Datasheet M36DR432BD, M36DR432AD Datasheet (SGS Thomson Microelectronics)

Page 1
32 Mbit (2Mb x16, Dual Bank, Page) Flash Memory
and 4 Mbit (256Kb x16) SRAM, Multiple Memory Product

FEATURES SUMMARY

Multiple Memory Product
– 1 bank of 32 Mbit (2Mb x16) Flash Memory – 1 bank of 4 Mbit (256Kb x16) SRAM
–V –V
ACCESS TIMES: 85ns, 100ns, 120ns
LOW POWER CONSUMPTION
ELECTRONIC SIGNATURE
= V
DDF
= 12V for Fast Program (optional)
PPF
– Manufacturer Code: 0020h – Top Device Code, M36DR432AD: 00A0h – Bottom Device Code, M36DR432BD: 00A1h
=1.65V to 2.2V
DDS
M36DR432AD M36DR432BD

Figure 1. Package

FBGA
Stacked LFBGA66 (ZA)
12 x8mm

FLASH MEMORY

MEMORY BLOCKS
– Dual Bank Memory Array: 4 Mbit, 28 Mbit – Parameter Blocks (Top or Bott o m location)
PROGRAMMING TIME
– 10µs by Word typical – Double Word Program Option
ASYNCHRONOUS PAGE MODE READ
– Page Width: 4 Words – Page Access: 35ns – Random Access: 85ns, 100ns, 120ns
DUAL BANK OPERATIONS
– Read within one Bank while Program or
Erase within the other
– No delay between Read and Write operations
BLOCK LOCKING
– All blocks locked at Power up – Any combination of blocks can be locked –WPF
COMMON FLASH INTERFACE (CFI)
for Block Lock-Down
– 64 bit Unique Device Identifier – 64 bit User Programmable OTP Cells
ERASE SUSPEND and RESUME MODES
100,000 PROGRAM/ER ASE CYCL ES per
BLOCK
20 YEARS DATA RETENTI ON
– Defectivity below 1ppm/year

SRAM

4 Mbit (256Kb x16)
LOW V
POWER DOWN FEATURES USING TWO
DATA RETENTION: 1.0V
DDS
CHIP ENABLE INPUTS
1/52February 2003
Page 2
M36DR432AD, M36DR432B D

TABLE OF CONTENTS

SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. TFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Address Inputs (A0-A17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Address Inputs (A18-A20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Chip Enable (EF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Output Enable (GF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Write Enable (WF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Write Protect (WPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Write Protect (WPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Reset/Power-Down (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VDDF Supply Voltage (1.65V to 2.2V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
V
Programming Voltage (11.4V to 12.6V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
PPF
V
Ground.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SSF
SRAM Chip Enable (ES). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Write Enable (WS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SRAM Output Enable (GS).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SRAM Upper Byte Enable (UBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SRAM Lower Byte Enable (LBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VDDS Supply Voltage (1.65V to 2.2V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Main Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
FLASH MEMORY COMPONENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Flash Bank Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figu r e 5 . Flash Secur i ty Block and Protection Reg i s te r Memo ry Map . . . . . . . . . . . . . . . . . . . . . . 13
Flash Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Flash Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Flash Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Flash Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Flash Standby.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3
Automatic Flash Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3
Flash Power-Down.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Dual Bank Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Flash Command Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Flash Read/Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Flash Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2/52
Page 3
M36DR432AD, M36DR432BD
Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Set Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Double Word Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Quadruple Word Program Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Enter Bypass Mode Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Exit Bypass Mode Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Program in Bypass Mode Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Double Word Program in Bypass Mode Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Quadruple Word Program in Bypass Mode Comman d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Block Lock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5
Block Lock-Down Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5
Block Erase Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Bank Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Erase Suspend Comma nd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Erase Resume Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. Flash Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 6. Flash Read Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 7. Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8. Read Protection Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9
Table 9. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . 19
Flash Block Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Lock-Down State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 10. Flash Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Polling and Toggle Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 11. Polling and Toggle Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 12. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SRAM COMPONENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4
SRAM Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3/52
Page 4
M36DR432AD, M36DR432B D
Standby/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 13. Absolute Maximum Ratings(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 14. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 6. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 7. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 15. Device Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6
Table 16. Flash DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 17. SRAM DC Characteristics (T
Figure 8. Flash Random Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 9. Flash Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 18. Flash Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 10. Flash Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 19. Flash Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 11. Flash Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 20. Flash Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 12. Flash Reset/Power-Down AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 21. Flash Reset/Power-Down AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 13. Flash Data Polling DQ7 AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 14. Flash Data Toggle DQ6, DQ2 AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 22. Flash Data Polling and Toggle Bits AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 15. Flash Data Polling Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Figure 16. Flash Data Toggle Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 17. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V
Figure 18. SRAM Read AC Waveforms, ES or GS Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Figure 19. SRAM Standby AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 23. SRAM Read AC Characteristics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 20. SRAM Write AC Waveforms, WS Controlled with GS Low . . . . . . . . . . . . . . . . . . . . . .40
Figure 21. SRAM Write AC Waveforms, WS Controlled with GS High. . . . . . . . . . . . . . . . . . . . . . 40
Figure 22. SRAM Write Cycle Waveform, UBS and LBS Controlled, G Low . . . . . . . . . . . . . . . . .41
Figure 23. SRAM Write AC Waveforms, ES Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 24. SRAM Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 24. SRAM Low V Table 25. SRAM Low V
Data Retention AC Waveforms, ES Controlled . . . . . . . . . . . . . . . . . 42
DDS
Data Retention Characteristics (1, 2) . . . . . . . . . . . . . . . . . . . . . . . . . 43
DDS
= –40 to 85°C; V
A
DDF
= V
= 1.65V to 2.2V) . . . . . . . . 28
DDS
. . . . . . 38
IL
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 25. Stacked LFBGA 12x8mm - 8x8 ball array, 0.8mm pitch, Bottom View Package Outline44 Table 26. Stacked LFBGA 12x8mm - 8x8 ball array, 0.8mm pitch, Package Mechanica l Data . . . 44
4/52
Page 5
M36DR432AD, M36DR432BD
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 27. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
APPENDIX A. BLOCK ADDRESSES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 28. Bank A, Top Boot Block Addresses M36DR432AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 29. Bank B, Top Boot Block Addresses M36DR432AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 30. Bank B, Bottom Boot Block Addresses M36DR432BD . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 31. Bank A, Bottom Boot Block Addresses M36DR432BD . . . . . . . . . . . . . . . . . . . . . . . . . . 47
APPENDIX B. COMMON FLASH INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 32. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 33. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 34. CFI Query System Interface Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 35. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 36. Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
5/52
Page 6
M36DR432AD, M36DR432B D

SUMMARY DESCRIPTION

The M36DR432AD/BD is a low-voltage Multiple Memory Product which combines two memory de­vices: a 32 Mbit (2Mbit x16) non-volatile Flash memory and a 4 Mbit SRAM.
The memory is available in a Stacked LFBGA66 12x8mm - 8x8 active ball array, 0.8mm pitch pack­age and supplied with all the bits erased (set to
‘1’).

Figure 2. Logic Diagram

Table 1. Signal Names

A0-A17 Address Inputs A18-A20 Address Inputs for Flash Chip only DQ0-DQ15 Data Input/Outputs, Command Inputs V
V
DDF
PPF
Flash Power Supply Flash Optional Supply V oltage for Fast
Program & Erase
A0-A20
WF
EF GF
RPF
WPF
E1S E2S
GS
WS
UBS
LBS
21
V
V
DDF
PPF
M36DR432AD M36DR432BD
V
SSF
V
SSS
V
DDS
16
DQ0-DQ15
AI07309b
V
SSF
V
DDS
V
SSS
NC Not Connected Internally
Flash control functions
EF GF WF RPF WPF
SRAM control functions
1S Chip Enable
E E2S Chip Enable GS WS UBS LBS
Flash Ground SRAM Power Supply SRAM Ground
Chip Enable Output Enable Write Enable Reset/Power-Down Write Protect input
Output Enable Write Enable Upper Byte Enable Lower Byte Enable
6/52
Page 7

Figure 3. TFBGA Connections (Top view through package)

#4#3
NCNC
M36DR432AD, M36DR432BD
AI90204
NC
NCNCGF
87654321
NC
SSF
V
A12
A13A11A20NCNC
A15 A14
DQ7
DQ14
WS
DQ15A9A16
A8 A10
DQ5
DQ4
DQ6DQ13NCWF
DDF
V
DDS
V
E2SDQ12V
RPF
SSS
DQ3DQ2
DQ10
DQ11A19WPF
PPF
V
DQ1DQ0
DQ8DQ9GSLBS
UBS
E1SA1
A2A3A6A7A18
A17
SSF
EFA0A4NCNC
A5
NC V
#2#1
A
B
C
D
E
F
G
H
7/52
Page 8
M36DR432AD, M36DR432B D

SIGNAL DESCRIPTIONS

See Figure 2 Logic Diagram and Tabl e 1, Signal Names, for a brief overview of the signals connect­ed to this device.

Address Inputs (A0-A17). Addresses A0-A17 are common inputs for the Flash an d the SRAM components. The Address Inputs select the cells in the memory array to access during Bu s Read operations. During Bus Write operations they con­trol the commands sent to the Command Interface of the internal state machine. During a write oper­ation, the address inputs for the Flash memory are latched on the falling edge of the Flash Chip E n­able (EF last, whereas for the SRAM array they are latched on the falling edge of the SRAM Chip Enable lines (E1S the datasheet, only the Active Low SRAM Chip Enable line will be di scussed. I t wil l be ref erred to as ES

Address Inputs (A18-A20). Addresses A18-A20 are inputs for the Flash component only. They are latched during a write operation on the falling edge of Flash Chip Enable (EF whichever occurs last.

Data Input/Output (DQ0-DQ15). The Data I/O output the data stored at the selected address dur­ing a Bus Read operation or input a command or the data to be programmed during a Write Bus op­eration.

