Datasheet LT1389 Datasheet (Linear Technology)

Page 1
FEATURES
LT1389
Nanopower Precision
Shunt Voltage Reference
U
DESCRIPTIO
Initial Voltage Accuracy: 0.05%
Low Operating Current: 800nA
Low Drift: 10ppm/°C Max
Less Than 1 Dynamic Impedance
Available in 1.25V, 2.5V, 4.096V and 5V SO-8 Packages
U
APPLICATIO S
Portable Meters
Precision Regulators
A/D and D/A Converters
Calibrators
TYPICAL APPLICATIO
The LT®1389 is a nanopower, precision shunt voltage reference. The bandgap reference uses trimmed preci­sion thin-film resistors and improved curvature correction techniques to achieve 0.05% initial voltage accuracy with guaranteed 10ppm/°C maximum temperature drift. Volt­age regulation is maintained to an ultralow 800nA operating current. Advances in design, processing and packaging achieve low temperature cycling hysteresis.
The LT1389 does not require an output compensation capacitor, but is stable with capacitive loads. Low dy­namic impedance makes the LT1389 reference easy to use from unregulated supplies.
The LT1389 reference can be used as a high performance upgrade to the LM185/LM385, LT1004, LT1034 and LT1634 where lowest power and guaranteed tempera­ture drift are required.
, LTC and LT are registered trademarks of Linear Technology Corporation.
U
5V
4.7M
LT1389-1.25
V
OUT
1.25V
1389 TA01
Temperature Drift
2.0 IR = 0.8µA
= 1.25V
V
1.5
OUT
1.0
0.5
0
–0.5
–1.0
–1.5
REFERENCE VOLTAGE CHANGE (mV)
–2.0
10 20 40
0
30
TEMPERATURE (°C)
50 60
70
1389 TA02
1
Page 2
LT1389
PACKAGE/ORDER I FOR ATIO
UU
W
WWWU
ABSOLUTE AXI U RATI GS
(Note 1)
Operating Current
1.25V............................................................... 20mA
2.5V................................................................. 20mA
4.096V............................................................. 10mA
5V.................................................................... 10mA
Forward Current .................................................. 20mA
Operating Temperature Range ..................... 0°C to 70°C
Storage Temperature Range (Note 2) ... –65°C to 150°C
Lead Temperature (Soldering, 10 sec).................. 300°C
U
AVAILABLE OPTIO S
ORDER PART
NUMBER
1
DNC*
2
DNC*
3
DNC*
4
GND
8-LEAD PLASTIC SO
T
= 125°C, θJA = 190°C/W
JMAX
TOP VIEW
S8 PACKAGE
8
DNC*
7
DNC*
6
V
OUT
5
GND
LT1389ACS8-1.25 LT1389BCS8-1.25 LT1389BCS8-2.5 LT1389BCS8-4.096 LT1389BCS8-5
S8 PART MARKING 389A12
389B12
1389B4 1389B5
389B25
*Connected internally. Do Not Connect external circuitry to these pins. Consult factory for Industrial and Military grade parts.
