The LR38603 is a CMOS digital signal processor for
color CCD video camera systems of 270 k/320 k/
410 k/470 k-pixel CCDs with complementary color
filters. The video camera system consists of
CDS/PGA/ADC IC (IR3Y48A1), DSP IC (LR38603)
and V driver IC (LR36685) with CCD.
FEATURES
• Designed for 1/4-type 270 k/320 k/410 k/470 kpixel color CCDs with Mg, G, CY, and Ye
complementary color filters
• Switchable between NTSC and PAL modes
• Built-in signal generation circuit for driving CCD
and various pulses for TV signals
• Parameters for camera signal processing can be
set
• Built-in auto exposure control
• Built-in auto white balance control
• Built-in auto carrier balance control
• Built-in drive circuit for 2 K-bit EEPROM
• Built-in 9-bit D/A converter
• Built-in mirror image output
• Built-in circuit to reduce line crawl noise
• Built-in auto white detect correction
• YUV digital output (8 bits x 2)
• UYVY digital output (8 bits x 1)
• Analog video output
• External clock input (8 fsc)
• Built-in vertical reset
• Built-in horizontal reset
• Single +3.3 V power supply
• Package :
80-pin LQFP (P-LQFP080-1212) 0.5 mm pin-pitch
LR38603
Digital Signal Processor for
Color CCD Cameras
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in
catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
9ADI9ICDigital signal input (MSB)
10 ADI
11 ADI
12 ADI
13 ADI
14 ADI4ICDigital signal input
DD–Power supply input (+3.3 V)
15 V
16 GND–Ground
17 ADI
18 ADI
19 ADI1ICDigital signal input
20 ADI
21 OBCPOBF4M
22 ADCLPOBF4MClamp pulse output
23 BLKXOBF4M
24 EEPDAIO4MU
25 GND–Ground
DD–Power supply input (+3.3 V)
26 V
27 EEPCKIO4MSU
28 EEPFLICU
29 EEPSLICD
IO SYMBOL
POLARITY
Input for reference clock oscillator
Connect to CKO (pin 3) with R.
NTSC : 28.63636 MHz PAL : 28.375 MHz
Output for reference clock oscillator. The output is the inverse of CKI (pin 2).
Clock output for A/D converter
Connect to ADCK of IR3Y48A1.
Clock output for setting parameter of IR3Y48A1
Serial data output for setting parameter of IR3Y48A1
8ICDigital signal input
7ICDigital signal input
6ICDigital signal input
5ICDigital signal input
3ICDigital signal input
2ICDigital signal input
0ICDigital signal input (LSB)
Clamp pulse output for optical black
Blanking pulse output
Data input from EEPROM
Connect to a data output pin of EEPROM.
When setting internal register from an external device, use EEPCK, EEPFL and
EEPSL together with EEPDA. This pin is for serial data input.
Clock output for EEPROM
Connect to clock input of EEPROM.
When setting internal register from external device, this pin is used as serial
clock.
Control for setting internal register from an external device
Usually used at H level.
Control for setting internal register from external device
Usually used at L level.
When setting register, set EEPSL at H level.
LR38603
DESCRIPTION
4
PIN NO.
SYMBOL
30 WB1IO4MD
IO SYMBOL
POLARITY
DESCRIPTION
WB setting. Use together with WB
1 and WB2
00 (WB2, WB1) : Auto white balance 01 : WB1 mode 10 : WB2 mode
11 : WB3 mode
31 WB
2IO4MD
These pins are 0 bit (WB
1) and 1st-bit (WB2) of UV output in output digital YUV
mode.
Setting for mirroring video output mode
32 MIRIO4MD
L : Normal H : Mirroring
This pin is 2nd-bit of UV output in output digital YUV mode.
33 BLCIO4MD
Switching internal register for exposure-standard
This pin is 3rd-bit of UV output in digital output mode.
34 GNDDA–Ground for internal D/A converter
35 V
DDDA–
Power supply for internal D/A converter
Connect to DC 3.3 V power supply (+3.3 V).
36 VBDAODC output of internal D/A converter. Connect to ground pin via capacitor.
REFDAODC output of internal D/A converter. Connect to ground pin via register.
37 I
REFDAI
38 V
DC reference input for internal D/A converter
Connect to DC power supply (+1.0 V).
39 GNDDA–Ground for internal D/A converter.
40 VIDEODAOAnalog video output
41 EEMDS IO4MU
42 EEMD
1IO4MU
Switching electronic shutter control
Use together with EEMDS, EEMD
1, EEMD2 and EEMD3. Refer to "Electronic
Shutter Speed Setting" in AUTOMATIC CAMERA FUNCTION CONTROL.