The input is data to be programmed in the Flash or SRAM memory array or a command to be written to the C.I. of the Flash memory. Both are latched on the rising edge of Flash Write Enable (WF SRAM Chip Enable lines (ES (WS array or SRAM array, the Electronic Signature Manufacturer or Device codes, the Block Protec­tion status, the Configuration Register status or the Status Register Data (Polling bit DQ7, Toggle bits DQ6 and DQ2, Error bit DQ5 or Erase Timer bit DQ3) depending on the address. Outputs are valid when Flash Chip Enable (EF able (GF Output Enable (GS
The output is high impedance when both the Flash chip and the SRAM chip are deselected or the out­puts are disabled and when Reset (RPF
Flash Chip Enable (EF
activates the Flash memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is at V and the power consumption is reduced to the standby level.
Flash Output Enable (GF
through the data buffers during a read operation.
) or Write Enable (WF), whichever occurs
or E2S) or Write Enable (WS). In the rest of
.
) or Write Enable (WF),
) and,
) or Write Enable
). The output is data from the Flash memory
) and Output En-
) or SRAM Chip Enable lines (ES) and
) are active.
) is at VIL.
). The Chip Enable input
the memory is deselected
IH
). gates the outputs
When Output Enable, GF
, is at VIH the outputs are
High impedance.
Flash Write Enable (
WF). The Write Enable
controls the Bus Write operation of the Flash
memory’s Command Interface.
Flash Write Protect (WPF
). Write Protect is an
input that gives an additional hardware protect ion for each Flash block. When Write Protect is at V
IL
the locked-down blocks cannot be locked or un­locked. When Write Protect is at V
, the Lock-
IH
Down is disabled and the Locked-Down blocks can be locked or unlocked. Refer to Table 8, Read Protection Register.
Flash Reset/Power-Down (RPF
). The Reset/
Power-Down input provides hardwa re res et of the Flash memory, and/or Power-Down functions, de­pending on the Flash Configuration Register sta­tus. Reset or Power-Down of the memory is achieved b y pulling RPF
to VIL for at least t
PLPH
.
The Reset/Power-Down function is set in the Con­figuration Register (see Set Configuration Regis­ter Command). If it is set to ‘0’ the Reset function is enabled, if it is set to ‘1’ the Power-Down func­tion is enabled. After a Reset or Power-Up the power save function is disabled and all blocks are locked.
The memory Command Interface is reset on Pow­er Up to Read Array. Either Chip Enabl e or Write Enable must be tied to V
during Power Up to al-
IH
low maximum security and the possibility to write a command on the first rising edge of Write Enable.
After a Reset, when the de vice is in Re ad, Eras e Suspend Read or Standby, valid data will be out­put t
PHQ7V1
after the rising edge of RPF. If the de­vice is in Erase or Program, the operation will be aborted and the reset recovery will t ake a maxi­mum of t set/Power-Down t RPF
. See Tables 18 and 19, and Figure 12.
Supply Voltage (1.65V to 2.2 V). V
V
DDF
. The memory will recover from Re-
PLQ7V
PHQ7V2
after the rising ed ge of
DDF
pro­vides the power supply to the internal core and I/O pins of the memory device. It is the main power supply for all operations (read, program and erase).
Programming Voltage (11.4V to 12.6V).
V
PPF
provides a high voltage power supply for fast
V
PPF
factory programming. V
is required to use the
PPF
Double Word and Quadruple Word Program com­mands.
V
Ground. V
SSF
ground is the reference for
SSF
the core supply. It must be connected to the sys­tem ground.
SRAM Chip Enable (ES
). The Chip Enable in-
puts for SRAM activate the memory con trol logic, input buffers and decoders. ES
at VIH deselects
,
8/52
Page 9
M36DR432AD, M36DR432BD
the memory and red uces the power consumption to the standby level. ES
can also be used to con­trol writing to the SRAM memory array, while WS remains at VIL. It is not allowed to set EF at VIL and ES
at VIL at the same time.
SRAM Write Enable (WS
). The Write Enable in-
put controls writing to the SRAM memory array. WS
is active Low.
SRAM Output E nable (GS
). The Output Enable
gates the outputs through the data buffers during a read operation of the SRAM c hip. GS
is active
Low.
SRAM Upper Byte Enable (UBS
upper bytes for SRAM (DQ8-DQ15). UBS
). Enables the
is acti ve
Low.
SRAM Lower Byte Enable (LBS
lower bytes for SRAM (DQ0-DQ7). LBS
). Enables the
is active
Low.
V
Supply Voltage (1.65V to 2.2V) . V
DDS
DDS
is the
SRAM power supply for all operations.
Note: Each device in a system should have V
DDF
and V
decoupled with a 0.1µF capaci-
PPF
tor close to the pin. See Figure 7, AC Measure­ment Load Circuit. The PCB trace widths should be sufficient to carry the required V
PPF
program and erase currents.
9/52
Page 10
M36DR432AD, M36DR432B D

FUNCTIONAL DESCRIPTION

The Flash and SRAM components have separate power supplies and grounds and are distinguished by three chip enable inputs: EF

Figure 4. Funct i on a l Bl ock D i agram

for the Flash mem-
ory and ES SRAM .
(E1S and E2S, respectively) f or the
EF
GF
WF
RPF
WPF
A18-A20
A0-A17
E1S E2S
GS
WS
UBS
LBS
V
DDF
Flash Memory
32 Mbit (2Mb x 16)
V
DDS
SRAM
4 Mbit (256Kb x 16)
V
PPF
V
SSF
DQ0-DQ15
10/52
V
SSS
AI07310b
Page 11

Table 2. Main Operation Modes

Operation Mode EF GF WF RPF WPF ES GS WS
V
V
Read Page Read Write Standby Reset/
Flash Memory
Power-Down Output Disable
IL
V
IL
V
IL
V
IH
XXX
V
IL
V
IL
V
V
IL
V
IH
XX
V
V
IH
Read Flash must be disabled
V
IH
V
IH
V
V
IL
V
V
V
IH
V
IH
IH
IH
IH
IL
IH
IH
V
IH
V
IH
V
IH
V
IH
V
IH
SRAM must be disabled Data Output SRAM must be disabled Data Output SRAM must be disabled Data Input
Any SRAM mode is allowed Hi-Z
Any SRAM mode is allowed Hi-Z
Any SRAM mode is allowed Hi-Z
V
VILV
IL
M36DR432AD, M36DR432BD
(1)
DQ15-DQ0
Data out
Word Read
IH
UBS, LBS
V
IL
Write Flash must be disabled
Standby/Power Down
SRAM
Any Flash mode is allowable
Data Retention Any Flash mode is allowable
Output Disable Any Flash mode is allowable
Note: 1. X = Don’t care (VIL or VIH).
UBS and LBS are tied toge ther the bus is at 16 bit. For an 8 bi t bus configuration use U BS and LBS separately.
2. If
V
V
IL
IHVIL
V
X X X Hi-Z
IH
XXX
V
X X X Hi-Z
IH
XXX
V
V
IL
IHVIH
V
IL
V
IH
V
IH
Data in Word
Write
Hi-Z
Hi-Z
X Hi-Z
11/52
Page 12
M36DR432AD, M36DR432B D

FLASH MEMORY COMPONENT

The Flash Memory is a 32 Mbit (2Mbit x16) non­volatile Flash memory that may be erased electri­cally at block level and programmed in-s ystem on a Word-by-Word basis using a 1.65V to 2.2V V supply for the circuitry and a 1.65V to 2.2V V supply for the Input/Output pins (in the stacked de­vice , V tional 12V V
DDF
and V
power supply is provided to speed
PPF
are tied internally). An op-
DDQF
up customer programming. The Flash device features an asymmetrical block
architecture with an array of 71 bl ocks divided into two banks, Banks A and B, providing Dual Bank operations. While programming or erasing in Bank A, read operations are poss ible in Ban k B or vice versa. Only one ban k at a t ime is allowed to be in program or erase mode. The ba nk architectu re is summarized in Table 3, and the B lock Addresses are shown in Appendi x A. The Parameter B locks are located at the top of the memory address space for the M36DR432AD and, at the bottom for the M 36DR432BD.
Each block can be erased separately. Erase can be suspended, in order to perform either read or program in any other block, and then resumed. Each block can be programmed and erased over 100,000 cycles.
DDF
DDQF
Program and Erase command s are written to the Command Interface of the memory. An internal Program/Erase Controller takes care of the tim­ings necessary for program and erase operations. The end of a program or erase operation can be detected and any error conditions identified in the Status Register. The command set required to control the memory is consistent with JEDEC stan­dards.
The Flash memory features an instant, individual block locking scheme that allo ws any block to be locked or unlocked with no latency, enabling in­stant code and data protection. All blocks have two levels of protection. They can be individually locked and locked-down preventing any acciden­tal programming or erasure. All blocks are locked at Power Up and Reset.
The device includes a 128 b it Protection Register and a Security Block to increase the protection of
a system’s design. The Prote ction Register is di­vided into two 64 bit segments. The first segment contains a unique device numb er written by ST, while the second one is one-time-programmable by the user. The user programmable segment can be permanently protected. The Security Block, pa­rameter block 0, can be permanently protected by the user. Figure 5, shows the Flash Security Block and Protection Register Memory Map.

Table 3. Flash Bank Architecture

Bank A 4 Mbits 8 blocks of 4 KWords 7 blocks of 32 KWords Bank B 28 Mbits - 56 blocks of 32 KWords
Bank Size Parameter Blocks Main Blocks
12/52
Page 13
M36DR432AD, M36DR432BD

Figure 5. Flash Security Block and Protection Register Memo ry Ma p

PROTECTION REGISTER
88h
SECURITY BLOCK
85h 84h
Parameter Block # 0
81h 80h
User Programmable OTP
Unique device number
Protection Register Lock 2 1 0
AI06185

Flash Bus Operations

The following operations can be performed using the appropriate bus cycles: Flash Read Array (Random and Page Modes), Flash Write, Flash Output Disable, Flash Standby and F lash Reset/ Power-Down, see Table 2, Main Operation Modes.

Flash Read. Flash Read operat ions are used to output the contents of the Memory Array, the Elec­tronic Signature, the Status Register, the CF I, the Block Protection Status or the Configuration Reg­ister status. Read operation of the Flash memory array is performed in asynchronous page mode, that provides fast access time. Data is internally read and stored in a page buffer. The page has a size of 4 words and is addressed by A0-A1 ad­dress inputs. Read operations of the Electronic Signature, the Status Register, the CFI, the Block Protection Status, the Configuration Register sta­tus and the Security Code are performed as single asynchronous read cycles (Random Read). Both Flash Chip Enable EF GF

must be at VIL in order to read the output of the
and Flash Output Enable

memory. Flash Write. Write operations are used to give

commands to the memory or to latch Input Data to be programmed. A write operation is initiated when Chip Enable EF
with Output E nable G F at VIH. Addresses are
V
IL
latched on the falling edge of WF
and Write Enable WF are at
or EF whichever occurs last. Commands and Input Data are latched on the rising edge of WF
or EF whichever occurs first. Noise pulses of less than 5ns typical on EF
, WF and GF signals do not start a write cy-
cle.

Flash Output Disable. The data outputs are high impedance when the Output Enable GF

is at V
IH

with Write Enable WF at VIH. Flash Standby. The memory is in standby when

Chip Enable EF
is at VIH and the P/E.C. is idle. The power consumption is reduced to the standby level and the outputs are high imped ance, inde­pendent of the Output Enable GF
inputs.
WF
or Write Enable

Automatic Flash Standby. In Read mode, after 150ns of bus inactivity and when CMOS levels are driving the addresses, the chip automatically en­ters a pseudo-standby mode where consumption is reduced to the CMOS standby value, while out­puts still drive the bus.

Flash Power-Down. The memory is in Power­Down when the Configuration Register is set for/ Power-Down and RPF

is at VIL. The power con­sumption is reduced to the Power-Down level, and Outputs are high impedance, independent of the Chip Enable EF able WF
inputs.
, Output Enable GF or Write En-

Dual Bank Operations. The Dual Bank allows data to be read from on e bank of memory while a program or erase operation is i n progress in the other bank of the memory. Read and Write cycles can be initiated for simultaneous operations in dif­ferent banks without any delay. Status Register during Program or Erase must be monitored using an address within the bank being modified.

Flash Command Interface

All Bus Write operations t o the me mory are in ter­preted by the Command Interface. Commands consist of one or more sequential Bus Write oper­ations. An internal Program/Erase Controller han-
13/52
Page 14
M36DR432AD, M36DR432B D
dles all timings and verifies the correct execution of the Program and Erase commands. Two bus write cycles are required to unlo ck the Com mand Interface. They are followed by a setup or confirm cycle. The increased number of write cycles is to ensure maximum data security.
The Program/Erase Controller provides a Status Register whose output may be read at any time to monitor the progress or the result of the operation.
The Command Interface is reset to Read mode when power is first applied or exiting from Reset. Command sequences must be followed exactly. Any invalid combination of commands will reset the device to Read mode

Flash Read/Reset Command. The Read/Reset command returns the device to Read mode. One Bus Write cycle is required to issue the Read/Re­set command and return the device to Read mode. Subsequent Read operations will read the ad­dressed location and output the data. The write cy­cle can be preceded by the unlock cycles but it is not mandatory.