OUTPUT
TEMPERATURE VOLTAGE ACCURACY (%) (ppm/°C) PART TYPE PART MARKING
0°C to 70°C 1.250 0.05 10 LT1389ACS8-1.25 389A12
1.250 0.05 20 LT1389BCS8-1.25 389B12
2.500 0.05 20 LT1389BCS8-2.5 389B25
4.096 0.075 50 LT1389BCS8-4.096 1389B4
5.000 0.075 50 LT1389BCS8-5 1389B5
1.25V ELECTRICAL CHARACTERISTICS
temperature range, otherwise specifications are at TA = 25°C. (Note 3)
PARAMETER CONDITIONS MIN TYP MAX UNITS
Reverse Breakdown Voltage LT1389ACS8/LT1389BCS8 (IR = 0.8µA) 1.24937 1.250 1.25062 V
LT1389ACS8 (IR = 0.8µA) 1.24849 1.250 1.25149 V
LT1389BCS8 (IR = 0.8µA) 1.24762 1.250 1.25237 V
Reverse Breakdown Change 0.8µA ≤ IR 200µA 0.20 0.4 mV with Current (Note 4)
200µA ≤ IR 2mA 0.3 1.0 mV
Minimum Operating Current 0.6 µA Temperature Coefficient LT1389ACS8 (IR = 0.8µA) 4 10 ppm/°C
LT1389BCS8 (I
Reverse Dynamic Impedance (Note 5) 0.8µA ≤ IR 2mA 0.25 0.7
Low Frequency Noise (Note 6) IR = 0.8µA, 0.1Hz f 10Hz 25 µV
TEMPERATURE COEFFICIENT
The denotes specifications which apply over the full operating
–0.05 0.05 %
–0.12 0.12 %
–0.19 0.19 %
0.20 1.0 mV
0.3 2.0 mV
= 0.8µA) 4 20 ppm/°C
R
0.25 1.5
P-P
2
Page 3
LT1389
2.5V ELECTRICAL CHARACTERISTICS
temperature range, otherwise specifications are at TA = 25°C. (Note 3)
PARAMETER CONDITIONS MIN TYP MAX UNITS
Reverse Breakdown Voltage LT1389BCS8 (IR = 0.9µA) 2.49875 2.500 2.50125 V
LT1389BCS8 (IR = 0.9µA) 2.49525 2.500 2.50475 V
Reverse Breakdown Change 0.9µA ≤ IR 200µA 0.2 0.5 mV with Current (Note 4)
200µA ≤ IR 2mA 0.3 1.0 mV
Minimum Operating Current 0.7 µA Temperature Coefficient IR = 0.9µA 8 20 ppm/°C Reverse Dynamic Impedance (Note 5) 0.9µA ≤ IR 2mA 0.25 0.75
Low Frequency Noise (Note 6) IR = 0.9µA, 0.1Hz f 10Hz 50 µV
4.096V ELECTRICAL CHARACTERISTICS
operating temperature range, otherwise specifications are at TA = 25°C. (Note 3)
PARAMETER CONDITIONS MIN TYP MAX UNITS
Reverse Breakdown Voltage LT1389BCS8 (IR = 1.5µA) 4.09293 4.096 4.09907 V
LT1389BCS8 (IR = 1.5µA) 4.0788 4.096 4.1132 V
Reverse Breakdown Change 1.5µA ≤ IR 200µA 0.2 1.5 mV with Current (Note 4)
200µA ≤ IR 2mA 0.3 4 mV
Minimum Operating Current 1 µA Temperature Coefficient IR = 1.5µA 12 50 ppm/°C Reverse Dynamic Impedance (Note 5) 1.5µA ≤ IR 2mA 0.75 2
Low Frequency Noise (Note 6) IR = 1.5µA, 0.1Hz f 10Hz 80 µV
The denotes specifications which apply over the full operating
–0.05 0.05 %
–0.19 0.19 %
0.2 1.5 mV
0.3 2.5 mV
0.25 2
The denotes specifications which apply over the full
–0.075 0.075 %
–0.42 0.42 %
0.2 3 mV
0.3 6 mV
0.75 3
P-P
P-P
3
Page 4
LT1389
5V ELECTRICAL CHARACTERISTICS
temperature range, otherwise specifications are at TA = 25°C. (Note 3)
PARAMETER CONDITIONS MIN TYP MAX UNITS
Reverse Breakdown Voltage LT1389BCS8 (IR = 1.5µA) 4.99625 5.000 5.00375 V
LT1389BCS8 (IR = 1.5µA) 4.979 5.000 5.021 V
Reverse Breakdown Change 1.5µA IR 200µA 0.2 1.5 mV with Current (Note 4)
200µA IR 2mA 0.3 4 mV
Minimum Operating Current 1 µA Temperature Coefficient IR = 1.5µA 12 50 ppm/°C Reverse Dynamic Impedance (Note 5) 1.5µA IR 2mA 0.75 2
Low Frequency Noise (Note 6) IR = 1.5µA, 0.1Hz f ≤ 10Hz 100 µV
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: If the part is stored outside of the specific operating temperature range, the output may shift due to hysteresis.
