Query Identification String
Offset Data Description Value
00h 0020h Manufacturer Code ST
01h
02h-0Fh reserved Reserved
10h 0051h "Q" 11h 0052h Query Unique ASCII String "QRY" "R" 12h 0059h "Y" 13h 0003h 14h 0000h 15h 0035h 16h 0000h 17h 0000h 18h 0000h 19h 0000h 1Ah 0000h
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
88CEh 88CFh
Device Code
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code defining a specific algorithm
Address for Primary Algorithm extended Query table (see Table 30) P = 35h
Alternate Vendor Command Set and Control Interface ID Code second vendor ­specified algorithm supported (0000h means none exists)
Address for Alternate Algorithm extended Query table (0000h means none exists)
compatible
Top
Bottom
Intel
NA
NA
47/62
M36W416TG, M36W416BG
Table 29. CFI Query System Interface Information
Offset Data Description Value
V
Logic Supply Minimum Program/Erase or Write voltage
1Bh 0027h
1Ch 0036h
1Dh 00B4h
1Eh 00C6h
1Fh 0004h 20h 0004h 21h 000Ah 22h 0000h 23h 0005h 24h 0005h 25h 0003h 26h 0000h
DD
bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 mV
Logic Supply Maximum Program/Erase or Write voltage
V
DD
bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 mV
V
[Programming] Supply Minimum Program/Erase voltage
PP
bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV
[Programming] Supply Maximum Program/Erase voltage
V
PP
bit 7 to 4 HEX value in volts
bit 3 to 0 BCD value in 100 mV Typical time-out per single word program = 2 Typical time-out for Double Word Program = 2 Typical time-out per individual block erase = 2 Typical time-out for full chip erase = 2 Maximum time-out for word program = 2 Maximum time-out for Double Word Program = 2 Maximum time-out per individual block erase = 2 Maximum time-out for chip erase = 2
n
n
µs
n
µs
n
ms
n
ms
n
times typical
times typical
n
times typical
n
times typical
2.7V
3.6V
11.4V
12.6V
16µs 16µs
1s
NA 512µs 512µs
8s
NA
48/62
Table 30. Device Geometry Definition
Offset Word
Mode
27h 0015h 28h
29h 2Ah
2Bh
2Ch 0002h
Data Description Value
Device Size = 2
0001h 0000h
0002h 0000h
Flash Device Interface Code description
Maximum number of bytes in multi-byte program or page = 2 Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing contiguous Erase Blocks of the same size.
n
in number of bytes
M36W416TG, M36W416BG
2 MByte
x16
Async.
n
4
2
M36W416TG
M36W416BG
2Dh 2Eh
2Fh
30h 31h
32h 33h
34h
2Dh 2Eh
2Fh
30h 31h
32h 33h
34h
001Eh
0000h 0000h
0001h 0007h
0000h 0020h
0000h 0007h
0000h 0020h
0000h
001Eh
0000h 0000h
0001h
Region 1 Information Number of identical-size erase block = 001Eh+1
Region 1 Information Block size in Region 1 = 0100h * 256 byte
Region 2 Information Number of identical-size erase block = 0007h+1
Region 2 Information Block size in Region 2 = 0020h * 256 byte
Region 1 Information Number of identical-size erase block = 0007h+1
Region 1 Information Block size in Region 1 = 0020h * 256 byte
Region 2 Information Number of identical-size erase block = 001Eh+1
Region 2 Information Block size in Region 2 = 0100h * 256 byte
31
64 KByte
8
8 KByte
8
8 KByte
31
64 KByte
49/62
M36W416TG, M36W416BG
Table 31. Primary Algorithm-Specific Extended Qu ery Ta bl e
Offset
P = 35h
(1)
Data Description Value
(P+0)h = 35h 0050h (P+1)h = 36h 0052h "R"
Primary Algorithm extended Query table unique ASCII string “PRI”
"P"
(P+2)h = 37h 0049h "I" (P+3)h = 38h 0031h Major version number, ASCII "1"
(P+4)h = 39h 0030h Minor version number, ASCII "0" (P+5)h = 3Ah 0066h Extended Query table contents for Primary Algorithm. Address (P+5)h (P+6)h = 3Bh 0000h (P+7)h = 3Ch 0000h (P+8)h = 3Dh 0000h
contains less significant byte.