Flash Read CFI Query Command. The Read CFI Query command is used to read data from the Common Flash Interface (CFI) and the Electronic Signature (Manufacturer or the Device Code, see Table 5). The Read CFI Query Command consists of one Bus Write cycle. Once the command is is­sued the device enters Read CFI mode. Subse­quent Bus Read operations read the Common Flash Interface or Electronic Signature. Once the device has entered Read CFI mode, only the Read/Reset command should be used and no oth­er. Issuing the Read/Res et command returns t he device to Read mode.

See Appendix B, Common Flash Interface, Tables 33, 34, and 35 for details on the information con­tained in the Common Flash Interface memory ar­ea.

Auto Select Command. The Auto Select com­mand uses the two unlock cycles followed by one write cycle to any bank address to setup the com­mand. Subsequent reads at any address will ou t­put the Block Protection status, Protection Register and Protection Register Lock or the Con­figuration Register status depending on the levels of A0 and A1 (see Tables 6, 7 an d 8). Once the Auto Select command has been issued only the Read/Reset command should be used and no oth­er. Issuing the Read/Res et command returns t he device to Read mode.

Set Conf iguration Regist er Command . The Flash component contains a Configuration Regis­ter, see Table 7, Configuration Register.

It is used to define the status of the Res et/Power­Down functions. The value for the Configuration Register is always presented on A0-A15, the other
address bits are ignore d. Address input A10 de­fines the status of the Reset/Power-Down func-
tions. If it is set to ‘0’ the Reset function is enabled, if it is set to ‘1’ the Power-Down function is en­abled. At Power Up the Configuration Register bit is set to ‘0’.
The Set Configuration Register command is used to write a new value to the Configuration Register. The command uses the two unlock cycles followed by one write cycle to setup the command and a further write cycle to wri te the data and confirm the command.

Program Command. The Program command uses the two unlock cycles followed by a write cy­cle to setup the command and a further write cycle to latch the Address and Dat a and start the Pro­gram Erase Controller. Read operations within the same bank output the Status Register after pro­gramming has started.

Note that the Program command cannot change a bit set at ’0’ bac k to ’1’. One of the E rase Com­mands must be used to set all the bits in a block or in the whole bank from ’0’ to ’1’. If the Program command is used to try to set a bi t from ‘0’ to ‘ 1’ Status Register Error bit DQ5 will be set to ‘1’, only
is in the range of 11.4V to 12.6V.
if V
PPF

Double Word Pr ogr a m C omman d. This feature is offered to improve the programming throughput by writing a page of two adjacent words in parallel. The V

supply voltage is required to be from
PPF
11.4V to 12.6V for the Double Word Program com­mand.
The command uses the two unlock cycles followed by a write cycle to setup the command. A further two cycles are required t o latch the address and data of the two Words and start the Program Erase Controller.
The addresses must be the same except for the A0. The Double Wo rd Program com mand can be executed in Bypass mode t o skip the two unlock cycles.
Note that the Double Word Program command cannot change a bit set at ’0’ back to ’1’. One of the Erase Commands must be used to set all the bits in a block or in the whole bank from ’0’ to ’1’. If the Double Word Program comm and is used t o try to set a bit from ‘0’ to ‘1’ Status Register Error bit DQ5 will be set to ‘1 ’.

Quadruple Word Program Command. The Quadruple Word Program command improves the programming throughput by writing a page of four adjacent words in parallel. The four words must differ only for the addresses A0 and A1. The V

PPF
supply voltage is required to be from 11.4V to
12.6V for the Quadruple Word Program com­mand.
14/52
Page 15
M36DR432AD, M36DR432BD
The command uses the two unlock cycles followed by a write cycle to setup the command. A further four cycles are required to latch the address and data of the four Words and start the Program Erase Controller.
The Quadruple Word Program command can be executed in Bypass mode t o skip the two unlock cycles.
Note that the Quadruple Word Program command
cannot change a bit set to ’0’ back to ’1’. One of the Erase Commands must be used to set all the bits in a block or in the whole bank from ’0’ to ’1’. If the Quadruple Word Program command is used to try to set a bit from ‘0’ to ‘ 1’ Status Register E rror bit DQ5 will be set to ‘1’.

Enter Bypas s Mode Comman d. The Bypass mode is used to reduce the overall programming time when large memory array s need to be pro­grammed.

The Enter Bypass Mode command uses the two unlock cycl e s followed by on e wri te cycle to set u p the command. Once in Bypass mode, it is impera­tive that only the following commands be issued: Exit Bypass, Program, Double Word Program or Quadruple Word Program.

Exit Bypass Mode Command. The Exit Bypas s Mode command uses two write cycles to setup and confirm the command. The unlock cycles are not required. After the Exit Bypass Mode com­mand, the device resets to Read mode.

Program in Bypass Mode Command. The Program in Bypass Mode command can be is­sued when the device is in Bypas s m ode (issue a Enter Bypass Mode command). It uses the same sequence of cycles as the Program command with the exception of the unlock cycles.

Double Word Program in Bypass Mode Com­mand. The Double Word Program in Bypass
Mode command can be issued when the device is in Bypass mode (issue a Enter Bypass Mode com­mand). It uses the same sequence of cycles as the Double Word Program comma nd with the excep­tion of the unlock cycles.

Quadruple Word Program in Bypass Mode Command. The Quadruple Word Program in By-

pass Mode command can be issued when the de­vice is in Bypass mode (issue a Enter Bypass Mode command). I t uses the same sequence of cycles as the Quadruple Word Program command with the exception of the unlock cycles.
Block Lock Command. The Block Lock com­mand is used to lock a block and prevent Program or Erase operations from changing the data i n it. All blocks are locked at power-up or reset.
Three Bus Write cycles are required to issue the Block Lock command.
The first two bus cycles unlock the Command
Interface.
The third bus cycle sets up the Block Lock
command and latches the block address.
The lock status can be monitored for each block using the Auto Select comma nd. Table 10 shows the Lock Status a fter issuing a Block Lock com­mand.
The Block Lock bits are vo latile, once set they re­main set until a hardware reset or power-down/ power-up. They are cleared by a Blocks Unlock command. Refer to the section, Block Locking, for a detailed explanation.
Block Unlock Command. The Blocks Unlock command is used to unlock a block, allowing the block to be programmed or erased.
Three Bus Write cycles are required to issue the Blocks Unlock command.
The first two bus cycles unlock the Command
Interface.
The third bus cycle sets up the Block UnLock
command and latches the block address.
The lock status can be monitored for each block using the Auto Select comma nd. Table 10 shows the lock status after issuing a Block Unlock com­mand. Refer to the section, Block Locking, for a detailed explanation.
Block Lock-Down Command. A locked or un­locked block can be locked-down by issuing the Block Lock-Down command. A locked-down block cannot be programmed or erased, or have its pro­tection status changed when WPF When WPF
is High, V
the Lock-Down function is
IH,
is Low, VIL.
disabled and the locked blocks can be individually unlocked by the Block Unlock command.
Three Bus Write cycles are required to issue the Block Lock-Down command.
The first two bus cycles unlock the Command
Interface.
The third bus cycle sets up the Block Lock-
Down command and latches the block address.
The lock status can be monitored for each block using the Auto Select command. Locked-Down blocks revert to the locked (and not locked-down) state when the device is reset on power-down. Ta­ble 10 shows the Lock Status after issuing a Block Lock-Down command. Refer to the section, Block Locking, for a detailed explanation.

Block Erase Command. The Block Erase com­mand can be used to erase a bloc k. It set s all t he bits within the selected block to ’1’. All previous data in the block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the device will return to Read Array mode. It is not necessary to pre-pro-

15/52
Page 16
M36DR432AD, M36DR432B D
gram the block as the Program/ Erase Controller does it automatically before erasing.
Six Bus Write cycles are required to issue the command.
The first two write cycles unlock the Command
Interface.
The third write cycles sets up the command
the fourth and fifth write cycles repeat the unlock
sequence
the sixth write cycle latches the block address
and confirms the command.
Additional Block Erase confirm cycles can be is­sued to erase other bloc ks without further unlock cycles. All blocks must belong to the same bank; if a new block belonging to the other ban k is given, the operation is aborted.
The additional Block Erase confirm cycles must be given within the DQ3 erase timeout period. Each time a new confirm cycle is issued the timeout pe­riod restarts. The status of the internal timer can be monitored through the level of DQ3, see Status Register section for more details.
Once the command is issued the device outputs the Status Register data when any address within the bank is read.
After the command has been issued the Flash Read/Reset command will be accepted during the DQ3 timeout period, after that only the Erase Sus­pend command will be accepted.
On successfu l compl etio n of t he Bl ock Erase c om­mand, the device returns to Read Array mode.

Bank Erase Command. The Bank Erase com­mand can be used to eras e a bank. It sets all the

bits within the selected bank to ’1’. All previous data in the bank is lost. The Bank Erase command will ignore an y pro tec t e d b locks within the bank. If all blocks in the bank are protected then the Bank Erase operation will abort and the data in the bank will not be changed. It is not necessary to pre-pro­gram the bank as the Program/Erase Controller does it automatically before erasing.
As for the Block Erase command six Bus Write cy­cles are required to issue the command.
The first two write cycles unlock the Command
Interface.
The third write cycles sets up the command
the fourth and fifth write cycles repeat the unlock
sequence
the sixth write cycle latches the block address
and confirms the command.
Once the command is issued the device outputs the Status Register data when any address within the bank is read.
On successful completion of the Bank Erase com­mand, the device returns to Read Array mode.

Erase Suspend Command. The Erase Suspend command is used to pause a Block Erase opera­tion. In a Dual Bank memory it can be used to read data within the bank where an Erase operation is in progress. It is also possible to program data in blocks not being erased.

One bus write cycle is required to issue the Erase Suspend command. The Program/Erase Control­ler suspends the Erase operation within 20µs of the Erase Suspend command being issued and bits 7, 6 and/ or 2 of the Status Register are set to ‘1’. The device is then automatically set to Read mode. The command can be addressed to any bank.
During Erase Suspend the memory will accept the Erase Resume, Program, Read CFI Query, Auto Select, Block Lock, Block U nlock and B lo ck Lo ck­Down commands.

Erase Resume Command. The Erase Resume command can be used to restart the Program/ Erase Controller after an Erase Suspend com­mand has paused it. One Bus Write cycle is re­quired to issue the command. The command must be issued to an address within the bank being erased. The unlock cycles are not required.

Protection R egister Progr am C om m and. The Protection Register Program c omm and is used to Program the Protection Register (One-Time-Pro­grammable (OTP) segment and Protection Regis­ter Lock). The OTP segment is programmed 16 bits at a time. When shipped all bits in the segment are set to ‘1’. The user can only program the bits to ‘0’ .
Four write cycles are required to issue the Protec­tion Register Program command.
The first two bus cycles unlock the Command
Interface.
The third bus cycle sets up the Protection
Register Program command.
The fourth latches the Address and the Data to
be written to the Protection Register and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has started.
The OTP segment can be p rotected by program­ming bit 1 of the Protection Register Lock. The segment can be protected by programming bit 1 of the Protection Register Lock. Bit 1 of the P rotec­tion Register Lock also protects bit 2 of the Protec­tion Register Lock. Programming bit 2 of the Protection Register Lock will result in a permanent protection of Parameter Block #0 (see Figure 5, Flash Security Block and Protection Register Memory Map). Attempting to program a previously
16/52
Page 17
M36DR432AD, M36DR432BD
protected Protection Register will result in a Status Register error. The protection of the Protection
Register and/or the Security Block is not revers­ible.

