Datasheet LTC1544 Datasheet (Linear Technology)

Page 1
FEATURES
Software-Selectable Transceiver Supports: RS232, RS449, EIA530, EIA530-A, V.35, V.36, X.21
TUV/Detecon Inc. Certified NET1 and NET2 Compliant (Test Report No. NET2/102201/97)
TBR2 Compliant (Test Report No. CTR2/022701/98)
Software-Selectable Cable Termination Using the LTC1344A
Complete DTE or DCE Port with LTC1543, LTC1344A or LTC1546 with Integrated Termination
Operates from Single 5V Supply with LTC1543
U
APPLICATIO S
Data Networking
CSU and DSU
Data Routers
LTC1544
Software-Selectable
Multiprotocol Transceiver
U
DESCRIPTIO
The LTC®1544 is a 4-driver/4-receiver multiprotocol trans­ceiver. The LTC1544 and LTC1543 form the core of a complete software-selectable DTE or DCE interface port that supports the RS232, RS449, EIA530, EIA530-A, V.35, V.36 or X.21 protocols. Cable termination for the LTC1543 may be implemented using the LTC1344A software-selectable cable termination chip or by using existing discrete designs. The LTC1546 includes software-selectable cable termination on­chip.
The LTC1544 runs from a 5V supply and the charge pump on the LTC1543 or LTC1546. The part is available in a 28-lead SSOP surface mount package.
, LTC and LT are registered trademarks of Linear Technology Corporation.
TYPICAL APPLICATIO
DTE or DCE Multiprotocol Serial Interface with DB-25 Connector
LL
LTC1544
CTS B
LL A (141)
CTS A (106)
R2 R1R4
DSR A (109)
DSR B
DCD A (107)
DCD B
U
DTRDSR DCDCTS
D2 D1
DTR B
RTS
RTS A (105)
RTS B
DTR A (108)
RXD B
SG (102)
SHIELD (101)
RXCRXD
RXC A (115)
RXC B
RXD A (104)
LTC1543
R1R3
TXC A (114)
TXC B
SCTE A (113)
SCTE B
TXDSCTETXC
TXD A (103)
TXD B
LTC1344A
21424111512179314192062322513 81018 7 16
DB-25 CONNECTOR
1544 TA01
1
Page 2
LTC1544
WWWU
ABSOLUTE AXI U RATI GS
(Note 1)
Supply Voltage, VCC................................................ 6.5V
Input Voltage
Transmitters ........................... –0.3V to (VCC + 0.3V)
Receivers............................................... –18V to 18V
Logic Pins .............................. –0.3V to (VCC + 0.3V)
Output Voltage
Transmitters .................. (VEE – 0.3V) to (VDD + 0.3V)
Receivers................................ –0.3V to (VCC + 0.3V)
VEE........................................................ –10V to 0.3V
VDD....................................................... –0.3V to 10V
Short-Circuit Duration
Transmitter Output ..................................... Indefinite
Receiver Output.......................................... Indefinite
VEE.................................................................. 30 sec
Operating Temperature Range
LTC1544CG .............................................0°C to 70°C
LTC1544IG ........................................ – 40°C to 85°C
Storage Temperature Range ................ –65°C to 150°C
Lead Temperature (Soldering, 10 sec)................. 300°C
UU
W
PACKAGE/ORDER I FOR ATIO
TOP VIEW
1
V
CC
2
V
DD
3
M0
M1
M2
DCE/DTE
D1
4
D2
5
D3
6
R1
7
R2
8
R3
9
D4
10
R4
11
12
13
14
T
JMAX
D1
D2
D3
R1
R2
R3
D4
R4
G PACKAGE
28-LEAD PLASTIC SSOP
= 150°C, θJA = 65°C/W
Consult factory for Military grade parts.
28
27
26
25
24
23
22
21
20
19
18
17
16
15
V
EE
GND
D1 A
D1 B
D2 A
D2 B
D3/R1 A
D3/R1 B
R2 A
R2 B
R3 A
R3 B
D4/R4 A
INVERT
ORDER PART
NUMBER
LTC1544CG LTC1544IG
ELECTRICAL CHARACTERISTICS
The denotes specifications which apply over the full operating tempera-
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VDD = 8V, VEE = – 7V for V.28, –5.5V for V.10, V.11 (Notes 2, 3)
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS Supplies
I
CC
I
EE
I
DD
P
D
VCC Supply Current (DCE Mode, RS530, RS530-A, X.21 Modes, No Load 2.7 mA All Digital Pins = GND or V
) RS530, RS530-A, X.21 Modes, Full Load 95 120 mA
CC
V.28 Mode, No Load V.28 Mode, Full Load No-Cable Mode
12 mA
12 mA
10 200 µA
VEE Supply Current (DCE Mode, RS530, RS530-A, X.21 Modes, No Load 2.1 mA All Digital Pins = GND or V
V
= –5.6V (RS530, RS530-A Modes) RS530-A, Full Load 25 mA
EE
= –8.46V (V.28 Mode) V.28 Mode, No Load 1 mA
V
EE
) RS530, X.21 Modes, Full Load 14 mA
CC
V.28 Mode, Full Load 12 mA No-Cable Mode 10 µA
VDD Supply Current (DCE Mode, RS530, RS530-A, X.21 Modes, NoLoad 0.2 mA All Digital Pins = GND or V
= 8.73V V.28 Mode, No Load 1 mA
V
DD
) RS530, RS530-A, X.21 Modes, Full Load 0.2 mA
CC
V.28 Mode, Full Load 12 mA No-Cable Mode 10 µA
Internal Power Dissipation (DCE Mode, RS530, RS530-A, X.21 Modes, Full Load 300 mW (All Digital Pins = GND or V