These pins are 4th to 7th-bit of UV output in digital output mode.
43 EEMD
44 EEMD
2IO4MU
3IO4MU
When in line lock mode,
2 : H reset
EEMD
: V reset
3
EEMD
45 GND–Ground
46 V
DD–Power supply input (+3.3 V).
47 DCK
1OBF4M
Clock output synchronized with digital output
Switchable among CSYNC, CBLK or L level.
ID pulse output of UV signal for digital output
When in analog output, output is KEI or L level.
48 DCK
2OBF4M
KEI pulse : At power-on, begin with L level. When shutter speed is 1/60 s (PAL
1/50 s) and PGA gain is more than the value in address 92h, it goes to H level
and becomes stable.
49 EXCKIICSU
50 Y0OBF4M
51 Y
1OBF4M
52 Y2OBF4M
53 Y3OBF4M
Input for external clock
Digital video signal output
Use together with Y
7 (MSB) to Y0 (LSB).
UYVY signal or illumination signal output (according to the register).
54 GND–Ground
LR38603
5
PIN NO.
SYMBOL
IO SYMBOL
POLARITY
DESCRIPTION
55 VDD–Power supply input (+3.3 V)
4OBF4M
56 Y
57 Y
5OBF4M
6
58 Y
OBF4M
59 Y7OBF4M
Digital video signal output
Use together with Y
7 (MSB) to Y0
(LSB).
UYVY signal or illumination signal output (according to the register)
Horizontal drive pulse output
60 HDOBF4M
It is able to select horizontal drive pulse for drive timing and video output timing
from BELL pulse, HREF pulse and L level.
BELL pulse : The signal that goes to H level 1 time per 1 field.
Vertical drive pulse output
61 VDOBF4M
It is able to select from VD, CSYNC and VS outputs for drive timing and video
output timing.
1XOBF4M
62 V
63 V2XOBF4M
64 V3XOBF4M
CCD vertical drive pulse output
Connect each pin to CCD via V driver IC.
65 V4XOBF4M
66 VDD–Power supply input (+3.3 V)
67 GND–Ground
68 VH
1XOBF4MPulse output for reading charges
Connect each pin to CCD via V driver IC.69 VH3XOBF4M
70 OFDXOBF4MOFD pulse output. Connect each pin to CCD via V driver IC.
71 VDD–Power supply input (+3.3 V)
72 GND–Ground
73 FR
74 FH1
OBF12M
OBF12M
2
OBF12M
Reset pulse output. Connect each pin to CCD via capacitor.
000 : Analog video outputEXCKI : Vertical reset pulse input
001 : Analog video outputEXCKI : 8 fsc clock input
2 : Horizontal reset pulse inputEEMD
EEMD
010 : Analog video outputEEMD
: Vertical reset pulse input
3
EEMD
2 : Horizontal reset pulse input
3 : Vertical reset pulse input
100 : YUV digital video output : Clock rate of video data pixel-CK
101 : YUV digital video output : Clock rate of video data EXCKI
110 : UYVY digital video output : Clock rate of video data EXCKI
011, 111 are prohibited.
START_EE[2]Shutter speed at power-on0 : minimum1 : maximum
AGC_FIX[1]PGA control0 : Auto1 : Fixed
OB_SEL[0]Carrier balance control0 : Auto1 : Fixed
00 : HD output (CCD drive timing) 01 : HD output (video output timing)
10 : BELL pulse (in analog video output), HREF (in digital video output)
11 : Fixed to L level
VD_SEL [4 : 3] Select output signal from VD pin
10 : Fixed to L level (in analog video output), VS (in digital video output)
11 : Fixed to L level (in analog video output), CSYNC (in digital video
output)
DCK1_SEL[2 : 1] Select output signal from DCK
1 pin (in analog video output)
00 : CSYNC 01 : CBLNK 1X : Fixed to L level
DCK2_SEL[0]Select output signal from DCK
2 pin (in analog video output)
0 : Fluorescent signal 1 : Fixed to L level
1, EEME2, EEMD3), mirror video
output (MIR [MSB]), internal register for exposure-standard (BLC) and white
balance (WB
2, WB1 [LSB]) are set when selecting digital output mode with
MODE_OUT_SIG (address 02h).
Shutter control of EEMD
and that of EEMDS and EEMD
2 and EEMD3 is set by the register of SW_CTRL
1 is set by pin 41 and pin 42 when setting
"001" and "010" with MODE_OUT_SIG (address 02h).