Table 4. Flash Commands

Bus Operations
Commands
Read/Reset
CFI Query 1+ 55h 98h Read CFI and Electronic Signature until a Read/Reset command is issued.
Auto Select 3+ 555h AAh 2AAh 55h 555h 90h
Set Configuration Register
Program 4 555h AAh 2AAh 55h 555h A0h PA PD
Double Word Program
Quadruple Word Program
Enter Bypass Mode
Exit Bypass Mode
Program in Bypass Mode
Double Word Program in Bypass Mode
Quadruple Word Program in Bypass Mode
1+ X F0h Read Memory Array until a new write cycle is initiated. 3+ 555h AAh 2AAh 55h 555h F0h Read Memory Array until a new write cycle is initiated.
4 555h AAh 2AAh 55h 555h 60h CRD 03h
5 555h AAh 2AAh 55h 555h 40h PA1 PD1 PA2 PD2
5 555h AAh 2AAh 55h 555h 50h PA1 PD1 PA2 PD2 PA3 PD3 PA4 PD4
3 555h AAh 2AAh 55h 555h 20h
2 X 90h X 00h
2 X A0h PA PD Read Data Polling or Toggle Bit until Program completes.
3 X 40h PA1 PD1 PA2 PD2
3 X 50h PA1 PD1 PA2 PD2 PA3 PD3 PA4 PD4
1st 2nd 3rd 4th 5th 6th 7th
Add Data Add Data Add Data Add Data Add Data Add Data Add Data
No of Cycles
Read Protection Register, Block Protection or
Configuration Register Status until a Read/Reset
command is issued.
Read Data Polling or Toggle Bit until
Program completes.
Block Lock 4 555h AAh 2AAh 55h 555h 60h BA 01h Block Unlock 4 555h AAh 2AAh 55h 555h 60h BA D0h Block Lock-Down 4 555h AAh 2AAh 55h 555h 60h BA 2Fh Block Erase 6+ 555h AAh 2AAh 55h 555h 80h 555h AAh 2AAh 55h BA 30h Bank Erase 6 555h AAh 2AAh 55h 555h 80h 555h AAh 2AAh 55h BA 10 h
Erase Suspend 1 X B0h
Erase Resume 1 BA 30h
Protection Register Program
Note: X = Don’t C ar e, B A = Bl ock Add ress , P A = P rogr am a ddr ess, PD = Pr ogram Da ta , CR D = C on figura tio n Reg ist er Da t a. For C oded
cycles address input s A12-A20 are don’t care.
4 555h AAh 2AAh 55h PA C0h PA PD
Read until Toggle stops, then read all the data needed from any Blocks not being
erased then Resume Erase.
Read Data Polling or Toggle Bits until Erase completes or Erase is suspended
another time
17/52
Page 18
M36DR432AD, M36DR432B D

Table 5. Read Electronic Signature

Code Device EF GF WF A0 A1 A7-A2 A8-A20 DQ 15-DQ0
Manufacturer Code
M36DR432AD
Device Code
M36DR432BD
Note: X = Don’t care.

Table 6. Flash Read Block Protection

Block Status EF
Locked Block Unlocked Block Locked-Down
Block
Note: X = Don’t care.
GF WF A0 A1 A20-A12 A7-A2
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH

Table 7. Configuration Register

Function EF GF WF A0 A1 A7-A2 Other Addresses DQ10
RPF
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IH
V
IH
V
IH
V V V
V
IL
IH
IH
IL
V
IL
V
IL
Addresses
0 X 0020h 0 X 00A0h 0 X 00A1h
Other
DQ0 DQ1 DQ15-DQ2
Block Address 0 X 1 0 0000h Block Address 0 X 0 0 0000h
Block Address 0 X X 1 0000h
DQ9-DQ0
DQ15-DQ11
Reset Reset/Power-Down
Note: X = Don’t care.
V
V
V
V
IL
IL
IH
V
V
IL
V
IL
IH
V
IH
V
V
IH
0 X 0 Don’t Care
IH
0 X 1 Don’t Care
IH
18/52
Page 19
M36DR432AD, M36DR432BD

Table 8. Read Protection Register

Word EF GF WF A20-A8 A7-0 DQ15-8 DQ7-3 DQ2 DQ1 DQ0
Lock
Unique ID 0 Unique ID 1 Unique ID 2 Unique ID 3 OTP 0 OTP 1 OTP 2 OTP 3
Note: X= Don’t care.
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
X 80h XXh 00000b
X 81h ID data ID data ID data ID data ID data X 82h ID data ID data ID data ID data ID data X 83h ID data ID data ID data ID data ID data X 84h ID data ID data ID data ID data ID data X 85h OTP data OTP data OTP data OTP data OTP data X 86h OTP data OTP data OTP data OTP data OTP data X 87h OTP data OTP data OTP data OTP data OTP data X 88h OTP data OTP data OTP data OTP data OTP data
Security
prot.data

Table 9. Program, Erase Times and Progra m, Erase Endu ran ce Cycle s

M36DR432AD, M36D R432 BD
Parameter
Parameter Block (4 KWord) Erase (Preprogrammed) 2.5 0.3 1 s
Min Max Typ
OTP
prot.data
Typical after
100k W/E Cycles
0
Unit
Main Block (32 KWord) Erase (Preprogrammed) 4 0.8 3 s Bank Erase (Preprogrammed, Bank A) 3 6 s Bank Erase (Preprogrammed, Bank B) 20 30 s
Chip Program
(1)
Chip Program (Double Word, V Word Program
Double Word Program (V Quadruple Word Program (V
(2)
PPF
= 12V)
PPF
= 12V)
PPF
= 12V)
(1)
100 10 µs
100 8 µs 100 8 µs
20 25 s
8s
Program/Erase Cycles (per Block) 100,000 cycles
Note: 1. Excl udes the time needed to execute the sequence for program command.
2. Sam e tim i ng value if V

Flash Block Locking

The Flash memory features an instant, individual block locking scheme that allo ws any block to be locked or unlocked with no latency. This locking scheme has two levels of protection.
Lock/Unlock - this first level allows software-
only control of block locking.
Lock-Down - this second level requires
hardware interaction before locking can be changed.
PPF
= 12V
The protection status of each block can be set to Locked, Unlocked, and Lock-Down. Table 10, de­fines all of the possible protection states (WPF DQ1, DQ0).

Reading a Block’s Lock Status

The lock status of every block can be read in the Auto Select mode of the device. Subsequent reads at the address specified in Table 6, will out­put the protection status of that block. The lock status is represented by DQ0 and DQ1. DQ0 indi­cates the Block Lock/Unlock status and is se t by the Lock command and cleared by the Unlock command. It is also automatically set when enter-
,
19/52
Page 20
M36DR432AD, M36DR432B D
ing Lock-Down. DQ1 indicates the Lock-Down sta­tus and is set by the Lock-Down command. It cannot be cleared by software, only by a hardware reset or power-down.
The following sections explain the operation of the locking system.

Locked State

The default status of all blocks on power-up or af­ter a hardware reset is L ocked (states (0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any program or erase oper­ations attempted on a locked block will reset the device to Read Array mode. The Status of a Locked block can be changed to Unlocked or Lock-Down using the appropriate software com­mands. An Unlocked block can be Locked by issu­ing the Lock command.

Unlocked State

Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked blocks return to the Locked state after a hardware reset or when the device is powered-down. The status of an unlocked block can be changed to Locked or Locked-Down using the appropriate software commands. A locked block can be un­locked by issuing the Unlock command.

Lock-Down State

Blocks that are Locked-Down (state (0,1,x))are protected from program and erase operations (as for Locked blocks) but th eir protect ion status can­not be changed using software comma nds alone. A Locked or Unlocked block can be Locked-Down by issuing the Lock-Down command. Locked­Down blocks revert to the Locked state when the device is reset or powered-down.
The Lock-Down function is dependent on the WPF input pin. When WPF=0 (VIL), the blocks in the Lock-Down state (0,1,x) are protected from pro­gram, erase and protection status changes. When
=1 (VIH) the Lock-Down function is disabled
WPF (1,1,1) and Locked-Down blocks can be ind ividu­ally unlocked to the (1,1,0) state by issuing the software command, where they can be erased and programmed. These blocks can then be re-locked (1,1,1) and unlocked (1,1,0) as desired while WPF remains High. When WPF is Low, blocks that were previously Locked-Down return to the Lock-Down state (0,1,x) regardless of any changes made while WPF
was High. Device reset or power-down resets all bl ocks, including those in Lock -Do wn, to the Locked state.

Locking Operations During Erase Suspend

Changes to block lock status can be performed during an erase suspend by using the standard locking command sequences to unlock, lock or lock-down a block. This is useful in the case when another block needs to be updated while an erase operation is in progress.
To change block locking during an erase opera­tion, first write the Erase Suspend command, then check the status register until it indicates that the erase operation has been suspended. Next write the desired Lock com mand sequence to a block and the lock status will be changed. After complet­ing any desired lock, read, or program operations, resume the erase operation with the Erase Re­sume command.
If a block is locked or locked-down during an erase suspend of the same block, the locking status bits will be changed immediately, b ut when the erase is resumed, the erase operation will complete.
20/52
Page 21
M36DR432AD, M36DR432BD

Table 10. Flash Lock Status

Current
Protection Status
(WPF, DQ1, DQ0)
Current State
1,0,0 yes 1,0,1 1,0,0 1,1,1 0,0,0
(2)
1,0,1
1,1,0 yes 1,1,1 1,1,0 1,1,1 0,1,1 1,1,1 no 1,1,1 1,1,0 1,1,1 0,1,1 0,0,0 yes 0,0,1 0,0,0 0,1,1 1,0,0
(2)
0,0,1
0,1,1 no 0,1,1 0,1,1 0,1,1
Note: 1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block) as read
in the Auto Select command with A1 = V
2. All blocks are loc ked at power-up, so the defa ul t configura t io n i s 001 or 101 according to WP F
3. A WPF
transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.
(1)
Program/Erase
Allowed
no 1,0,1 1,0,0 1,1,1 0,0,1
no 0,0,1 0,0,0 0,1,1 1,0,1
After
Block Lock
Command
and A0 = VIL.
IH
Next Protection Status
(WPF, DQ1, DQ0)
After
Block Unlock
Command
(1)
After Block Lock-Down
Command
status.
After
transition
WPF
1,1,1 or 1,1,0
(3)

Flash Status Register

The Status Register provides information on the current or previous Program or Erase operations. Bus Read operations from any address within the bank, always read the Status Register during Pro­gram and Erase operations.
The various bits convey information about the sta­tus and any errors of the operation.
The bits in the Status Register are summarized in Table 12, Status Register Bits. Refer to Tables 11 and 12 in conjunction with the following text de­scrip tions .

Data Polling Bit (DQ7). When Program opera­tions are in progress, the Data Polling bit outputs the complement of the bit being programmed on DQ7. For a Double Word P rogram operation, it is the complement of DQ7 for the last Word written to the Command Interface.

During an Erase operation, it outputs a ’0’. After completion of the operation, DQ7 will output the bi t last programmed or a ’1’ after erasing.
Data Polling is valid and o nly effective during P/ E.C. operation, that is after the fourth WF programming or after the sixth WF
pulse for
pulse for erase. It must be performed at the address being pro­grammed or at an address within the block being erased. See Figure 22 for the D ata Polling f low­chart and Figure 13 for the Data Polling wave­forms.
DQ7 will also flag an Erase Suspend by switching from ’0’ to ’1’ at the start of the Erase Suspend . In order to monitor DQ7 in the Erase Suspend mode an address within a block being erased mus t be
provided. DQ7 will output ’1’ if the read is attempt­ed on a block being erased and the data val ue on other blocks. During a program operation in Erase Suspend, DQ7 will have the sam e behavior as in the normal program.