) V.28 Mode, Full Load 54 mW
CC
2
Page 3
LTC1544
ELECTRICAL CHARACTERISTICS
The denotes specifications which apply over the full operating tempera-
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VDD = 8V, VEE = – 7V for V.28, –5.5V for V.10, V.11 (Notes 2, 3)
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS Logic Inputs and Outputs
V
IH
V
IL
I
IN
V
OH
V
OL
I
OSR
I
OZR
V.11 Driver
V
ODO
V
ODL
V
OD
V
OC
V
OC
I
SS
I
OZ
tr, t
f
t
PLH
t
PHL
t Input to Output Difference, t
t
SKEW
V.11 Receiver
V
TH
V
TH
I
IN
R
IN
tr, t
f
t
PLH
t
PHL
t Input to Output Difference, t
Logic Input High Voltage 2V Logic Input Low Voltage 0.8 V Logic Input Current D1, D2, D3, D4 ±10 µA
M0, M1, M2, DCE, INVERT = GND (LTC1544C) M0, M1, M2, DCE, INVERT = GND (LTC1544I) M0, M1, M2, DCE, INVERT = V
CC
–100 –50 – 30 µA
–120 –50 – 30 µA
±10 µA
Output High Voltage IO = –4mA 3 4.5 V Output Low Voltage IO = 4mA 0.3 0.8 V Output Short-Circuit Current 0V ≤ VO V
CC
Three-State Output Current M0 = M1 = M2 = VCC, 0V ≤ VO V
CC
–50 40 50 mA
±1 µA
Open Circuit Differential Output Voltage RL = 1.95k (Figure 1) ±5V Loaded Differential Output Voltage RL = 50 (Figure 1) 0.5V
R
= 50 (Figure 1) ±2V
L
ODO
0.67V
ODO
Change in Magnitude of Differential RL = 50 (Figure 1) 0.2 V Output Voltage
Common Mode Output Voltage RL = 50 (Figure 1) 3V Change in Magnitude of Common Mode RL = 50 (Figure 1) 0.2 V
Output Voltage Short-Circuit Current V
= GND ±150 mA
OUT
Output Leakage Current –0.25V ≤ VO 0.25V, Power Off or ±1 ±100 µA
No-Cable Mode or Driver Disabled
Rise or Fall Time LTC1544C (Figures 2, 5) 21525 ns
LTC1544I (Figures 2, 5)
21535 ns
Input to Output LTC1544C (Figures 2, 5) 20 40 65 ns
LTC1544I (Figures 2, 5)
20 40 75 ns
Input to Output LTC1544C (Figures 2, 5) 20 40 65 ns
20 40 75 ns
0317 ns
PLH
LTC1544I (Figures 2, 5)
– t
LTC1544C (Figures 2, 5) 0312 ns
PHL
LTC1544I (Figures 2, 5)
Output to Output Skew (Figures 2, 5) 3 ns
Input Threshold Voltage –7V ≤ VCM 7V –0.2 0.2 V Input Hysteresis –7V ≤ VCM 7V 15 40 mV Input Current (A, B) –10V ≤ V Input Impedance –10V ≤ V
10V ±0.66 mA
A,B
10V 15 30 k
A,B
Rise or Fall Time (Figures 2, 6) 15 ns Input to Output LTC1544C (Figures 2, 6) 50 80 ns
LTC1544I (Figures 2, 6)
50 90 ns
Input to Output LTC1544C (Figures 2, 6) 50 80 ns
50 90 ns
0421 ns
PLH
LTC1544I (Figures 2, 6)
– t
LTC1544C (Figures 2, 6) 0416 ns
PHL
LTC1544I (Figures 2, 6)
V
3
Page 4
LTC1544
ELECTRICAL CHARACTERISTICS
The denotes specifications which apply over the full operating tempera-
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VDD = 8V, VEE = – 7V for V.28, –5.5V for V.10, V.11 (Notes 2, 3)
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS V.10 Driver
V
O
V
T
I
SS
I
OZ
tr, t
f
t
PLH
t
PHL
V.10 Receiver
V
TH
V
TH
I
IN
R
IN
tr, t
f
t
PLH
t
PHL
t Input to Output Difference, t
V.28 Driver
V
O
I
SS
I
OZ
SR Slew Rate RL = 3k, CL = 2500pF (Figures 3, 7) 430V/µs t
PLH
t
PHL
V.28 Receiver
V
THL
V
TLH
V
TH
R
IN
tr, t
f
t
PLH
t
PHL
Output Voltage Open Circuit, RL = 3.9k ±4 ±6V Output Voltage RL = 450 (Figure 3) ±3.6 V
= 450Ω (Figure 3) 0.9V
R
L
O
Short-Circuit Current VO = GND ±150 mA Output Leakage Current –0.25V ≤ VO 0.25V, Power Off or ±0.1 ±100 µA
No-Cable Mode or Driver Disabled Rise or Fall Time RL = 450Ω, CL = 100pF (Figures 3, 7) 2 µs Input to Output RL = 450Ω, CL = 100pF (Figures 3, 7) 1 µs Input to Output RL = 450Ω, CL = 100pF (Figures 3, 7) 1 µs
Receiver Input Threshold Voltage –0.25 0.25 V Receiver Input Hysteresis 25 50 mV Receiver Input Current – 10V ≤ VA 10V ±0.66 mA Receiver Input Impedance –10V ≤ VA 10V 15 30 k Rise or Fall Time (Figures 4, 8) 15 ns Input to Output (Figures 4, 8) 55 ns Input to Output (Figures 4, 8) 109 ns
– t
PLH
(Figures 4, 8) 60 ns
PHL
Output Voltage Open Circuit ±10 V
R
= 3k (Figure 3) ±5 ±8.5 V
L
Short-Circuit Current VO = GND ±150 mA Output Leakage Current –0.25V ≤ VO 0.25V, Power Off or ±1 ±100 µA
No-Cable Mode or Driver Disabled
Input to Output RL = 3k, CL = 2500pF (Figures 3, 7) 1.3 2.5 µs Input to Output RL = 3k, CL = 2500pF (Figures 3, 7) 1.3 2.5 µs
Input Low Threshold Voltage 1.5 0.8 V Input High Threshold Voltage 2 1.6 V Receiver Input Hysterisis 0 0.1 0.3 V Receiver Input Impedance –15V ≤ VA 15V 357 k Rise or Fall Time (Figures 4, 8) 15 ns Input to Output (Figures 4, 8) 60 100 ns Input to Output (Figures 4, 8) 150 450 ns
Note 1: Absolute Maximum Ratings are those beyond which the safety of a device may be impaired.
Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are referenced to device ground unless otherwise specified.
4
Note 3: All typicals are given for V –5.5V for V.10, V.11 and T
= 25°C.
A
= 5V, VDD = 8V, VEE = –7V for V.28,
CC
Page 5
LTC1544
U
UU
PI FU CTIO S
VCC (Pin 1): Positive Supply for the Transceivers. 4.75V VCC 5.25V. Connect a 1µF capacitor to ground.
VDD (Pin 2): Positive Supply Voltage for V.28. Connect to VDD Pin 3 on LTC1543 or 8V supply. Connect a 1µF capacitor to ground.
D1 (Pin 3): TTL Level Driver 1 Input. D2 (Pin 4): TTL Level Driver 2 Input. D3 (Pin 5): TTL Level Driver 3 Input. R1 (Pin 6): CMOS Level Receiver 1 Output. R2 (Pin 7): CMOS Level Receiver 2 Output. R3 (Pin 8): CMOS Level Receiver 3 Output. D4 (Pin 9): TTL Level Driver 4 Input. R4 (Pin 10): CMOS Level Receiver 4 Output. M0 (Pin 11): TTL Level Mode Select Input 0 with Pull-Up
to VCC.
INVERT (Pin 15): TTL Level Mode Select Input with Pull­Up to VCC.
D4/R4 A (Pin 16): Receiver 4 Inverting Input and Driver 4 Output.
R3 B (Pin 17): Receiver 3 Noninverting Input. R3 A (Pin 18): Receiver 3 Inverting Input. R2 B (Pin 19): Receiver 2 Noninverting Input. R2 A (Pin 20): Receiver 2 Inverting Input. D3/R1 B (Pin 21): Receiver 1 Noninverting Input and
Driver 3 Noninverting Output. D3/R1 A (Pin 22): Receiver 1 Inverting Input and Driver 3
Inverting Output.
D2 B (Pin 23): Driver 2 Noninverting Output. D2 A (Pin 24): Driver 2 Inverting Output. D1 B (Pin 25): Driver 1 Noninverting Output.
M1 (Pin 12): TTL Level Mode Select Input 1 with Pull-Up
to VCC. M2 (Pin 13): TTL Level Mode Select Input 2 with Pull-Up
to VCC. DCE/DTE (Pin 14): TTL Level Mode Select Input with
Pull-Up to VCC.
TEST CIRCUITS
A
R
L
50
V
OD
V
R
OC
L
50
B
1544 F01
D1 A (Pin 26): Driver 1 Inverting Output. GND (Pin 27): Ground. V
(Pin 28): Negative Supply Voltage. Connect to VEE Pin
EE
26 on LTC1543 or to – 8V supply. Connect a 1µF capacitor to ground.
C
L
B
R
L
100
A
100pF
C 100pF
B
R
L
A
15pF
1544 F02
Figure 1. V.11 Driver Test Circuit
Figure 2. V.11 Driver/Receiver AC Test Circuit
5
Page 6
LTC1544
TEST CIRCUITS
W
D
A
C
R
L
L
1544 F03
Figure 3. V.10/V.28 Driver Test Circuit
U
D
Figure 4. V.10/V.28 Receiver Test Circuit
A
A
R
15pF
1544 F04
ODE SELECTIO
LTC1544 MODE NAME M2 M1 M0 DCE/DTE INVERT D1 D2 D3 R1 R2 R3 D4 R4
Not Used (Default V.11) 0 0 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 RS530A 0 0 1 0 0 V.11 V.10 Z V.11 V.10 V.11 Z V.10 RS530 0 1 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 X.21 0 1 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 V.35 1 0 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28 RS449/V.36 1 0 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 V.28/RS232 1 1 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28 No Cable 1 1 1 0 0 Z Z Z ZZZZ Z Not Used (Default V.11) 0 0 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z RS530A 0 0 1 0 1 V.11 V.10 Z V.11 V.10 V.11 V.10 Z RS530 0 1 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z X.21 0 1 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z V.35 1 0 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z RS449/V.36 1 0 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z V.28/RS232 1 1 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z No Cable 1 1 1 0 1 Z Z Z ZZZZ Z Not Used (Default V.11) 0 0 0 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z RS530A 0 0 1 1 0 V.11 V.10 V.11 Z V.10 V.11 V.10 Z RS530 0 1 0 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z X.21 0 1 1 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z V.35 1 0 0 1 0 V.28 V.28 V.28 Z V.28 V.28 V.28 Z RS449/V.36 1 0 1 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z V.28/RS232 1 1 0 1 0 V.28 V.28 V.28 Z V.28 V.28 V.28 Z No Cable 1 1 1 1 0 Z Z Z ZZZZ Z Not Used (Default V.11) 0 0 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 RS530A 0 0 1 1 1 V.11 V.10 V.11 Z V.10 V.11 Z V.10 RS530 0 1 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 X.21 0 1 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 V.35 1 0 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28 RS449/V.36 1 0 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 V.28/RS232 1 1 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28 No Cable 1 1 1 1 1 Z Z Z ZZZZ Z
6
Page 7
UWW
SWITCHI G TI E WAVEFOR S
LTC1544
B – A
B – A
–V
5V
D
0V
V
O
–V
O
A
B
V
O
1.5V 1.5V
t
PLH
50%
90%
10%
t
r
t
SKEW
f = 1MHz : tr 10ns : tf 10ns
= V(A) – V(B)
V
DIFF
1/2 V
O
t
PHL
90%