bit 0 Chip Erase supported (1 = Yes, 0 = No) bit 1 Suspend Erase supported (1 = Yes, 0 = No) bit 2 Suspend Program supported (1 = Yes, 0 = No) bit 3 Legacy Lock/Unlock supported (1 = Yes, 0 = No) bit 4 Queued Erase supported (1 = Yes, 0 = No) bit 5 Instant individual block locking supported (1 = Yes, 0 = No) bit 6 Protection bits supported (1 = Yes, 0 = No) bit 7 Page mode read supported (1 = Yes, 0 = No) bit 8 Synchronous read supported (1 = Yes, 0 = No) bit 31 to 9 Reserved; undefined bits are ‘0’
No Yes Yes
No
No Yes Yes
No
No
(P+9)h = 3Eh 0001h Supported Functions after Suspend
Read Array, Read Status Register and CFI Query are always supported during Erase or Program operation
bit 0 Program supported after Erase Suspend (1 = Yes, 0 = No)
bit 7 to 1 Reserved; undefined bits are ‘0’ Yes (P+A)h = 3Fh 0003h Block Lock Status (P+B)h = 40h 0000h
Defines which bits in the Block Status Register section of the Query are implemented. Address (P+A)h contains less significant byte
bit 0 Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0 = No)
bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)
Yes Yes
bit 15 to 2 Reserved for future use; undefined bits are ‘0’ (P+C)h = 41h 0030h V
Logic Supply Optimum Program/Erase voltage (highest performance)
DD
3V bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV
(P+D)h = 42h 00C0h V
Supply Optimum Program/Erase voltage
PP
12V bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV
(P+E)h = 43h 0001h Number of Protection register fields in JEDEC ID space.
01
"00h," indicates that 256 protection bytes are available
(P+F)h = 44h 0080h Protection Field 1: Protection Description (P+10)h = 45h 0000h 00h (P+11)h = 46h 0003h 8 Byte (P+12)h = 47h 0003h 8 Byte
This field describes user-available. One Time Programmable (OTP) Protection register bytes. Some are pre-programmed with device unique serial numbers. Others are user programmable. Bits 0–15 point to the Protection register Lock byte, the section’s first byte. The following bytes are factory pre-programmed and user-programmable.
80h
bit 0 to 7 Lock/bytes JEDEC-plane physical low address bit 8 to 15 Lock/bytes JEDEC-plane physical high address
n
bit 16 to 23 "n" such that 2 bit 24 to 31 "n" such that 2
= factory pre-programmed bytes
n
= user programmable bytes
(P+13)h = 48h Reserved
Note: 1. See Table 28, offset 15 for P point er definitio n.
50/62
Table 32. Security Code Area
Offset Data Description
80h 00XX Protection Register Lock 81h XXXX 82h XXXX 83h XXXX 84h XXXX 85h XXXX 86h XXXX 87h XXXX 88h XXXX
64 bits: unique device number
64 bits: User Programmable OTP
M36W416TG, M36W416BG
51/62
M36W416TG, M36W416BG
APPENDIX C. FLOWCHARTS AND PSEUDO CODES
Figure 25. Program Flow c hart and Pseudo Code
Start
Write 40h or 10h
Write Address
& Data
Read Status
Register
b7 = 1
YES
b3 = 0
YES
b4 = 0
YES
b1 = 0
YES
End
NO
NO
NO
NO
V
PPF
Error (1, 2)
Error (1, 2)
Program to Protected
Block Error (1, 2)
Invalid
Program
program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0x40) ; /*or writeToFlash (any_address, 0x10) ; */
writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*V error_handler ( ) ;
if (status_register.b4==1) /*program error */ error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
invalid error */
PPF
AI07919
Note: 1. Status check of b1 (Protected Block), b3 (V
a sequence.
2. If an er ror is found, the Status Register must be cleare d before further Program/ Erase Con troller ope rations.
Invalid) and b4 (Program Error) can be made after each program operation or after
PPF
52/62
Figure 26. Doubl e W or d Pr og ram Fl owchart and Pseudo Code
Start
M36W416TG, M36W416BG
Write 30h
Write Address 1
& Data 1 (3)
Write Address 2
& Data 2 (3)
Read Status
Register
b7 = 1
YES
b3 = 0
YES
b4 = 0
NO
NO
NO
V
Invalid
PPF
Error (1, 2)
Program
Error (1, 2)
double_word_program_command (addressToProgram1, dataToProgram1, addressToProgram2, dataToProgram2) { writeToFlash (any_address, 0x30) ;
writeToFlash (addressToProgram1, dataToProgram1) ; /*see note (3) */ writeToFlash (addressToProgram2, dataToProgram2) ; /*see note (3) */ /*Memory enters read status state after the Program command*/
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*V error_handler ( ) ;
if (status_register.b4==1) /*program error */ error_handler ( ) ;
invalid error */
PPF
YES
NO
b1 = 0
YES
End
Note: 1. Status check of b1 (Protected Block), b3 (V
a sequence.