Note 3: ESD (Electrostatic Discharge) sensitive device. Use proper ESD handling precautions.
The denotes specifications which apply over the full operating
–0.075 0.075 %
–0.42 0.42 %
0.2 3 mV
0.3 6 mV
0.75 3
P-P
Note 4: Output requires 0.1µF for operating current greater than 1mA. Note 5: This parameter is guaranteed by “reverse breakdown change with
current” test. Note 6: Peak-to-peak noise is measured with a single highpass filter at
0.1Hz and 2-pole lowpass filter at 10Hz.
4
Page 5
UW
FORWARD CURRENT (mA)
0.001
0.4
FORWARD VOLTAGE (V)
0.5
0.6
0.7
0.8
0.01 0.1 1 10 100
1389-1.25 G06
0.3
0.2
0.1 0
0.9
1.0
TA = 25°C
1.25V TYPICAL PERFOR A CE CHARACTERISTICS
Reverse Characteristics
1.0 TA = –40°C TO 85°C
0.8
0.6
0.4
REVERSE CURRENT (µA)
0.2
0
0
0.4 REVERSE VOLTAGE (V)
0.8
1.2
1.6
1389-1.25 G01
Temperature Drift
2.0
1.5
1.0
0.5
0
IR = 250µA
–0.5
–1.0
–1.5
REFERENCE VOLTAGE CHANGE (mV)
–2.0
–40
IR = 0.8µA
–20 0 40
20
TEMPERATURE (°C)
60
1389-1.25 G02
80
Reverse Voltage Change vs Current
1.2
1.0
0.8
0.6
0.4
0.2
REVERSE VOLTAGE CHANGE (mV)
0
0.001 0.1 101
0.01 REVERSE CURRENT (mA)
LT1389
–40°C
25°C
85°C
1389-1.25 G03
1000
100
10
1
DYNAMIC IMPEDANCE ()
0.1
0.001
25 20 15 10
5 0
–5
–10
NOISE VOLTAGE (µV/DIV)
–15 –20 –25
0
REVERSE CURRENT (mA)
0.10.01 101
0.1Hz to 10Hz Noise
IR = 0.8µA
10
20
30
40
TIME (SEC)
50
TA = 25°C f = 25Hz
1389-1.25 G04
1389-1.25 G07
Dynamic Impedance vs Frequency
100
TA = 25°C
10
DYNAMIC IMPEDANCE (k)
0.1
0.01
1
0.01
IR = 0.8µA
= 0µF
C
OUT
I
= 10µA
R
= 0µF
C
OUT
0.1 1 10 FREQUENCY (kHz)
C
OUT
= 0.8µA
I
R
= 0.047µF
IR = 10µA
C
OUT
= 0.1µF
1389-1.25 G05
Response Time
1.5V 1V
0.5V 0V
5V 0V
I
= 0.8µA
R
= 0µF
C
OUT
7060
1ms/DIV
1389-1.25 G08
Forward CharacteristicsReverse Dynamic Impedance
Response Time
1.5V 1V
0.5V 0V
5V 0V
I
= 0.8µA
R
= 0.1µF
C
OUT
200ms/DIV
1389-1.25 G09
5
Page 6
LT1389
REVERSE CURRENT (mA)
0.4
REVERSE VOLTAGE CHANGE (mV)
0.8
1.2
0.001 0.1 1 10
1389-2.5 G03
0
1.6
2.0
0.01
–40°C
25°C
85°C
FORWARD CURRENT (mA)
0.001
0.4
FORWARD VOLTAGE (V)
0.5
0.6
0.7
0.8
0.01 0.1 1 10 100
1389-2.5 G06
0.3
0.2
0.1 0
0.9
1.0
TA = 25°C
UW
2.5V TYPICAL PERFOR A CE CHARACTERISTICS
Reverse Characteristics
1000
TA = –40°C TO 85°C
800
Temperature Drift
4.0
3.0
2.0
Reverse Voltage Change vs Current
600
400
REVERSE CURRENT (nA)
200
1000
DYNAMIC IMPEDANCE ()
100
0.1
0
10
1
0.001
0
0.8
0.4 REVERSE VOLTAGE (V)
REVERSE CURRENT (mA)
1.2
1.6 2.0 2.4 2.8
0.10.01 101
1389-2.5 G01