50%
10%
t
f
t
SKEW
1544 F05
Figure 5. V.11, V.35 Driver Propagation Delays
V
OD2
OD2
V
OH
R
V
OL
0V
t
PLH
1.5V
f = 1MHz : tr 10ns : tf 10ns
INPUT
OUTPUT
0V
t
PHL
1.5V
1544 F06
Figure 6. V.11, V.35 Receiver Propagation Delays
3V
D
0V
V
O
A
–V
O
1.5V
t
PHL
3V
0V
–3V
t
f
1.5V
–3V
t
PLH
0V
3V
t
r
1544 F07
Figure 7. V.10, V.28 Driver Propagation Delays
V
IH
A
V
IL
V
OH
R
V
OL
1.3V
t
PHL
0.8V
1.7V
t
PLH
2.4V
1544 F08
Figure 8. V.10, V.28 Receiver Propagation Delays
7
Page 8
LTC1544
U
WUU
APPLICATIONS INFORMATION
Overview
The LTC1543/LTC1544 form the core of a complete soft­ware-selectable DTE or DCE interface port that supports the RS232, RS449, EIA530, EIA530-A, V.35, V.36 or X.21 protocols. Cable termination may be implemented using the LTC1344A software-selectable cable termination chip or by using existing discrete designs.
SERIAL
CONTROLLER
TXD
SCTE
TXC
LTC1543
D1
D2
D3
R1
LTC1344A
103
TXD
SCTE
TXC
A complete DCE-to-DTE interface operating in EIA530 mode is shown in Figure 9. The LTC1543 of each port is used to generate the clock and data signals. The LTC1544 is used to generate the control signals along with LL (Local Loop-back).The LTC1344A cable termination chip is used only for the clock and data signals because they must support V.35 cable termination. The control signals do not need any external resistors.
DCEDTE
LTC1344A
103
103
LTC1543
R3
R2
R1
D3
SERIAL
CONTROLLER
TXD
SCTE
TXC
RXC
RXD
RTS
DTR
DCD
DSR
CTS
R2
R3
LTC1544
D1
D2
D3
R1
R2
R3
LL
D4
103
103
RXC
RXD
RTS
DTR
DCD
DSR
CTS
LL
D2
D1
LTC1544
R3
R2
R1
D3
D2
D1
R4
RXC
RXD
RTS
DTR
DCD
DSR
CTS
LL
8
R4
Figure 9. Complete Multiprotocol Interface in EIA530 Mode
D4
1544 F09
Page 9
LTC1544
U
WUU
APPLICATIONS INFORMATION
Mode Selection
The interface protocol is selected using the mode select pins M0, M1 and M2 (see the Mode Selection table).
For example, if the port is configured as a V.35 interface, the mode selection pins should be M2 = 1, M1 = 0, M0 = 0. For the control signals, the drivers and receivers will operate in V.28 (RS232) electrical mode. For the clock and data signals, the drivers and receivers will operate in V.35 electrical mode. The DCE/DTE pin will configure the port for DCE mode when high, and DTE when low.
The interface protocol may be selected simply by plug­ging the appropriate interface cable into the connector. The mode pins are routed to the connector and are left
21
LATCH
LTC1344A
DCE/
(DATA)
DTE
M2 M1
22
M0 (DATA)
23 24 1
unconnected (1) or wired to ground (0) in the cable as shown in Figure 10.
The internal pull-up current sources will ensure a binary 1 when a pin is left unconnected and that the LTC1543/ LTC1544 and the LTC1344A enter the no-cable mode when the cable is removed. In the no-cable mode the LTC1543/LTC1544 supply current drops to less than 200µA and all LTC1543/LTC1544 driver outputs and LTC1344A resistive terminations are forced into a high impedance state.
The mode selection may also be accomplished by using jumpers to connect the mode pins to ground or VCC.
CONNECTOR
LTC1543
LTC1544
M0
M1
M2
DCE/DTE
DCE/DTE
M2
M1
M0
(DATA)
11
12
13
14
14
13
12
11
NC
NC
Figure 10: Single Port DCE V.35 Mode Selection in the Cable
CABLE
1544 F10
9
Page 10
LTC1544
U
WUU
APPLICATIONS INFORMATION
Cable Termination
Traditional implementations have included switching resistors with expensive relays, or requiring the user to change termination modules every time the interface standard has changed. Custom cables have been used with the termination in the cable head or separate termina­tions are built on the board and a custom cable routes the signals to the appropriate termination. Switching the terminations with FETs is difficult because the FETs must remain off even though the signal voltage is beyond the supply voltage for the FET drivers or the power is off.
Using the LTC1344A along with the LTC1543/LTC1544 solves the cable termination switching problem. Via soft­ware control, the LTC1344A provides termination for the V.10 (RS423), V.11 (RS422), V.28 (RS232) and V.35 electrical protocols.
V.10 (RS423) Interface
A typical V.10 unbalanced interface is shown in Figure 11. A V.10 single-ended generator output A with ground C is connected to a differential receiver with inputs A' con­nected to A, and input C' connected to the signal return ground C. Usually, no cable termination is required for V.10 interfaces, but the receiver inputs must be compliant with the impedance curve shown in Figure 12.