2. If an er ror is found, the Status Register must be cleare d before further Program/ Erase operations.
3. Address 1 and Address 2 must be consecutive addresse s differing only for bit A0.
Program to Protected
Block Error (1, 2)
PPF
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
Invalid) and b4 (Program Error) can be made after each program operation or after
AI07920
53/62
M36W416TG, M36W416BG
Figure 27. Program Suspend & Resume Flowchart and Pseudo Code
Start
program_suspend_command ( ) {
Write B0h
Write 70h
Read Status
Register
writeToFlash (any_address, 0xB0) ; writeToFlash (any_address, 0x70) ;
/* read status register to check if program has already completed */
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
b7 = 1
YES
b2 = 1
YES
Write FFh
Read data from
another address
Write D0h
Program Continues
NO
NO
Program Complete
Write FFh
Read Data
} while (status_register.b7== 0) ;
if (status_register.b2==0) /*program completed */ { writeToFlash (any_address, 0xFF) ; read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/
} else { writeToFlash (any_address, 0xFF) ; read_data ( ); /*read data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume program*/ } }
AI07921
54/62
Figure 28. Erase Flowchart and Pseudo Code
Start
Write 20h
Write Block
Address & D0h
M36W416TG, M36W416BG
erase_command ( blockToErase ) { writeToFlash (any_address, 0x20) ;
writeToFlash (blockToErase, 0xD0) ; /* only A12-A20 are significannt */
/* Memory enters read status state after
the Erase Command */
Read Status
Register
YES
YES
NO
YES
YES
NO
NO
YES
NO
NO
V
PPF
Error (1)
Command
Sequence Error (1)
Erase to Protected
Block Error (1)
b7 = 1
b3 = 0
b4, b5 = 1
b5 = 0 Erase Error (1)
b1 = 0
End
Invalid
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*V error_handler ( ) ;
if ( (status_register.b4==1) && (status_register.b5==1) ) /* command sequence error */ error_handler ( ) ;
if ( (status_register.b5==1) ) /* erase error */ error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
invalid error */
PPF
AI07922
Note: If an error is fo und, the Stat us Register must be cleared before fu rther Program /Erase operations.
55/62
M36W416TG, M36W416BG
Figure 29. Erase Suspend & Resume Flowchart and Pseudo Code
Start
Write B0h
Write 70h
Read Status
Register
b7 = 1
b6 = 1
Write FFh
Read data from
another block
Program/Protection Program
Block Protect/Unprotect/Lock
or or
Write D0h
Erase Continues
NO
YES
NO
YES
Erase Complete
Write FFh
Read Data
erase_suspend_command ( ) { writeToFlash (any_address, 0xB0) ;
writeToFlash (any_address, 0x70) ; /* read status register to check if erase has already completed */
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b6==0) /*erase completed */ { writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/
} else { writeToFlash (any_address, 0xFF) ; read_program_data ( ); /*read or program data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume erase*/ } }
56/62
AI07923
Figure 30. Lo ck i ng Ope rations Flowchart an d Pseudo Cod e
Start
M36W416TG, M36W416BG
Write 60h
Write
01h, D0h or 2Fh
Write 90h
Read Block
Lock States
Locking change
confirmed?