TA = 25°C f = 25Hz
1389-2.5 G04
1.0
0
= 250µA
I
R
–1.0
–2.0
REVERSE VOLTAGE CHANGE (mV)
–3.0
–4.0
–40
IR = 0.9µA
0
–20 20
TEMPERATURE (°C)
40 60 80
Dynamic Impedance vs Frequency
100
TA = 25°C
10
IR = 0.9µA
= 0µF
C
DYNAMIC IMPEDANCE (k)
0.1
0.01
1
0.01
OUT
IR = 10µA
= 0µF
C
OUT
0.1 1 10 FREQUENCY (kHz)
C
OUT
C
IR = 0.9µA
= 0.033µF
I
R
= 0.22µF
OUT
1389-2.5 TA02
Forward CharacteristicsReverse Dynamic Impedance
= 10µA
1389-2.5 G05
0.1Hz to 10Hz Noise
100
IR = 0.9µA
80 60 40
20
0 –20 –40
NOISE VOLTAGE (µV/DIV)
–60 –80
–100
0
6
10
20
30
TIME (SEC)
40
Response Time
3V 2V 1V 0V
5V 0V
I
= 0.9µA
R
C
= 0µF
OUT
50
7060
1389-2.5 G07
1ms/DIV
1389-2.5 G08
Response Time
3V 2V 1V 0V
5V 0V
= 0.9µA
I
R
C
= 0.1µF
OUT
200ms/DIV
1389-2.5 G09
Page 7
UW
FORWARD CURRENT (mA)
0.001
0.4
FORWARD VOLTAGE (V)
0.5
0.6
0.7
0.8
0.01 0.1 1 10 100
1389-4 G06
0.3
0.2
0.1 0
0.9
1.0
TA = 25°C
REVERSE CURRENT (mA)
0.8
REVERSE VOLTAGE CHANGE (mV)
1.6
2.0
0.001 0.1 101
1389-4 G03
0
1.2
0.4
0.01
25°C 85°C
–40°C
4.096V TYPICAL PERFOR A CE CHARACTERISTICS
Reverse Characteristics
1000
TA = –40°C TO 85°C
800
Temperature Drift
8
6
4
LT1389
Reverse Voltage Change vs Current
600
400
REVERSE CURRENT (nA)
200
0
0.5 1.5
0
1.0 REVERSE VOLTAGE (V)
1000
100
10
1
DYNAMIC IMPEDANCE ()
0.1
0.001 REVERSE CURRENT (mA)
3.5
2.5 4.5
3.0
2.0
0.10.01 101
4.0
1389-4 G01
TA = 25°C f = 25Hz
1389-4 G04
2
0
IR = 250µA
–2
IR = 1.5µA
–4
–6
REFERENCE VOLTAGE CHANGE (mV)
–8
–20 0 40
–40
20
TEMPERATURE (°C)
Dynamic Impedance vs Frequency
100
TA = 25°C
10
DYNAMIC IMPEDANCE (k)
0.1
0.01
1
0.01
IR = 1.5µA
= 0µF
C
OUT
I
= 10µA
R
= 0µF
C
OUT
0.1 1 10 FREQUENCY (kHz)
C
OUT
IR = 1.5µA
= 0.047µF
I
C
OUT
60
= 10µA
R
= 0.68µF
1389-4 G05
80
1389-4 G02
Forward CharacteristicsReverse Dynamic Impedance
Response Time
4V
0V
10V
0V
= 1.5µA
I
R
= 0µF
C
OUT
2ms/DIV
1389-4 G08
Response Time
4V
0V
10V
0V
= 1.5µA
I
R
C
= 0.1µF
OUT
200ms/DIV
1389-4 G09
7
Page 8
LT1389
FORWARD CURRENT (mA)
0.001
0.4
FORWARD VOLTAGE (V)
0.5
0.6
0.7
0.8
0.01 0.1 1 10 100
1389-5 G06
0.3
0.2
0.1 0
0.9
1.0
TA = 25°C
UW
5V TYPICAL PERFOR A CE CHARACTERISTICS
Reverse Characteristics
1000
TA = –40°C TO 85°C
800
600
400
REVERSE CURRENT (nA)
200
0
0
0.5 1.5
1.0
2.0
REVERSE VOLTAGE (V)
3.5
3.0
4.0
1389-4 G01
2.5 4.5 5.0 5.5
Temperature Drift
8
6
4
2
0
–2
IR = 250µA
–4
IR = 1.5µA
–6
REFERENCE VOLTAGE CHANGE (mV)
–8
–20 0 40
–40
20
TEMPERATURE (°C)
60
80
1389-5 G02
Reverse Voltage Change vs Current
2.0