Toggle Bit (DQ6). When Program or Erase oper­ations are in progress, successive attempts to read DQ6 will output complementary data. DQ6 will toggle following the toggling of either GF

or EF . The operation is com pleted when t wo success ive reads give the s ame output data. The n ext read will output the bit last programmed or a ’1’ after erasing.
The Toggle Bit DQ6 is valid only during P/ E.C. op­erations, that is after the fourth WF gramming or after the sixth WF
pulse for pro-
pulse for Erase. DQ6 will be set to ’1’ if a read operation is attempt­ed on an Erase Suspend block. When erase is suspended DQ6 will toggle during programming operations in a block different from the block in Erase Suspend.
See Figure 16 for Toggle Bit f lowcha rt an d Figure 14 for Toggle Bit waveforms.

Toggle Bit (DQ2). Toggle Bit DQ2, together with DQ6, can be used to det ermine the d evice status during erase operations.

During Erase Suspend a read from a block being erased will cause DQ2 t o toggle. A read from a block not being eras ed will o utput data . DQ2 will
be set to '1' during program operation and to ‘0’ in erase operation. If a read operation is addres sed to a block where an erase error has occurred, DQ2 will toggle.
21/52
Page 22
M36DR432AD, M36DR432B D

Error Bit (DQ5). The Error Bit can be used to

identify if an error occurs during a program or erase operation.
The Error Bit is set to ‘1’ when a program or erase operation has failed. When it is set to ‘0’ the pro­gram or erase operation was successful.
If any Program command is used to try to set a bit from ‘0’ to ‘1’ Stat u s Re gis ter Error bit DQ5 w ill be set to ‘1’, only if V
is in the range of 11.4V to
PP

12.6V. The Error Bit is reset by a Read/Reset command. Erase Timer Bit (DQ3). The Erase Timer bit is

used to indicate the timeout period for an erase operation.
When the last block Erase command has been en­tered to the Command Interface and it is waiting for the erase operation to start, the Erase Timer Bit is set to ‘0’. When the erase timeou t period is fin­ished, DQ3 returns to ‘1’, (80µs to 120µs).
DQ0, DQ1 and DQ4 are reserved for future use and should be masked.

Table 11. Polling and Toggle Bits

Mode DQ7 DQ6 DQ2
Program DQ7 Erase 0 T oggle N/A Erase Suspend Read
(in Erase Suspend block)
Erase Suspend Read (outside Erase Suspend block)
Erase Suspend Program DQ7
DQ7 DQ6 DQ2
Toggle 1
1 1 Toggle
Toggle 1
22/52
Page 23
M36DR432AD, M36DR432BD

Table 12. Status Register Bits

DQ Name Logic Level Definition Note
Erase complete or erase block in Erase Suspend.
Program complete or data of non erase block during Erase Suspend.
Program in progress
(2)
Erase complete or Erase Suspend on currently addressed block
Indicates the P/E.C. status, check during Program or Erase, and on completion before checking bits DQ5 for Program or Erase success.
complementary data on DQ6 while Programming or Erase operations are in progress. DQ6 remains at constant level when P/E.C. operations are completed or Erase Suspend is acknowledged.
Data
7
Polling
6 Toggle Bit
’1’
’0’ Erase in progress
DQ
DQ
’-1-0-1-0-1-0-1-’ Erase or Program in progress Successive reads output
DQ Program complete
’-1-1-1-1-1-1-1-’
5 Error Bit
’1’ Program or Erase Error ’0’ Program or Erase in progress
This bit is set to ’1’ in the case of Programming or Erase failure.
4 Reserved
P/E.C. Erase operation has started.
’1’ Erase Timeout Period Expired
Only possible command entry is Erase Suspend
Erase Time
3
Bit
’0’
Erase Timeout Period in progress
An additional block to be erased in parallel can be entered to the P/E.C provided that it belongs to the same bank
Erase Suspend read in the Erase Suspended Block.
’-1-0-1-0-1-0-1-’
Erase Error due to the currently addressed block (when DQ5 =
2 Toggle Bit
1
DQ
’1’). Program in progress or Erase
complete. Erase Suspend read on non
Erase Suspend block.
Indicates the erase status and allows to identify the erased block.
1 Reserved 0 Reserved
Note: 1. Logic lev el ’1’ is Hig h, ’0’ is Low. -0-1-0 -0-0-1-1-1-0- repres ent bit value i n successive read operations.
2. In case of double word program DQ7
refers to the last word input.
23/52
Page 24
M36DR432AD, M36DR432B D

SRAM C O MPONENT

The SRAM is a 4 Mbit (256Kb x16) low-power con­sumption memory array with low V tion.

SRAM Operations

The following operations can be performed using the appropriate bus cycles: Read Array, Write Ar­ray, Output Disable, Power Down (see Table 2).
Read. Read operations are used to output the contents of the SRAM Array. The SRAM is in Read mode whenever Write Enable (WS Output Enable ( GS UBS
, LBS combinations are asserted.
) at VIL, Chip Enable ES and
Valid data will be available at the output pins within t
after the last stable address, provided that
AVQV
is Low and ES is Low. If Chip Enable or Output
GS Enable access times are not met, data access will be measured from the limiting parameter (t t
) rather than the address. Data out may be
GLQV
indeterminate at t will always be valid at t
ELQX
and t
GLQX
(see Table 23, Figures
AVQV
17 and 18). Write. Write operations are used to write data in
the SRAM. The SRAM is in Write mode whenever the WS able input (ES
and ES pins are at VIL. Either t he Chi p En-
) or the Write Enable input (WS) must be de-asserted during address transitions for subsequent write cycles. Write begins with the concurrence of Chip E nab le being active and WS at VIL. A Write begins at the latest transition
data reten-
DDS
) is at VIH with
or
ELQV
, but d ata lines
among ES
going to VIL and WS going to VIL. Therefore, address setup time is referenced to Write Enable and Chip Enable as t
AVWL
and t
AVEL
respectively, and is determined by the latter occur­ring edge. The W rite cycle can be terminated by the rising edge of ES
or the rising edge of WS,
whichever occurs first. If the Output is enabled (ES
then WS within t
will return the outputs to high impedance
of its falling edge. Care must be taken
WLQZ
=VIL and GS=VIL),
to avoid bus c ontention in this type of operation. Data input must be valid for t ing edge of Write Enable, or for t rising edge of ES main valid for t
, whichever occurs first, and re-
and t
WHDX
EHAX
before the ris-
DVWH
DVEH
before the
(see Table 24, Fig-
ure 20, 22, 24). Standby/Power-Down. The SRAM chip has a
Chip Enable power-down feature which invokes an automatic standby mode (see Table 23, Figure
19) whenever either Chip E nable is de-asserted
=VIH).
(ES Data Retention. The SRAM data retention per-
formances as V in Table 25 and Figure 24. In E S
go down to VDR are described
DDS
controlled data retention mode, minimum standby current mode is entered when ES
V
DDS
–0.2V.
Output Disa bl e . The data outputs are high im­pedance when the Out put Enable (GS
) is at V
IH
with Write Enable (WS) at VIH.
24/52
Page 25
M36DR432AD, M36DR432BD

MAXIMUM RATIN G

Stressing the device ab ove the rating listed in the Absolute Maximum Ratings table m ay cause per­manent damage to the device. These are stress ratings only and operation of the device at these or any other conditions ab ove those i ndicated in t he Operating sections of this specificat ion is not im-
(1)
Table 13. Absolute Maximum Ratings
Symbol Parameter Value Unit
T
A
Ambient Operating Temperature
(3)
plied. Exposure to Absolute Maximum Rating con­ditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and ot her relevant quality docu­ments.
–40 to 85 °C
T
BIAS
T
STG
(2)
V
IO
V
DDF
V
DDS
V
PPF
Note: 1. Minimum voltage ma y undershoo t to –2V during tra nsition and for less than 20ns.
2. Depends on range.
3. V
DD
Temperature Under Bias –40 to 125 °C Storage Temperature –55 to 150 °C
Input or Output Voltage Supply Voltage –0.5 to 2.7 V
SRAM Chip Supply Voltage –0.5 to 2.4 V Program Voltage –0.5 to 13 V
= V
= V
DDF
.
DDS
–0.5 to V
DD
(3)
+0.5
V
25/52
Page 26
M36DR432AD, M36DR432B D

DC AND AC PARAMETERS

This section summarizes t he operating m easure­ment conditions, and the DC and AC characteris­tics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement

Table 14. Operating and AC Measurement Conditions

Conditions summarized in Table 14, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the operating conditions when rely­ing on the quoted parameters.
SRAM Flash
Parameter
70 85 100, 120
Min Max Min Max Min Max
V
Supply Voltage
DDF
Supply Voltage
V
DDS
Supply Voltage
V
PPF
- - 1.8 2.2 1.65 2.2 V
1.65 2.2 ----V
11.4 12.6 11.4 12.6 V
Ambient Operating Temperature – 40 85 – 40 85 – 40 85 °C
Load Capacitance (C
)
L
30 5 30 30 pF
Input Rise and Fall Times 2 4 4 ns
DDS
= V
(1)
(1)
DDF
Input Pulse Voltages Input and Output Timing Ref. Voltages
Note: 1. VDD = V

Figure 6. AC Measurement I/O Waveform

V
DD
0V
Note: VDD means V
DDF
= V
DDS
VDD/2
AI90206
0 to V
DD
0 to V
DD
0 to V
VDD/2 VDD/2 VDD/2

Figure 7. AC Me asurement Load Circuit

VDD
DEVICE
UNDER
TEST
0.1µF
CL = 50pF
DD
V
DD
Units
V V
25k
25k
CL includes JIG capacitance
Note: VDD means V
DDF
= V
DDS

Table 15. Device Capacitance

Symbol Parameter Test Condition Min Max Unit
V
V
IN
OUT
= 0V
= 0V
12 pF 15 pF
C
IN
C
OUT
Note: Sampled only, not 10 0% tested.
Input Capacitance Output Capacitance
26/52
AI90207
Page 27
M36DR432AD, M36DR432BD