YES
Write FFh
End
NO
locking_operation_command (address, lock_operation) { writeToFlash (any_address, 0x60) ; /*configuration setup*/
if (lock_operation==LOCK) /*to protect the block*/ writeToFlash (address, 0x01) ; else if (lock_operation==UNLOCK) /*to unprotect the block*/ writeToFlash (address, 0xD0) ; else if (lock_operation==LOCK-DOWN) /*to lock the block*/ writeToFlash (address, 0x2F) ;
writeToFlash (any_address, 0x90) ;
if (readFlash (address) ! = locking_state_expected) error_handler () ; /*Check the locking state (see Read Block Signature table )*/
writeToFlash (any_address, 0xFF) ; /*Reset to Read Array mode*/ }
AI04364
57/62
M36W416TG, M36W416BG
Figure 31. Protection Register Program Flowchart and Pseudo Code
Start
Write C0h
Write Address
& Data
Read Status
Register
b7 = 1
YES
b3 = 0
YES
b4 = 0
YES
b1 = 0
YES
End
NO
NO
NO
NO
V
PPF
Error (1, 2)
Error (1, 2)
Program to Protected
Block Error (1, 2)
Invalid
Program
protection_register_program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0xC0) ;
writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/
do { status_register=readFlash (any_address) ; /* EF or GF must be toggled*/
} while (status_register.b7== 0) ;
if (status_register.b3==1) /*V error_handler ( ) ;
if (status_register.b4==1) /*program error */ error_handler ( ) ;
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
invalid error */
PPF
AI07924
Note: 1. Status check of b1 (Protected Block), b3 (V
a sequence.
2. If an er ror is found, the Status Register must be cleare d before further Program/ Erase Con troller ope rations.
Invalid) and b4 (Program Error) can be made after each program operation or after
PPF
58/62
M36W416TG, M36W416BG
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE
Table 33. Write State Machine Current/Next, sheet 1 of 2.
Current
State
Read Array “1” Array Read Array Prog.Setup Ers. Setup Read Array Read St s. Re ad Array
Read
Status
Read
Elect.Sg.
Read CFI
Query
Lock Setup “1” Status Lock Comm and Error
Lock Cmd
Error
Lock
(complete) Prot. Prog.
Setup
Prot. Prog. (continue)
Prot. Prog. (complete)
Prog. Setup “1” Status Program
Program
(continue)
Prog. Sus
Status
Prog. Sus Read Array
Prog. Sus
Read
Elect.Sg.
Prog. Sus
Read CFI
Program
(complete)
Erase Setup
Erase
Cmd.Error
Erase
(continue) Erase Sus
Read Sts
Erase Sus
Read Array
Erase Sus
Read
Elect.Sg.
Erase Sus
Read CFI
Erase
(complete)
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Pro gram , Prot = Protection, Sus = Suspend.
SR
bit 7
Data
When
Read
“1” Status Read Array
Electronic
“1”
Signature
“1” CFI Read Array
“1” Status Read Array
“1” Status Read Array
“1” S ta tus Protection Regi ster Program
“0” S ta tus Protectio n Register P rogram continue
“1” Status Read Array
“0” S ta tus Program (c ont i nue)
“1” Status
“1” Array
Electronic
“1”
Signature
“1” CFI
“1” Status Read Array
“1” Status Er ase Comman d Erro r
“1” Status Read Array
“0” S tatus Erase (cont i nue)
“1” Status
“1” Array
Electronic
“1”
Signature
“1” CFI
“1” Status Read Array
Read Array (FFh)
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Program
Setup
(10/40h)
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program Suspend to
Read Array
Program Suspend to
Read Array
Program Suspend to
Read Array
Program Suspend to
Read Array
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Program
Setup
Command Input (and Next State)
Erase Setup
(20h)
Erase
Setup
Erase
Setup
Erase
Setup
Erase
Setup
Erase
Setup
Erase
Setup
Erase
Setup
Erase
Setup
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Setup
Erase
Confirm
(D0h)
Lock
(complete)
Program
(continue)
Program
(continue)
Program
(continue)
Program
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Prog/Ers
Suspend
(B0h)
Read Array
Read Array
Read Array
Lock Cmd
Error
Read Array
Read Array
Read Array
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array Read Array
Erase
CmdErr or
Read Array
Erase Sus
Read Sts
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array
Erase Sus
Read Array Read Array
Prog/Ers
Resume
(D0h)
Lock
(complete)
Program
(continu e)
Program
(continu e)
Program
(continu e)
Program
(continu e)
Erase
(continu e)
Erase
(continu e)
Erase
(continu e)
Erase
(continu e)
Erase
(continu e)
Read
Status
(70h)
Read
Status
Read
Status
Read
Status
Lock Command Error
Read
Status
Read
Status
Read
Status
Program (continue)
Prog. Sus
Read Sts
Prog. Sus
Read Sts
Prog. Sus
Read Sts
Prog. Sus
Read Sts
Read
Status
Erase Command Error
Read
Status
Erase (con tinue)
Eras e Sus
Read Sts
Eras e Sus
Read Sts
Eras e Sus
Read Sts
Eras e Sus
Read Sts
Read
Status
Clear
Status
(50h)
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array
Prog. Sus
Read Array Read Array
Read Array
Eras e Sus
Read Array
Eras e Sus
Read Array
Eras e Sus
Read Array
Eras e Sus
Read Array Read Array
59/62
M36W416TG, M36W416BG
Table 34. Write State Machine Current/Next, sheet 2 of 2.