1.6
1.2
0.8
0.4
REVERSE VOLTAGE CHANGE (mV)
0
0.001 0.1 101
0.01 REVERSE CURRENT (mA)
–40°C
25°C
85°C
1389-4 G03
1000
100
10
1
DYNAMIC IMPEDANCE ()
0.1
0.001
8
REVERSE CURRENT (mA)
0.10.01 101
Response Time
4V 2V 0V
10V
0V
= 1.5µA
I
R
C
= 0µF
OUT
TA = 25°C f = 25Hz
1389-5 G04
2ms/DIV
Dynamic Impedance vs Frequency
100
TA = 25°C
10
DYNAMIC IMPEDANCE (k)
0.1
0.01
1
0.01
1389-5 G08
IR = 1.5µA
= 0µF
C
OUT
I
= 10µA
R
= 0µF
C
OUT
0.1 1 10 FREQUENCY (kHz)
C
OUT
IR = 1.5µA
= 0.047µF
C
OUT
I
= 10µA
R
= 0.1µF
1389-4 G05
Response Time
4V 2V 0V
10V
0V
= 1.5µA
I
R
C
= 0.1µF
OUT
Forward CharacteristicsReverse Dynamic Impedance
200ms/DIV
1389-5 G09
Page 9
WUUU
APPLICATIO S I FOR ATIO
LT1389
The reverse characteristics of the LT1389 resembles a simple resistor Zener diode parallel connection. This well behaved characteristic is important to the proper opera­tion of circuits like Figure 1. The adjustable output voltage reference depends upon positive feedback from the LT1495’s output to start-up and regulate the bias current for the LT1389. The LT1389 has no negative resistance regions that can interfere with the proper start-up of the buffered reference.
– 1.25V
V
OUT
RB =
0.8µA
LT1389-1.25
Board leakage is a concern for a nanopower precision shunt voltage reference. The LT1389 requires attention to detail in board layout in order to maximize its perfor­mance. 1.5G of leakage between a DNC pin and a 5V supply will conduct 2.5nA which induces a 0.2% error in V
. Board leakage can be minimized by encircling the
OUT
DNC pins with a guard ring operated at a potential of V By tying the guard ring to V
as shown in Figure 2,
OUT
OUT
leakage paths are eliminated.
10.5V
V
IN
+
LT1495
1389 F01
V
OUT
1.5V TO 10V
R1 249k TO 8.66M
R2
1.24M
.
Figure 1. Adjustable Output Voltage Reference
BOARD METAL TRACE
DNC
DNC
DNC
GND
1
2
LT1389
3
4
8
DNC
7
DNC
6
V
OUT
5
GND
1389 F02
Figure 2. Guard Ring to Reduce Board Leakage
9
Page 10
LT1389
TYPICAL APPLICATIO S
U
2.5V Output, Low Noise Reference
3V
V
IN
1µF
10k
2 AAA
ALKALINE
CELLS
510k
1k10k
LT1495
+
+
100k
20µF*
+
20µF*LT1389-2.5
*WET SLUG TANTALUM
1389 TA04
Micropower Voltage and Current Reference
ZTX214C
R3 249k
0.1%
1/2 LT1495
R4 300k 5%
+
LT1389-1.25
+
1/2 LT1495
2.5V
R1 200k
0.1%
R2 1M
0.1%
10
= 1µA
OUT
R1 TO R3: MAR5 SERIES, IRC (512) 992-7900
COMI
V
= 1.5V
OUT
1389 TA03
Page 11
PACKAGE DESCRIPTIO
U
Dimensions in inches (millimeters) unless otherwise noted.