Table 16. Flash DC Characteristics

Symbol Parameter Test Condition Min Typ Max Unit
I
LI
I
LO
I
CC1
I
CC2
I
CC3
(1)
I
CC4
(1)
I
CC5
I
PPF1
I
PPF2
V
IL
V
IH
V
OL
V
OH
Input Leakage Current
Output Leakage Current Supply Current
0V ≤ V
0V ≤ V
E
F = VIL, GF = VIH, f =
(Read Mode) Supply Current
(Power-Down) Supply Current (Standby) Supply Current
RP
E
Word Program, Block Erase
(Program or Erase)
Supply Current (Dual Bank)
V
Supply Current
PPF
(Program or Erase) V
Supply Current
PPF
(Standby or Read)
Program/Erase in progress
in one Bank, Read in the
V
PPF
V
PPF
Input Low Voltage –0.5 0.4 V Input High Voltage Output Low Voltage Output High Voltage
CMOS
≤ V
IN
DD
≤ V
OUT
DD
6MHz
F = VSS ± 0.2V
F = VDD ± 0.2V
in progress
other Bank
= 12V ± 0.6V
V
≤ V
PPF
DD
= 12V ± 0.6V
V
I
= 100µA
OL
= –100µA VDD –0.1
I
OH
36mA
210µA
10 50 µA
10 20 mA
13 26 mA
25mA
0.2 5 µA
100 400 µA
– 0.4 VDD + 0.4
DD
±1 µA ±5 µA
0.1 V
V
V
PPF
Note: 1. Sampled only, not 100% tested.
(Program or Erase)
may be connected to 12V power supply for a total of less than 100 hrs.
2. V
PPF
3. For s tandard program/erase operation V
V
Supply Voltage
PPF
(2,3)
V
V
–0.4
DD
+ 0.4
Double Word Program 11.4 12.6 V
is don’t ca re.
PPF
V
27/52
Page 28
M36DR432AD, M36DR432B D
Table 17. SRAM DC Characteristics
(T
= –40 to 85°C; V
A
Symbol Parameter Test Condition Min Typ Max Unit
I
OZ
I
IX
I
DDS
I
DD
V
IL
V
IH
V
OL
V
OH
Note: 1. I
2. V
Output Leakage
Current
Input Load Current
V
DD
Current
Supply Current
Input Low Voltage
Input High Voltage
Output Low Voltage
Output High Voltage
and I
DDES
and I
= VIL or V
IN
DDWS
If the device is read while in program suspend, current draw is the sum of
DDR.
IH
= V
DDF
Standby
are speci f i ed with device deselected. If device is read while in erase s uspend, current draw is sum of I
= 1.65V to 2.2V)
DDS
0V ≤ V
E
S ≥ V
DDS
= 0 mA, f = f
I
OUT
≤ V
OUT
0V ≤ V
DDS,
IN
– 0.2V, VIN ≥ V
or V
IN
V
DDS
MAX
V
DDS
I
= 0 mA, f = 0Hz
OUT
CMOS levels
V
DDS
V
DDS
V
DDS
I
= 0.1µA
OL
V
DDS
I
= –0.1µA
OH
output disabled
≤ V
DDS
– 0.2V
DDS
0.2V, f=0
= 2.2V
= 1/tRC, CMOS levels
= 2.2V
= 1.65V
= 2.2V
= 1.65V
= 1.65V
-1 +1 +1 µA
-1 ±1 +1 µA
11A
47mA
15mA
–0.5 0.4 V
1.4
V
DDS
1.4 V
IDDWS
and I
DDR
.
+0.2V
0.2 V
V
DDES
28/52
Page 29

Figure 8. Flash Random Read AC Waveforms

tEHQZ
tGHQZ
tGHQX
M36DR432AD, M36DR432BD
AI07312
VALID
tAVAV
A0-A20
VALID
tAVQV tAXQX
tELQV
EF
tELQX tEHQX
GF
tGLQV
tGLQX
DQ0-DQ15
Note: Wri te Enable (WF) = High.
29/52
Page 30
M36DR432AD, M36DR432B D

Figure 9. Flash Page Read AC Waveforms

AI07313
VALID
VALID
VALIDVALID
tGLQV
tGHQZ
tEHQZ
VALID
tGHQX
tEHQX
tAVQV1
VALID VALID VALID
30/52
A2-A20
VALID
A0-A1
tELQV
EF
GF
tAVQV
DQ0-DQ15
Page 31

Table 18. Flash Read AC Characteristics

Symbol Alt Parameter Test Condition
t
AVAV
t
AVQV
t
AVQV1tPAGE
(1)
t
ELQX
(2)
t
ELQV
(1)
t
GLQX
Address Valid to Next
t
RC
Address Valid Address Valid to
t
ACC
Output Valid (Random) Address Valid to
Output Valid (Page) Chip Enable Low to
t
LZ
Output Transition Chip Enable Low to
t
CE
Output Valid Output Enable Low to
t
OLZ
Output Transition
= VIL, GF = V
EF
= VIL, GF = V
EF
= VIL, GF = V
EF
= V
GF
= V
GF
= V
EF
M36DR432AD, M36DR432BD
M36DR432AD, M36DR432BD
Unit85 100 120
Min Max Min Max Min Max
(3)
IL
85
IL
IL
IL
IL
IL
00 0 ns
00 0 ns
100 120 ns
85
30
85
(3)
(3)
(3)
100 120 ns
35 45 ns
100 120 ns
(2)
t
GLQV
t
EHQX
(1)
t
EHQZ
t
GHQX
(1)
t
GHQZ
t
AXQX
Note: 1. Sampled only, not 100% tested.
2. GF
may be delayed by up to t
3. To be c haracteriz ed.
Output Enable Low to
t
OE
Output Valid Chip Enable High to
t
OH
Output Transition Chip Enable High to
t
HZ
Output Hi-Z Output Enable High to
t
OH
Output Transition Output Enable High to
t
DF
Output Hi-Z Address Transition to
t
OH
Output Transition
ELQV
= V
EF
IL
= V
GF
IL
= V
GF
IL 20
= V
EF
IL
= V
EF
IL 20
= VIL, GF = V
EF
- t
after the fal l in g edge of EF without increasing t
GLQV
00 0 ns
00 0 ns
00 0 ns
IL
25
(3)
(3)
(3)
25 35 ns
25 35 ns
25 35 ns
.
ELQV
31/52
Page 32
M36DR432AD, M36DR432B D

Figure 10. Flash Write AC Waveforms, Write Enable Controlled

tAVAV
A0-A20
tAVWL
EF
VALID
tWLAX
tWHEH
tELWL
GF
tWLWHtGHWL
WF
tDVWH
DQ0-DQ15
V
DDF
tVDHEL
Note: Addresses are latched on the falling edge of WF, Data is latched on the ris i ng edge of WF.
VALID

Table 19. Flash Write AC Characteristics, Write Enable Controlled

M36DR432AD, M36DR432BD
Symbol Alt Parameter
Min Max Min Max Min Max
t
AVAV
t
ELWL
t
WLWHtWP
t
DVWH
t
WHDXtDH
t
WHEHtCH
t
WHWLtWPH
t
AVWL
t
WLAX
t
GHWL
t
VDHELtVCSVDD
t
WHGLtOEH
t
PLQ7V
Note: 1. To be characterized .
t
Address Valid to Next Address Valid
WC
t
Chip Enable Low to Write Enable Low 0 0 0 ns
CS
Write Enable Low to Write Enable High
t
Input Valid to Write Enable High
DS
Write Enable High to Input Transition 0 0 0 ns Write Enable High to Chip Enable High 0 0 0 ns Write Enable High to Write Enable Low 30 30 30 ns
t
Address Valid to Write Enable Low 0 0 0 ns
AS
t
Write Enable Low to Address Transition 50 50 50 ns
AH
Output Enable High to Write Enable Low 0 0 0 ns
High to Chip Enable Low
Write Enable High to Output Enable Low 30 30 30 ns RPF Low to Reset Complete During
Program/Erase
85
50 40
(1)
(1)
(1)
100 120 ns
50 50 ns 50 50 ns
50 50 50 µs
15 15 15 µs
tWHGL
tWHWL
tWHDX
AI07314
Unit85 100 120
32/52
Page 33

Figure 11. Flash Write AC Waveforms, Chip Enable Controlled

tAVAV
A0-A20
tAVEL
WF
VALID
M36DR432AD, M36DR432BD
tELAX
tEHWH
tWLEL
GF
tELEHtGHEL
EF
tDVEH
DQ0-DQ15
V
DDF
tVDHWL
Note: Addresses are latched on the falling edge of EF, Data is latched on the rising edge of EF.
VALID

Table 20. Flash Write AC Characteristics, Chip Enable Controlled

M36DR432AD, M36DR432BD
Symbol Alt Parameter
Min Max Min Max Min Max
t
AVAV
t
Address Valid to Next Address Valid
WC
85
(1)
tEHGL
tEHEL
tEHDX
AI07315
Unit85 100 120
100 120 ns
t
WLEL
t
ELEH
t
DVEH
t
EHDX
t
EHWH
t
EHEL
t
AVEL
t
ELAX
t
GHEL
t
VDHWLtVCSVDD
t
EHGL
t
PLQ7V
Note: 1. To be characterized
t
Write Enable Low to Chip Enable Low 0 0 0 ns
WS
t
Chip Enable Low to Chip Enable High
CP
t
Input Valid to Chip Enable High
DS
t
Chip Enable High to Input Transition 0 0 0 ns
DH
t
Chip Enable High to Write Enable High 0 0 0 ns
WH
t
Chip Enable High to Chip Enable Low 30 30 30 ns
CPH
t
Address Valid to Chip Enable Low 0 0 0 ns
AS
t
Chip Enable Low to Address Transition 50 50 50 ns
AH
Output Enable High Chip Enable Low 0 0 0 ns
t
Chip Enable High to Output Enable Low 30 30 30 ns
OEH
RPF Low to Reset Complete During Program/Erase
High to Write Enable Low
50 40
(1)
(1)
50 50 ns 50 50 ns
50 50 50 µs
15 15 15 µs
33/52
Page 34
M36DR432AD, M36DR432B D

Figure 12. Flash Reset/Power-Down AC Waveform

READ
WF
DQ7
RPF
tPHQ7V
VALID

Table 21. Flash Reset/Power-Down AC Characteristics

Symbol Alt Parameter Test Condition
t
PHQ7V1
RPF High to Data Valid (Read Mode)
PROGRAM / ERASE
DQ7 VALID
tPLPH
tPLQ7V
AI07316
M36DR432AD, M36DR432BD
Unit85 100 120
Min Max Min Max Min Max
150 150 150 ns
t
PHQ7V2
t
PLQ7V
t
PLPHtRP
RPF High to Data Valid (Reset/Power-Down
50 50 50 µs
enabled)
RPF Low to Reset Complete
During Program 10 10 10 µs
During Erase 20 20 20 µs
RPF Pulse Width 50 50 50 ns
34/52
Page 35

Figure 13. Flash Data Polling DQ7 AC Waveforms

M36DR432AD, M36DR432BD
AI07317
ARRAY
READ CYCLE
ADDRESS (WITHIN BLOCKS)
tELQV
tAVQV
tEHQ7V
tGLQV
VALID
DQ7
tWHQ7V
VALID
tQ7VQV
IGNORE
DATA POLLING (LAST) CYCLE MEMORY
A0-A20
EF
GF
WF
DQ7
DQ0-DQ6/
DQ8-DQ15
READ CYCLES
DATA POLLING
PROGRAM
OR ERASE
CYCLE OF
LAST WRITE
INSTRUCTION
35/52
Page 36
M36DR432AD, M36DR432B D

Figure 14. Flash Data Toggle DQ6, DQ2 AC Waveforms

AI06196
VALID
tEHQV
tAVQV
tELQV
tGLQV
VALID
tWHQV
STOP TOGGLE
VALID
IGNORE
READ CYCLE
MEMORY ARRAY
READ CYCLE
DATA TOGGLE
36/52
A0-A20
EF
GF
WF
DQ6,DQ2
DQ0-DQ1,DQ3-DQ5,
DQ7-DQ15
DATA
TOGGLE
READ CYCLE
OF ERASE
PROGRAM
CYCLE OF
LAST WRITE
INSTRUCTION
Note: Al l ot her timings are as a normal Read cycle.
Page 37

Table 22. Flash Data Polling and Toggle Bits AC Characteristics

Symbol Parameter
t
WHQ7V
t
EHQ7V
Write Enable High to DQ7 Valid (Program, WF Controlled) 8 100 µs
Write Enable High to DQ7 Valid (Block Erase, WF
Controlled) 0.8 4 s Chip Enable High to DQ7 Valid (Program, EF Controlled) 8 100 µs Chip Enable High to DQ7 Valid (Block Erase, EF
Controlled) 0.8 4 s
M36DR432AD, M36DR432BD
M36DR432AD,
M36DR432BD
Min Max
Unit
t
Q7VQV
Q7 Valid to Output Valid (Data Polling) 0 ns Write Enable High to Output Valid (Program) 8 100 µs
t
WHQV
t
EHQV
Note: All other tim i ngs are defin ed i n Read AC Characteristi cs
Write Enable High to Output Valid (Block Erase) 0.8 4 s Chip Enable High to Output Valid (Program) 8 100 µs Chip Enable High to Output Valid (Block Erase) 0.8 4 s