The V.10 receiver configuration in the LTC1544 is shown in Figure 13. In V.10 mode switch S3 inside the LTC1544 is turned off.The noninverting input is disconnected inside the LTC1544 receiver and connected to ground. The cable termination is then the 30k input impedance to ground of the LTC1544 V.10 receiver.
I
–3.25mA
Z
–10V
–3V
3V 10V
Figure 12. V.10 Receiver Input Impedance
1544 F12
3.25mA
V
Z
GENERATOR
10
BALANCED
INTERCONNECTING
CABLE
TERMINATION
AA
CC
'
'
LOAD
CABLE
Figure 11. Typical V.10 Interface
RECEIVER
1544 F11
A
A
'
R5
R8
20k
6k
S3
R4
B
'
B
C
'
20k
GND
R6 10k
R7 10k
LTC1544
RECEIVER
Figure 13. V.10 Receiver Configuration
1544 F13
Page 11
LTC1544
U
WUU
APPLICATIONS INFORMATION
V.11 (RS422) Interface
A typical V.11 balanced interface is shown in Figure 14. A V.11 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C', inputs A' connected to A, B' connected to B. The V.11 interface has a differential termination at the receiver end that has a minimum value of 100. The termination resistor is optional in the V.11 specification, but for the high speed clock and data lines, the termination is required to prevent reflections from corrupting the data. The receiver inputs must also be compliant with the imped­ance curve shown in Figure 12.
In V.11 mode, all switches are off except S1 inside the LTC1344A which connects a 103 differential termina­tion impedance to the cable as shown in Figure 15.
BALANCED
GENERATOR
INTERCONNECTING
CABLE
TERMINATION
AA'
LOAD
CABLE
RECEIVER
V.28 (RS232) Interface
A typical V.28 unbalanced interface is shown in Figure 16. A V.28 single-ended generator output A with ground C is connected to a single-ended receiver with input A' con­nected to A, ground C' connected via the signal return ground C.
In V.28 mode all switches are off except S3 inside the LTC1543/LTC1544 which connects a 6k (R8) impedance to ground in parallel with 20k (R5) plus 10k (R6) for a combined impedance of 5k as shown in Figure 17. The noninverting input is disconnected inside the LTC1543/ LTC1544 receiver and connected to a TTL level reference voltage for a 1.4V receiver trip point.
BALANCED
GENERATOR
INTERCONNECTING
CABLE
TERMINATION
AA
'
LOAD
CABLE
RECEIVER
100
B
C
Figure 14. Typical V.11 Interface
'
A
A
LTC1344A
R1
51.5
S1
R2
51.5
B
'
C
'
R3
S2
124
R8 6k
S3
B
GND
Figure 15. V.11 Receiver Configuration
B'
C'
R5
20k
R4
20k
MIN
R6 10k
R7 10k
LTC1543 LTC1544
RECEIVER
1544 F14
1544 F15
CC
'
1544 F16
Figure 16. Typical V.28 Interface
'
A
A
LTC1344A
R1
51.5
S1
R3
S2
124
R2
51.5
B
'
C
'
B
R8 6k
S3
GND
R5
20k
R4
20k
R6 10k
R7 10k
LTC1543 LTC1544
RECEIVER
1544 F17
Figure 17. V.28 Receiver Configuration
11
Page 12
LTC1544
U
WUU
APPLICATIONS INFORMATION
V.35 Interface
A typical V.35 balanced interface is shown in Figure 18. A V.35 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C', inputs A' connected to A, B' connected to B. The V.35 interface requires a T or delta network termination at the receiver end and the generator end. The receiver differential impedance measured at the connector must be
BALANCED
INTERCONNECTING
GENERATOR
50
50
125
CABLE
A
B
100Ω␣ ±10Ω, and the impedance between shorted termi­nals (A' and B') and ground C' must be 150Ω ±15Ω.
In V.35 mode, both switches S1 and S2 inside the LTC1344A are on, connecting the T network impedance as shown in Figure 19. The switch in the LTC1543 is off. The 30k input impedance of the receiver is placed in parallel with the T network termination, but does not affect the overall input impedance significantly.
LOAD
CABLE
TERMINATION
A
'
125
B
'
RECEIVER
50
50
C
C
'
1544 F18
Figure 18. Typical V.35 Interface
A
'
A
LTC1344A
R1
51.5
S1
R2
51.5
B
'
C
'
R3
S2
124
B
R8 6k
S3
GND
R5
20k
R4
20k
R6 10k
R7 10k
LTC1543
RECEIVER
1544 F19
Figure 19. V.35 Receiver Configuration
12
Page 13
LTC1544
U
WUU
APPLICATIONS INFORMATION
The generator differential impedance must be 50 to 150 and the impedance between shorted terminals (A and B) and ground C must be 150Ω ±15. For the generator termination, switches S1 and S2 are both on and the top side of the center resistor is brought out to a pin so it can be bypassed with an external capacitor to reduce common mode noise as shown in Figure 20.
A
LTC1344A
V.35 DRIVER
124
C1 100pF
S2 ON
51.5
S1 ON
51.5
B
C
1544 F20
Charge Pump
The LTC1543 uses an internal capacitive charge pump to generate VDD and VEE as shown in Figure 21. A voltage doubler generates about 8V on VDD and a voltage inverter generates about – 7.5V for VEE. Four 1µF surface mounted tantalum or ceramic capacitors are required for C1, C2, C3 and C4. The VEE capacitor C5 should be a minimum of
3.3µF. All capacitors are 16V and should be placed as close as possible to the LTC1543 to reduce EMI.