Command Input (and Next State)
Current State
Read Array Read Elect.Sg. Read CFI Query Lock Setup
Read Status Read Elect.Sg. Read CFI Query Lock Setup
Read Ele ct .Sg. Read Elect.Sg. R ead CFI Query Lo ck Setup
Read CFI Query Read Elect.Sg. Read CFI Query Lock Setup
Lock Setup Lock Com m and Error Loc k (c o m plete)
Lock Cmd Error Read Elect.Sg. Read CFI Query Lock Setup
Lock (comple te) Read Elect.Sg. Read CFI Query Lock Setup
Prot. Prog.
Setup
Prot. Prog.
(continue)
Prot. Prog. (complete)
Prog. Setup Program
Program
(continu e)
Prog. Suspend
Read Status
Prog. S uspend
Read Array
Prog. S uspend Read El ect.Sg.
Prog. S uspend
Read CFI
Program
(complete)
Erase Setup Erase Command Error
Erase
Cmd.Error
Erase (con tinue) Erase (continu e)
Erase Suspend
Read Status
Erase Suspend
Read Array
Erase Suspend
Read El ect.Sg.
Erase Suspend
Read CFI Query
Erase
(complete)
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Pro g. = Program, Pro t = P rot ection.
Read Ele ct.Sg.
(90h)
Read Elec t.Sg. Read CFI Query Lock Setup
Prog. Suspend Read Elec t.Sg.
Prog. Suspend Read Elec t.Sg.
Prog. Suspend Read Elec t.Sg.
Prog. Suspend Read Elec t.Sg.
Read Elect.Sg. Read CFIQuery Lock Setup
Read Elec t.Sg. Read CFI Query Lock Setup
Erase Suspend
Read Elec t.Sg.
Erase Suspend
Read Elec t.Sg.
Erase Suspend
Read Elec t.Sg.
Erase Suspend
Read Elec t.Sg. Read Elec t.Sg. Read CFI Query Lock Setup
Read CFI
Query
(98h)
Prog. Suspend
Read CFI Query
Prog. Suspend
Read CFI Query
Prog. Suspend
Read CFI Query
Prog. Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Erase Suspend
Read CFI Query
Lock Setup
(60h)
Protectio n Register P rogram
Protection Register Program (continue)
Lock Setup Erase Suspend Read Ar ray
Lock Setup Erase Suspend Read Ar ray
Lock Setup Erase Suspend Read Ar ray
Lock Setup Erase Suspend Read Ar ray
Prot. Prog.
Setup (C0h)
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Program (continue)
Program Suspend Read Array
Program Suspend Read Array
Program Suspend Read Array
Program Suspend Read Array
Prot. Prog.
Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Lock Confirm
(01h)
Confirm (2Fh)
Lock Down
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Read Array
Unlock
Confirm
(D0h)
Program
(continue)
Program
(continue)
Program
(continue)
Program
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
Erase
(continue)
60/62
REVISION HIST ORY
Table 35. Document Revision History
Date Version Revision Details
19-Nov-2002 1.0 First Issue
M36W416TG, M36W416BG
61/62
M36W416TG, M36W416BG
Information furnished is believed to be accurate an d rel i able. However, STMicroelectro ni cs assumes no responsibilit y for the cons equences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implic ation or otherwise under any patent or patent rights of STMi croelectr onics. Specifications mentioned in th i s publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authoriz ed for use as critical comp onents in lif e support devi ces or systems wi thout exp ress written approval of STM i croelect ronics.
The ST logo i s registered trademark of STMicroel ectronics
All other nam es are the pro perty of their respective owners
© 2002 STMicroelectronics - All Rights Reserved
STMicroelectron ic s group of com panies
Austra lia - Brazil - Can ada - China - Finl and - France - Germany - Hong Kong -
India - Israel - Italy - Japan - Malaysia - Malt a - M orocco - Singapore - Spa i n - Sweden - Swi tzerland - United Kin gdom - United States.
www.st.com
62/62
Loading...