Figure 15. Flash Data Polling Flowchart Figure 16. Flash Data Toggle Flowchart

START
START
READ
READ DQ5 & DQ7
at VALID ADDRESS
DQ7
=
DATA
NO
NO
DQ5
= 1
YES
READ DQ7
YES
DQ5 & DQ6
TOGGLES
NO
READ DQ6
DQ6
=
DQ5
= 1
NO
YES
YES
DQ7
=
DATA
FAIL PASS
YES
NO
AI06197
DQ6
=
TOGGLES
FAIL PASS
NO
YES
AI06198
37/52
Page 38
M36DR432AD, M36DR432B D
Figure 17. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V
tAVAV
A0-A17
tAVQV
tAXQX
DQ0-DQ15
Note: ES = Low, GS = Lo w, WS = High.
VALID
DATA VALIDDATA VALID
AI90217

Figure 18. SRAM Read AC Waveforms, ES or GS Controlled

tAVAV
A0-A17
tAVQV tAXQX
tELQV
VALID
tEHQZ
IL
ES
UBS, LBS
GS
DQ0-DQ15
Note: Write Enable (WS) = High.
tELQX
tBLQV
tBLQX
tGLQX
tGLQV
tBHQZ
tGHQZ
DATA VALID
AI07311
38/52
Page 39

Figure 19. SRAM Standby AC Waveforms

ES
M36DR432AD, M36DR432BD
I
DD
tPU

Table 23. SRAM Read AC Characteristics)

Symbol Alt Parameter
t
AVAV
t
AVQV
t
AXQX
t
BHQZ
t
BLQV
t
BLQX
t
EHQZ
t
ELQV
t
ELQX
t
GHQZ
t
GLQV
t
GLQX
(1)
t
PD
(1)
t
PU
Note: 1. Sampl e d only. Not 100% tested.
t
t
t
t
BHZ
t
t
BLZ
t
t
ACE
t
t
OHZ
t
t
OLZ
Read Cycle Time 70 ns
RC
Address Valid to Output Valid 70 ns
AA
Address Transition to Output Transition 10 ns
OH
UBS, LBS Disable to Hi-Z Output 25 ns UBS, LBS Access Time 45 ns
BA
UBS, LBS Enable to Low-Z Output 5 ns Chip Enable High to Output Hi-Z 25 ns
HZ
Chip Enable Low to Output Valid 70 ns Chip Enable Low to Output Transition 5 ns
LZ
Output Enable High to Output Hi-Z 25 ns Output Enable Low to Output Valid 35 ns
EO
Output Enable Low to Output Transition 5 ns Chip Enable High to Power Down 70 ns
Chip Enable Low to Power Up 0 ns
tPD
AI07320
SRAM
Unit70
Min Max
39/52
Page 40
M36DR432AD, M36DR432B D

Figure 20. SRAM Write AC Waveforms, WS Controlled with GS Low

tAVAV
A0-A17
tAVEL
ES
UBS, LBS
WS
tWLQZ
DQ0-DQ15
Note: Output E nable (GS) = Low.
VALID
tAVWH
tELWH
tBLWH
tWLWHtAVWL
tDVWH
INPUT VALID

Figure 21. SRAM Write AC Waveforms, WS Controlled with GS High

tAVAV
A0-A17
VALID
tWHAX
tWHQX
tWHDX
AI07321
ES
UBS, LBS
WS
GS
DQ0-DQ15
tAVEL
tAVWH
tELWH
tBLWH
tWHAX
tWLWHtAVWL
tDVWH
INPUT VALID
tWHDX
AI07322
40/52
Page 41
M36DR432AD, M36DR432BD

Figure 22. SRAM Write Cycle Waveform, UBS and LBS Controlled, G Lo w

tAVAV
A0-A17
ES
UBS, LBS
tAVWL
WS
DQ0-DQ15
tWLQZ
Figure 23. SRAM Write AC Waveforms, ES
A0-A17
VALID
tAVWH
tBLWH
tWLEH
Controlled
tAVAV VALID
tDVWH
INPUT VALID
tEHAX
tWHQX
tWHDX
AI07323
ES
UBS, LBS
WS
DQ0-DQ15
Note: Output E nable (GS) = High.
tAVEL
tELWH
tBLWH
tWLWH
tDVWH
INPUT VALID
tEHAX
tWHDX
AI07324
41/52
Page 42
M36DR432AD, M36DR432B D

Table 24. SRAM Write AC Characteristics

Symbol Alt Parameter
t
AVAV
t
AVEL
t
AVWH
t
AVWL
t
BLWH
t
DVWH
t
EHAX
t
,
ELWH
t
WHAX
t
WHDX
t
WHQX
t
WLQZ
t
WLWH
Note: 1. tAS is measured from the address valid t o the beginnin g of write.
2. t
WR
3. t
CW
4. A Wri te occu rs dur ing th e over lap ( t UBS liest transi t i on when ES
t
WC
t
AS
t
AW
t
AS
t
BW
t
DW
t
WR
t
CW
t
WR
t
DH
t
OW
t
WHZ
t
WP
is measured from the end o r write to the address change. tWR applied in c ase a write ends as ES or WS goes High. is measured from ES going Low end of write.
or LBS for single byt e operation or sim ultaneously assertin g UBS and LBS for double byte operation. A write ends at the ear-
Write Cycle Time 70 ns
(1)
Address Valid to Chip Enable Low 0 ns Address Valid to Write Enable High 60 ns
(1)
Address Valid to Write Enable Low 0 ns UBS, LBS Valid to End of Write 60 ns Input Valid to Write Enable High 30 ns
(2)
Chip Enable High to Address Transition 0 ns
(3)
Chip Select to End of Write 60 ns
(2)
Write Enable High to Address Transition 0 ns Write Enable High to Input Transition 0 ns Write Enable High to Output Transition 10 ns
Write Enable Low to Output Hi-Z 25 ns
(4)
Write Enable Pulse Width 50 ns
) of Low ES and Low WS. A write begins when ES goes Low and WS goes Low w it h as se rti ng
WP
goes High an d WS goes High. The tWP is measured from the beginning o f wr ite to the end of write.
SRAM
Unit70
Min Max
Figure 24. SRAM Low V
V
42/52
DDS
ES
1.65 V
V
DR
1.0 V
Data Retention AC Waveforms, ES Controlled
DDS
tCDR
ES V
DDS
– 0.2V
tRDATA RETENTION MODE
AI07325
Page 43
M36DR432AD, M36DR432BD
Table 25. SRAM Low V
Data Retention Characteristics
DDS
(1, 2)
Symbol Parameter Test Condition Min Typical Max Unit
V
I
DDDR
V
t
CDR
Note: 1. All other Inputs VIH ≤ V
Supply Current (Data Retention)
Supply Voltage (Data Retention)
DR
Chip Disable to Data Retention Time
t
Operation Recovery Time
R
2. Sampled only. Not 100% tested.
– 0.2V or VIL ≤ 0.2V.
DDS
= 1.0V, ES ≥ V
DDS
no input may exceed V
ES
≥ V
DDS
≥ V
ES
DDS
DDS
DDS
– 0.2V
– 0.2V
– 0.2V
+ 2V
0.5 10 µA
1 2.2 V
0ns
t
RC
ns
43/52
Page 44
M36DR432AD, M36DR432B D

PACKAGE MECHANICAL

Figure 25. Stacked LFBGA 12x8mm - 8x8 ball array, 0.8mm pitch, Bottom View Package Outline

D D2 D1
E
E1
Note: Drawing is not to scale.
SE
BALL "A1"
A
FDFE
SD
e
b
e
ddd
A2
A1
BGA-Z12

Table 26. Stacked LFBGA 12x8mm - 8x8 ball array, 0.8mm pitch, Packag e Mec han ical Data

Symbol
Typ Min Max Typ Min Max
A 1.400 0.0551 A1 0.250 0.0098 A2 1.100 0.0433
b 0 .400 0.350 0.45 0 0.0157 0.0 138 0.0177
D 12.000 0.4724
D1 5.600 0.2205 – D2 8.800 0.3465
ddd 0.100 0.0039
E 8.000 0.3150 – E1 5.600 0.2205
e 0 .800 0.0315
FD 1.600 0.0630
FE 1.200 0.0472
SD 0.400 0.0157 – SE 0.400 0.0157
millimeters inches
44/52
Page 45
M36DR432AD, M36DR432BD

PART NUMBERING

Table 27. Ordering Information Scheme

Example: M36 D R 4 32A D 10 ZA 6 T
Device Type
M36 = MMP (Flash + SRAM)
Architecture
D = Dual Bank, Page Mode
Operating Voltage
R = V
SRAM Chip Size & Organization
4 = 4 Mbit (256Kb x 16 bit)
Flash Specification Details
32A = 32 Mbit (x16), Dual Bank: 1/8-7/8 partitioning, Top Configuration 32B = 32 Mbit (x16), Dual Bank: 1/8-7/8 partitioning, Bottom Configuration
SRAM Specification Details
D = Asynchronous SRAM, 0.16µm, 70ns speed
DDF
= V
= 1.65V to 2.2V
DDS
Speed
85 = 85ns (to be characterized) 10 = 100ns 12 = 120ns
Package
ZA = LFBGA66: 0.8mm pitch
Temperature Range
6 = –40 to 85°C
Option
T = Tape & Reel packing
Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available op­tions (Speed, Package, etc.) or for further information on any aspect of this device, please contact the ST­Microelectronics Sales Office nearest to you.
45/52
Page 46
M36DR432AD, M36DR432B D

APPENDIX A. BLOCK ADDRESSES

Table 28. Bank A, Top Boot Block Addresses M36DR432AD

#
14 4 1FF000h-1FFFFFh 13 4 1FE000h-1FEFFFh 12 4 1FD000h-1FDFFFh 11 4 1FC000h-1FCFFFh 10 4 1FB000h-1FBFFFh
9 4 1FA000h-1FAFFFh 8 4 1F9000h-1F9FFFh 7 4 1F8000h-1F8FFFh 6 32 1F0000h-1F7FFFh 5 32 1E8000h-1EFFFFh 4 32 1E0000h-1E7FFFh 3 32 1D8000h-1DFFFFh 2 32 1D0000h-1D7FFFh 1 32 1C8000h-1CFFFFh 0 32 1C0000h-1C7FFFh
Size
(KWord)
Address Range