3
V
C3 1µF
C1 1µF
5V
C4 1µF
DD
2
+
C1
LTC1543
1
C1
4
V
CC
C2
C2
V
GND
28
+
27
26
EE
25
C2 1µF
C5
+
3.3µF
1544 F21
Figure 20. V.35 Driver Using the LTC1344A
Any mismatch in the driver rise and fall times or skew in the driver propagation delays will force current through the center termination resistor to ground, causing a high frequency common mode spike on the A and B terminals. The common mode spike can cause EMI problems that are reduced by capacitor C1 which shunts much of the com­mon mode energy to ground rather than down the cable.
No-Cable Mode
The no-cable mode (M0 = M1 = M2 = 1) is intended for the case when the cable is disconnected from the connector. The charge pump, bias circuitry, drivers and receivers are turned off, the driver outputs are forced into a high impedance state, and the supply current drops to less than 200µA.
Figure 21. Charge Pump
Receiver Fail-Safe
All LTC1543/LTC1544 receivers feature fail-safe opera­tion in all modes. If the receiver inputs are left floating or shorted together by a termination resistor, the receiver output will always be forced to a logic high.
DTE vs DCE Operation
The DCE/DTE pin acts as an enable for Driver 3/Receiver 1 in the LTC1543, and Driver 3/Receiver 1 and Driver 4/ Receiver 4 in the LTC1544. The INVERT pin in the LTC1544 allows the Driver 4/Receiver 4 enable to be high or low true polarity.
13
Page 14
LTC1544
U
WUU
APPLICATIONS INFORMATION
The LTC1543/LTC1544 can be configured for either DTE or DCE operation in one of two ways: a dedicated DTE or DCE port with a connector of appropriate gender or a port with one connector that can be configured for DTE or DCE operation by rerouting the signals to the LTC1543/LTC1544 using a dedicated DTE cable or dedicated DCE cable.
A dedicated DTE port using a DB-25 male connector is shown in Figure 22. The interface mode is selected by logic outputs from the controller or from jumpers to either V or GND on the mode select pins. A dedicated DCE port using a DB-25 female connector is shown in Figure 23.
A port with one DB-25 connector, but can be configured for either DTE or DCE operation is shown in Figure 24. The configuration requires separate cables for proper signal routing in DTE or DCE operation. For example, in DTE mode, the TXD signal is routed to Pins 2 and 14 via Driver 1 in the LTC1543. In DCE mode, Driver 1 now routes the RXD signal to Pins 2 and 14.
CC
Cable-Selectable Multiprotocol Interface
A cable-selectable multiprotocol DTE/DCE interface is shown in Figure 26. The select lines M0, M1 and DCE/DTE are brought out to the connector. The mode is selected by the cable by wiring M0 (connector Pin 18) and M1 (con­nector Pin 21) and DCE/DTE (connector Pin 25) to ground (connector Pin 7) or letting them float. If M0, M1 or DCE/ DTE is floating, internal pull-up current sources will pull the signals to VCC. The select bit M2 is hard wired to VCC. When the cable is pulled out, the interface will go into the no-cable mode.
Compliance Testing
A European standard EN 45001 test report is available for the LTC1543/LTC1544/LTC1344A chipset. A copy of the test report is available from LTC or TUV Telecom Services Inc. (formerly Detecon Inc.)
The title of the report is:
Multiprotocol Interface with RL, LL, TM and a DB-25 Connector
If the RL, LL and TM signals are implemented, there are not enough drivers and receivers available in the LTC1543/ LTC1544. In Figure 25, the required control signals are handled by the LTC1544 but the clock/data signals use the LTC1343. The LTC1343 has an additional single-ended driver/receiver pair that can handle two more optional control signals such as TM and LL.
Test Report No. NET2/102201/97. The address of TUV Telecom Services Inc. is: TUV Telecom Services Inc.