S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG # 05-08-1610)
0.189 – 0.197* (4.801 – 5.004)
7
8
5
6
LT1389
0.228 – 0.244
(5.791 – 6.197)
0.010 – 0.020
(0.254 – 0.508)
0.008 – 0.010
(0.203 – 0.254)
*
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**
DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
×
°
45
0.016 – 0.050
(0.406 – 1.270)
(1.346 – 1.752)
0°– 8° TYP
0.053 – 0.069
0.014 – 0.019
(0.355 – 0.483)
TYP
0.150 – 0.157** (3.810 – 3.988)
1
3
2
4
0.004 – 0.010
(0.101 – 0.254)
0.050
(1.270)
BSC
SO8 1298
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen­tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
11
Page 12
LT1389
TYPICAL APPLICATIO S
Single Cell Li-Ion Battery Supervisory Circuit, IQ = 10µA
R
S
620k 5%
+
A1
1/4 LT1496
LT1389-1.25
D1, D2: 1N458 R1 TO R4: CAR6 SERIES IRC (512) 992-7900 SW: PMOS SPECIFIED FOR MAXIMUM LOAD CURRENT
U
R1 500k
0.1%
R2
1.25M
0.1%
1.75V
1.25V
A2
1/4 LT1496
+
V
BAT
+
A3
1/4 LT1496
OFF
V
BAT
R3
1.75M
0.1%
R
H1
10M 5%
D1
A BATTERY
R
H2
10M 5%
D2
R4
1.25M
0.1%
CHARGER
A4
1/4 LT1496
+
1389 TA05
SW
R 1M 5%
T0 LOAD
SW
Precision Undervoltage Lockout Circuit
1389 TA06
SW1
R 1M 5%
R5 10M 5%
TO LOAD
SW
Li-Ion CELL
4.1V
V
BATT
R3
R1
3.57M
0.1%
A
R2 3M
0.1%
2.05M 1%
B
U2 LT1389
1.250V
R4 150k 1%
+
U1
1/2 LT1495
R1, R2: IRC CAR6 SERIES (512) 992-7900 SW1: PMOS SPECIFIED FOR MAXIMUM LOAD CURRENT
RELATED PARTS
PART NUMBER DESCRIPTION COMMENTS
LTC®1440 Micropower Comparator with Reference 3.7µA Max Supply Current, 1% 1.182V Reference,
MSOP, PDIP and SO-8 Packages
LT1460 Micropower Series Reference 0.075% Max, 10ppm/°C Max Drift, 2.5V, 5V and 10V Versions,
MSOP, PDIP, SO-8, SOT-23 and TO-92 Packages
LT1461 Micropower Precision LDO Series Reference 3ppm/°C Max Drift, 0°C to 70°C, –40°C to 85°C, –40°C to 125°C
Options in SO-8
LT1495 1.5µA Precision Rail-to-Rail Dual Op Amp 1.5µA Max Supply Current, 100pA Max I LTC1540 Nanopower Comparator with Reference 600nA Max Supply Current, 2% 1.182V Reference,
MSOP and SO-8 Packages
LT1634 Micropower Precision Shunt Voltage Reference 0.05% Max, 10ppm/°C Max Drift, 1.25V, 2.5V, 4.096V, 5V,
10µA Maximum Supply Current
LTC1798 6µA Low Dropout Series Reference Available in Adjustable, 2.5V, 3V, 4.096V and 5V
OS
12
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
www.linear-tech.com
1389fa LT/TP 0200 2K REV A • PRINTED IN USA
LINEAR TECHNOLOGY CORPORATION 1998
Loading...