Table 29. Bank B, Top Boot Block Addresses M36DR432AD

#
55 32 1B8000h-1BFFFFh 54 32 1B0000h-1B7FFFh 53 32 1A8000h-1AFFFFh 52 32 1A0000h-1A7FFFh 51 32 198000h-19FFFFh 50 32 190000h-197FFFh 49 32 188000h-18FFFFh 48 32 180000h-187FFFh 47 32 178000h-17FFFFh 46 32 170000h-177FFFh 45 32 168000h-16FFFFh 44 32 160000h-167FFFh 43 32 158000h-15FFFFh 42 32 150000h-157FFFh 41 32 148000h-14FFFFh 40 32 140000h-147FFFh 39 32 138000h-13FFFFh
Size
(KWord)
Address Range
38 32 130000h-137FFFh 37 32 128000h-12FFFFh 36 32 120000h-127FFFh 35 32 118000h-11FFFFh 34 32 110000h-117FFFh 33 32 108000h-10FFFFh 32 32 100000h-107FFFh 31 32 0F8000h-0FFFFFh 30 32 0F0000h-0F7FFFh 29 32 0E8000h-0EFFFFh 28 32 0E0000h-0E7FFFh 27 32 0D8000h-0DFFFFh 26 32 0D0000h-0D7FFFh 25 32 0C8000h-0CFFFFh 24 32 0C0000h-0C7FFFh 23 32 0B8000h-0BFFFFh 22 32 0B0000h-0B7FFFh 21 32 0A8000h-0AFFFFh 20 32 0A0000h-0A7FFFh 19 32 098000h-09FFFFh 18 32 090000h-097FFFh 17 32 088000h-08FFFFh 16 32 080000h-087FFFh 15 32 078000h-07FFFFh 14 32 070000h-077FFFh 13 32 068000h-06FFFFh 12 32 060000h-067FFFh 11 32 058000h-05FFFFh 10 32 050000h-057FFFh
9 32 048000h-04FFFFh 8 32 040000h-047FFFh 7 32 038000h-03FFFFh 6 32 030000h-037FFFh 5 32 028000h-02FFFFh 4 32 020000h-027FFFh 3 32 018000h-01FFFFh 2 32 010000h-017FFFh 1 32 008000h-00FFFFh 0 32 000000h-007FFFh
46/52
Page 47
M36DR432AD, M36DR432BD

Table 30. Bank B, Bottom Boot Block Addresses M36DR432BD

#
55 32 1F8000h-1FFFFFh 54 32 1F0000h-1F7FFFh 53 32 1E8000h-1EFFFFh 52 32 1E0000h-1E7FFFh 51 32 1D8000h-1DFFFFh 50 32 1D0000h-1D7FFFh 49 32 1C8000h-1CFFFFh 48 32 1C0000h-1C7FFFh 47 32 1B8000h-1BFFFFh 46 32 1B0000h-1B7FFFh 45 32 1A8000h-1AFFFFh 44 32 1A0000h-1A7FFFh 43 32 198000h-19FFFFh 42 32 190000h-197FFFh 41 32 188000h-18FFFFh 40 32 180000h-187FFFh 39 32 178000h-17FFFFh 38 32 170000h-177FFFh 37 32 168000h-16FFFFh 36 32 160000h-167FFFh 35 32 158000h-15FFFFh 34 32 150000h-157FFFh 33 32 148000h-14FFFFh 32 32 140000h-147FFFh 31 32 138000h-13FFFFh 30 32 130000h-137FFFh 29 32 128000h-12FFFFh 28 32 120000h-127FFFh 27 32 118000h-11FFFFh 26 32 110000h-117FFFh 25 32 108000h-10FFFFh 24 32 100000h-107FFFh 23 32 0F8000h-0FFFFFh 22 32 0F0000h-0F7FFFh 21 32 0E8000h-0EFFFFh 20 32 0E0000h-0E7FFFh 19 32 0D8000h-0DFFFFh
Size
(KWord)
Address Range
18 32 0D0000h-0D7FFFh 17 32 0C8000h-0CFFFFh 16 32 0C0000h-0C7FFFh 15 32 0B8000h-0BFFFFh 14 32 0B0000h-0B7FFFh 13 32 0A8000h-0AFFFFh 12 32 0A0000h-0A7FFFh 11 32 098000h-09FFFFh 10 32 090000h-097FFFh
9 32 088000h-08FFFFh 8 32 080000h-087FFFh 7 32 078000h-07FFFFh 6 32 070000h-077FFFh 5 32 068000h-06FFFFh 4 32 060000h-067FFFh 3 32 058000h-05FFFFh 2 32 050000h-057FFFh 1 32 048000h-04FFFFh 0 32 040000h-047FFFh

Table 31. Bank A, Bottom Boot Block Addresses M36DR432BD

#
14 32 038000h-03FFFFh 13 32 030000h-037FFFh 12 32 028000h-02FFFFh 11 32 020000h-027FFFh 10 32 018000h-01FFFFh
9 32 010000h-017FFFh 8 32 008000h-00FFFFh 7 4 007000h-007FFFh 6 4 006000h-006FFFh 5 4 005000h-005FFFh 4 4 004000h-004FFFh 3 4 003000h-003FFFh 2 4 002000h-002FFFh 1 4 001000h-001FFFh 0 4 000000h-000FFFh
Size
(KWord)
Address Range
47/52
Page 48
M36DR432AD, M36DR432B D

APPENDIX B. COMMON FLASH INTERFACE

The Common Flash Interface is a JEDEC ap­proved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determi ne various electrical and t iming parameters, density information and functions supported by the mem­ory. The system can interface easily with the de­vice, enabling the software to upgrade itself when necessary.
When the Read CFI Query Command is issued the device enters CFI Query mode and the data

Table 32. Query Structure Overview

Offset Sub-section Name Description
00h Reserved Reserved for algorithm-specific information 10h CFI Query Identification String Command set ID and algorithm data offset 1Bh System Interface Information Device timing & voltage information 27h Device Geometry Definition Flash device layout
P Primary Algorithm-specific Extended Query table
A Alternate Algorithm-specific Extended Query table
structure is read from the memory. Tables 32 , 33, 34 and 35 show the address used to retrieve each data. The Query data is always presented on the lowest order data outputs (DQ0-DQ7), the other outputs (DQ8-DQ15) are set to 0.
The CFI data structure contains also a security area starting at address 81h. This area can be ac­cessed only in read mode and it is impossible to change after it has been written by ST. Issue a Read command to return to Read mode.
Additional information specific to the Primary Algorithm (optional)
Additional information specific to the Alternate Algorithm (optional)

Table 33. CFI Query Identification String

Offset Data Description
00h 0020h Manufacturer Code
01h
02h-0Fh reserved Reserved
10h 0051h Query Unique ASCII String "QRY" 11h 0052h Query Unique ASCII String "QRY" 12h 0059h Query Unique ASCII String "QRY" 13h 0002h 14h 0000h 15h offset = P = 0040h 16h 0000h 17h 0000h 18h 0000h 19h value = A = 0000h
1Ah 0000h
00A1h - bottom
00A0h - top
Device Code
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code defining a specific algorithm
Address for Primary Algorithm extended Query table
Alternate V endor Command Set and Control Interface ID Code second vendor
- specified algorithm supported (note: 0000h means none exists)
Address for Alternate Algorithm extended Query table note: 0000h means none exists
48/52
Page 49

Table 34. CFI Query System Interface Information

Offset Data Desc ription
V
Logic Supply Minimum Program/Erase or Write voltage
1Bh 0017h
1Ch 0022h
1Dh 0000h
1Eh 00C0h
1Fh 0004h
20h 0003h
21h 000Ah
22h 0000h
23h 0003h
24h 0004h
25h 0002h
26h 0000h
DDF
bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 millivolts
V
Logic Supply Maximum Program/Erase or Write voltage
DDF
bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 millivolts
V
[Programming] Supply Minimum Program/Erase voltage
PPF
bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 millivolts Note: This value must be 0000h if no V
V
[Programming] Supply Maximum Program/Erase voltage
PPF
bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 millivolts Note: This value must be 0000h if no V
Typical timeout per single byte/word program (multi-byte program count = 1), 2
(if supported; 0000h = not supported) Typical timeout for maximum-size multi-byte program or page write, 2
(if supported; 0000h = not supported)
n
Typical timeout per individual block erase, 2
ms
(if supported; 0000h = not supported)
n
Typical timeout for full chip erase, 2
ms
(if supported; 0000h = not supported)
n
Maximum timeout for byte/word program, 2
times typical (offset 1Fh)
(0000h = not supported) Maximum timeout for multi-byte program or page write, 2
(0000h = not supported) Maximum timeout per individual block erase, 2
(0000h = not supported)
n
Maximum timeout for chip erase, 2
times typical (offset 22h)
(0000h = not supported)
M36DR432AD, M36DR432BD
pin is present
PPF
pin is present
PPF
n
times typical (offset 20h)
n
times typical (offset 21h)
n
µs
n
µs
49/52
Page 50
M36DR432AD, M36DR432B D

Table 35. Device Geometry Definition

Offset Word
Mode
27h 00 16h 28h 0001h
29h 0000h 2Ah 0000h 2Bh 0000h 2Ch 0002h Number of Erase Block Regions within device
M36DR432AD M36DR432AD Erase Block Region Information
2Dh 003Eh 2Eh 0000h 2Fh 0000h
30h 0001h
31h 0007h
32h 0000h
33h 0020h
34h 0000h
M36DR432AD M36DR432AD
2Dh 0007h 2Eh 0000h 2Fh 0020h
30h 0000h
31h 003Eh
32h 0000h
33h 0000h
34h 0001h
Data Descr iption
n
Device Size = 2 Flash Device Interface Code description: Asynchronous x16
Maximum number of bytes in multi-byte program or page = 2
bit 7 to 0 = x = number of Erase Block Regions Note:1. x = 0 means no erase blocking, i.e. the device erases at once in "bulk."
2. x speci fies the numb er of regions w ithin the devi ce containin g one or more contiguous Era se Bl ocks of th e sam e siz e. For e xample, a 128K B de vice (1Mb) having blocking of 16KB, 8KB, four 2KB, two 16KB, and one 64KB is considered to have 5 E rase Bl ock Re gions . Even thou gh two region s both contain 16 KB block s, the fa ct that t hey are not contig uous me ans they are separate Erase Block Regions.
3. By definition, symmetrically block devices have only one blocking region.
bit 31 to 16 = z, where the Erase Block(s) within this Region are (z) times 256 bytes in size. The value z = 0 is used for 128 byte block size. e.g. for 64KB block size, z = 0100h = 256 => 256 * 256 = 64K
bit 15 to 0 = y , where y+1 = Number of Erase Blocks of identical size within the Erase Block Region: e.g. y = D15-D0 = FFFFh => y+1 = 64K blocks [maximum number]
y = 0 means no blocking (# blocks = y+1 = "1 block")
Note: y = 0 value must be used with number of block regions of one as indicated
by (x) = 0
in number of bytes
n
50/52
Page 51
M36DR432AD, M36DR432BD

REVISION HIST ORY

Table 36. Document Revision History

Date Version Revision Details
15-Jan-2003 1.0 First issue. 15-Jan-2003 1.1 Bottom Device Code corrected on page 1. 25-Feb-2003 2.0 Document promoted from Preliminary Data to full Datasheet status.
signal removed from datasheet. SRAM Input Rise and Fall Times added to,
V
DDQF
28-Feb-2003 2.1
and V Measurement Conditions. V
DDF
and V
parameters differentiated in Table 14, Operating and AC
DDS
added to the SIGNAL DESCRIPTIONS section.
DDS
51/52
Page 52
M36DR432AD, M36DR432B D
Information furnished is believed to be ac curate and reliable. Howev er, STMicroelectronics assumes no responsibility for t he consequ ences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implic ation or otherwise u nder any patent or pat ent rights of STMicroelectron i cs. Specific ations mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as cri t i cal compone nt s i n l i f e support devi ces or systems wi thout express written approval of STM i croelect ronics.
The ST log o i s registered trademark of STMicroel ectronics All other nam es are the pro perty of their respective owners
© 2003 STMicroelectronics - All Rights Reserved
STMicroelectron ics group of com panies
India - Israel - Italy - J apan - Malays i a - M al ta - Morocco - Singapore - Spain - Sweden - Switz erl and - United Kingdom - Uni ted States.
Austra lia - Brazil - Can ada - China - Finl and - France - Germany - Hon g Kong -
www.st.com
52/52
Loading...