Type Approval Division 1775 Old Highway 8, Ste 107 St. Paul, MN 55112 USA Tel. +1 (612) 639-0775 Fax. +1 (612) 639-0873
14
Page 15
TYPICAL APPLICATIO S
V
CC
5V
3
TXD
SCTE
C3 1µF
1µF
1
C1
C5 1µF
CHARGE
2
PUMP
4
LTC1543
5
D1
6
D2
7
D3
U
LTC1544
C6
100pFC7100pF
3 8 11 12 13
V
CC
28
C2 1µF
27 26
C4
+
3.3µF
25
24 23
22 21
C13 1µF
C12 1µF
2
V
EE
5
C8
100pF
16109764
15 18 17 19 20 22
LTC1344A
LATCH
DCE/DTEM2M1
23 24141
21
M0
2
TXD A (103)
14
TXD B
24
SCTE A (113)
11
SCTE B
C10 1µF
TXC
RXC
RXD
RTS
DTR
DCD
DSR
CTS
V
GND
INVERT
20 19 18 17 16 15
28
EE
27
26 25
24 23
22 21 20 19
18 17
16
15
NC
C11 1µF
8
R1
9
R2
10
R3
11
M0
12
M1
13
M2
14
DCE/DTE
V
CC
C9
1
1µF
LL
10
11 12 13 14
2
3
4
5
6
7
8
9
V
CC
V
DD
D2
LTC1544
M0 M1 M2 DCE/DTE
D1
D3
R1
R2
R3
R4
D4
15 12 17
9 3
16
7
1
4
19 20
23
8
10
6
22
5
13
18
TXC A (114)
TXC B RXC A (115) RXC B RXD A (104) RXD B
SG
SHIELD
DB-25 MALE CONNECTOR
RTS A (105) RTS B DTR A (108) DTR B
DCD A (109)
DCD B DSR A (107)
DSR B CTS A (106) CTS B
LL A (141)
M2 M1 M0
1544 F22
Figure 22. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector
15
Page 16
LTC1544
U
TYPICAL APPLICATIO S
V
CC
5V
3
RXD
RXC
C3 1µF
1µF
1
C1
C5 1µF
CHARGE
2
PUMP
4
LTC1543
5
D1
6
D2
7
D3
C6
100pFC7100pF
3 8 11 12 13
V
CC
28
C2 1µF
27 26
C4
+
3.3µF
25
24 23
22 21
C13 1µF
C12 1µF
2
V
EE
5
C8
100pF
16109764
15 18 17 19 20 22
LTC1344A
DCE/DTEM2M1
23 24141
V
CC
LATCH
21
M0
3
RXD A (104)
16
RXD B
17
RXC A (115)
9
RXC B
C10 1µF
TXC
SCTE
TXD
CTS
DSR
DCD
DTR
RTS
R3
V
GND
INVERT
20 19 18 17 16 15
28
EE
27
26 25
24 23
22 21 20 19
18 17
16
15
NC
C11 1µF
8
R1
9
R2
10
R3
11
M0
12
M1
13
M2
14
DCE/DTE
NC
V
CC
C9
1
1µF
LL
V
CC
2
V
DD
3
D1
4
D2
5
D3
LTC1544
6
R1
7
R2
8
10
R4
9
D4
11
M0
12
M1
13
M2
14
NC
DCE/DTE
15
TXC A (114)
12
TXC B
24
SCTE A (113)
11
SCTE B
2
TXD A (103)
14
TXD B
7
SGND (102)
1
SHIELD (101)
5
CTS A (106)
13
CTS B
6
DSR A (107)
22
DSR B
8
DCD A (109)
10
DCD B
20
DTR A (108)
23
DTR B
4
RTS A (105)
19
RTS B
18
LL A (141)
DB-25 FEMALE
CONNECTOR
16
M2 M1 M0
1544 F23
Figure 23. Controller-Selectable DCE Port with DB-25 Connector
Page 17
TYPICAL APPLICATIO S
V
CC
5V
3
DTE_TXD/DCE_RXD
DTE_SCTE/DCE_RXC
C3 1µF
1µF
1
C1
C5 1µF
CHARGE
2 4
LTC1543
5
D1
6
D2
7
D3
U
PUMP
LTC1544
C6
100pFC7100pF
3 8 11 12 13
V
CC
28
C2 1µF
27 26
C4
+
3.3µF
25
24 23
22 21
C13 1µF
C12 1µF
2
V
EE
5
C8
100pF
16109764
15 18 17 19 20 22
LTC1344A
LATCH
DCE/DTEM2M1
23 24141
M0
21
2
14 24 11
DTE DCE
TXD A
RXD A
TXD B
RXD B
SCTE A
RXC A
SCTE B
RXC B
DTE_TXC/DCE_TXC
DTE_RXC/DCE_SCTE
DTE_RXD/DCE_TXD
C10 1µF
DTE_RTS/DCE_CTS
DTE_DTR/DCE_DSR
DTE_DCD/DCE_DCD
DTE_DSR/DCE_DTR
DTE_CTS/DCE_RTS
DTE_LL/DCE_LL
C9 1µF
10 11 12 13 14
V
10
11 12 13 14
8
9
CC
1 2
3
4
5
6
7
8
9
M0 M1 M2 DCE/DTE
V
CC
V
DD
D1
D2
D3
LTC1544
D4
M0 M1 M2 DCE/DTE
R1
R2
R3
R1
R2
R3
R4
GND
INVERT
20 19 18 17 16 15
28
V
EE
27
26 25
24 23
22 21 20 19
18 17
16
15
NC
C11 1µF
15 12 17
9
16
7
1
4
19 20
23
8
10
6
22
5
13
18
3
TXC A
TXC B RXC A RXC B RXD A RXD B
SG
SHIELD
CONNECTOR
RTS A RTS B DTR A DTR B
DCD A DCD B DSR A DSR B CTS A CTS B
LL A
TXC A TXC B SCTE A SCTE B TXD A TXD B
DB-25
CTS A CTS B DSR A DSR B
DCD A DCD B DTR A DTR B RTS A RTS B
LL A
DCE/DTE
M2 M1 M0
1544 F24
Figure 24. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector
17
Page 18
LTC1544
TYPICAL APPLICATIO S
V
CC
5V
1
DTE_LL/DCE_TM
DTE_TXD/DCE_RXD
DTE_SCTE/DCE_RXC
DTE_TXC/DCE_TXC
DTE_RXC/DCE_SCTE
DTE_RXD/DCE_TXD
DTE_TM/DCE_LL
C10 1µF
DTE_RTS/DCE_CTS
DTE_DTR/DCE_DSR
DTE_DCD/DCE_DCD
DTE_DSR/DCE_DTR
DTE_CTS/DCE_RTS
DTE_RL/DCE_RL
DCE/DTE
C3 1µF
LB
C9 1µF
M2 M1 M0
Figure 25. Controller-Selectable Multiprotocol DTE/DCE Port with RL, LL, TM and DB-25 Connector
1µF
2
C1
4 3
C5
8
1µF
5
6
7
9
10 12 13
14
15
16
20
CTRL
22
LATCH
11
INVERT
25
423SET
R1
100k
40
GND
V
CC
1
V
2
V
3
4
5
6
7
8
10
9
11
M0
12
M1
13
M2
14
DCE/DTE
U
LTC1343
CC DD
LTC1544
CHARGE
PUMP
D1
D2
D3
D4
R1
R2
R3
R4
LB
D1
D2
D3
R1
R2
R3
R4
D4
23
GND
INVERT
DCE
V
C6
100pFC7100pF
V
CC
C11 1µF
C13 1µF
C12 1µF
2
V
EE
44
C2 1µF
43 42
C4
+
3.3µF
41
39
38 37 36 35 34 33
32 31 30 29 28 27
26
21 19
M2
18
M1
17
M0
V
CC
24
EC
28
EE
27
26 25 24 23
22 21 20 19
18 17
16
15
NC
C8
100pF
3 8 11 12 13
5
16109764
15 18 17 19 20 22
LTC1344A
LATCH
DCE/DTEM2M1
23 24141
M0
21
18
2
14 24 11
15 12 17
9 3
16
25
7
1
4
19 20 23
8
10
6
22
5
13
21
DTE DCE
LL A
TXD A TXD B SCTE A SCTE B
TXC A TXC B RXC A RXC B RXD A RXD B
TM A LL A
SG
SHIELD
DB-25
CONNECTOR
RTS A RTS B DTR A DTR B
DCD A DCD B DSR A DSR B CTS A CTS B
RL A
1544 F25
TM A
RXD A RXD B RXC A RXC B
TXC A TXC B SCTE A SCTE B TXD A TXD B
CTS A CTS B DSR A DSR B
DCD A DCD B DTR A DTR B RTS A RTS B
RL A
18
Page 19
TYPICAL APPLICATIO S
LTC1544
U
DTE_TXD/DCE_RXD
DTE_SCTE/DCE_RXC
DTE_TXC/DCE_TXC
DTE_RXC/DCE_SCTE
DTE_RXD/DCE_TXD
C10 1µF
DTE_RTS/DCE_CTS
DTE_DTR/DCE_DSR
DTE_DCD/DCE_DCD
DTE_DSR/DCE_DTR
DTE_CTS/DCE_RTS
C3 1µF
C6
100pFC7100pF
3 8 11 12 13
V
CC
5V
V
CC
C13 1µF
2
V
EE
C12 1µF
C11 1µF
MODE PIN 18 PIN 21
V.35 PIN 7 PIN 7
RS232 PIN 7 NC
5
1µF
C1
C9 1µF
C5 1µF
3
1
CHARGE
2
PUMP
4
LTC1543
5
D1
6
D2
7
D3
8
R1
9
R2
10
R3
11
M0
12
M1
13
M2
NC
14
DCE/DTE
V
CC
1
V
CC
2
V
DD
3
D1
4
D2
5
D3
LTC1544
6
R1
7
R2
8
R3
10
R4
9
D4
11
M0
12
M1
13
NC
M2
14
DCE/DTE
GND
INVERT
28
C2 1µF
27 26
C4
+
3.3µF
25
24 23
22 21
20 19 18 17 16 15
28
V
EE
27
26
25 24 23
22 21 20 19
18 17
16
CABLE WIRING FOR MODE SELECTION
RS449, V.36 NC PIN 7
15
NC
C8
100pF
CABLE WIRING FOR DTE/DCE SELECTION
MODE PIN 25
DTE PIN 7 DCE NC
16109764
15 18 17 19 20 22
LTC1344A
LATCH
DCE/DTEM2M1
23 24141
V
CC
21
M0
DTE
TXD A TXD B SCTE A SCTE B
TXC A TXC B RXC A RXC B RXD A RXD B SG
SHIELD
DB-25
CONNECTOR
DCE/DTE M1 M0
RTS A RTS B DTR A DTR B
DCD A DCD B DSR A DSR B CTS A CTS B
DCE
RXD A RXD B RXC A RXC B
TXC A TXC B
SCTE A SCTE B TXD A TXD B
CTS A CTS B DSR A DSR B
DCD A DCD B DTR A DTR B RTS A RTS B
2
14 24 11
15 12 17
9
3
16
7
1
25 21 18
4
19 20
23
8
10
6
22
5
13
Figure 26. Cable-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen­tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
1544 F26
19
Page 20
LTC1544
PACKAGE DESCRIPTIO
5.20 – 5.38** (0.205 – 0.212)
U
Dimensions in inches (millimeters) unless otherwise noted.
G Package
28-Lead Plastic SSOP (0.209)
(LTC DWG # 05-08-1640)
10.07 – 10.33*
(0.397 – 0.407)
2526 22 21 20 19 181716 1523242728
12345678 9 10 11 12 1413
7.65 – 7.90
(0.301 – 0.311)
1.73 – 1.99
(0.068 – 0.078)
° – 8°
0
0.13 – 0.22
(0.005 – 0.009)
NOTE: DIMENSIONS ARE IN MILLIMETERS
*
DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.152mm (0.006") PER SIDE
**
DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE
0.55 – 0.95
(0.022 – 0.037)
0.65
(0.0256)
BSC
0.25 – 0.38
(0.010 – 0.015)
0.05 – 0.21
(0.002 – 0.008)
G28 SSOP 1098
RELATED PARTS
PART NUMBER DESCRIPTION COMMENTS
LTC1321 Dual RS232/RS485 Transceiver Two RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs LTC1334 Single 5V RS232/RS485 Multiprotocol Transceiver Two RS232 Driver/Receiver or Four RS232 Driver/Receiver Pairs LTC1343 Software-Selectable Multiprotocol Transceiver 4-Driver/4-Receiver for Data and Clock Signals LTC1344A Software-Selectable Cable Terminator Perfect for Terminating the LTC1543 LTC1345 Single Supply V.35 Transceiver 3-Driver/3-Receiver for Data and Clock Signals LTC1346A Dual Supply V.35 Transceiver 3-Driver/3-Receiver for Data and Clock Signals LTC1543 Software-Selectable Multiprotocol Transceiver Companion to LTC1544 for Data and Clock Signals LTC1546 Multiprotocol Transceiver with Termination Companion to LTC1544 for Data and Clock Signals
20
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
www.linear-tech.com
1544fa LT/TP 0100 2K REV A • PRINTED IN USA
LINEAR TECHNOLOGY CORPORATION 1998
Loading...