LR38603
7
LR38603
ADDRESS
05hMIN_SH_SEL[7]Select minimum shutter speed 0 : 1/60 s (1/50 s) 1 : 1/100 s (1/120 s)
06hREF_IRIS1[7 : 0] Reference of exposure
07hCTLD_AGC[7 : 0] Outside range of error of exposure reference
08hCTLD_0[7 : 0] Inside range of error of exposure reference
09hREF_IRIS2[7 : 0] Exposure reference in condition against light (When BLC = H)
0AhCLIP_IRIS[7 : 0] Ceiling clip in accumulate exposure data
0BhUW_E1[7 : 0] Downward weight factor 1 in calculation of exposure. (upper of screen)
0ChUW_E2[7 : 0] Downward weight factor 2 in calculation of exposure.
0DhUW_E3[7 : 0] Downward weight factor 3 in calculation of exposure.
0EhUW_E4[7 : 0] Downward weight factor 4 in calculation of exposure.
0FhUW_E5[7 : 0] Downward weight factor 5 in calculation of exposure.
10hUW_E6[7 : 0] Downward weight factor 6 in calculation of exposure.
11hUW_E7[7 : 0] Downward weight factor 7 in calculation of exposure.
12hUW_E8[7 : 0] Downward weight factor 8 in calculation of exposure. (lower of screen)
13hCW_E[6 : 0] Ratio of downward IRIS against center
14hCWP_E[5 : 0] Center point, position of left-upper area.
15hCWA_E[5 : 0] Center point, size of area.
16hEE_DIV_STP[6 : 4] Select dividing value of shutter speed control.
17hP_HEE[7 : 0] Ratio of luminance H peak of IRIS data
18hP_LEE[7 : 0] Ratio of luminance L peak of IRIS data
19hMOD8[4]Select peak accumulation. 0 : Avg. of 8 pixels 1 : Avg. of 4 pixels
1AhAG_DIV_STP[7 : 5] Select dividing value of PGA control.
1BhMAX_AGC[7 : 0] Upper limitation of PGA control.
1ChREF_AGC[7 : 0] Lower limitation of PGA control (initial value of PGA at power-on).
1DhS_38M_GA[7 : 0] Fixed PGA gain [7 : 0 (LSB) ]
1EhS_38M_GA_U[3]Fixed PGA gain when using IR3Y48A1 [8 (MSB)]
NAMEBITCONTENTS
MAX_SH[6 : 0] Restriction in maximum shutter speed
(When EEMDS, EEMD
(Hysteresis range of IRIS and PGA tweaking range)
(Exposure control is stopped in REF_IRIS±CTLD_0)
Sum of UW_E1 to UW_E8 must be 256d.
LPFE_O[3 : 2] Select LPF of IRIS data in PGA normal adjustment.
LPFE_I[1 : 0] Select LPF of IRIS data in PGA tweak.
IRIS_DLY[3 : 2] Reduction of IRIS control in normal operation.
00 : Operating always01 : Operating each 2VD timing
10 : Operating each 4VD timing 11 : Operating each 8VD timing
IRIS_DLY[1 : 0] Reduction of IRIS control in PGA tweak.
00 : Operating always01 : Operating each 2VD timing
10 : Operating each 4 VD timing 11 : Operating each 8VD timing
AG_GAIN[4 : 0] Number of steps in PGA gain
S_38M_MX
IR3Y48A1 minimum gain [1 : 0]
[2 : 0]
00 : 0 01 : +6 dB 10 : +12 dB 11 : –2 dB
1, EEMD2
, EEMD3 = 4' b1110)
8
LR38603
ADDRESS
1FhS_38M_OFS
20hCSEPR[7 : 0] R side factor of color separation (positive value)
21hCSEPB[7 : 0] B side factor of color separation (positive value)
22hCB_R
23hCB_B[7 : 0] B side factor of carrier balance (complement of 2)
24h
25h
26h
27h
28h
29h
2Ah
2BhK_WBR_H[7 : 0] R side multiplier of capture speed in AWB fast processing.
2Ch
2Dh
2EhAWB_HCL[7 : 0] Initial value of AWBHCL
2FhAWB_LCL[7 : 0] Initial value of AWBLCL
30hREF_WBPK[7 : 0] Reference data in calculation of intercept level of AWB accumulated luminance
31hK_CL[7 : 0] H peak ratio in calculation of intercept level of AWB accumulated luminance
32hK_WBCL[7 : 0] Multiplier in calculation of intercept level of AWB accumulated luminance
33h
NAMEBITCONTENTS
[7]Offset auto adjustment.
0 : Auto 1 : Fixed (when using IR3Y48A1)
[6 : 0] Factor in fixed offset mode
Fixed to 40h when using IR3Y48A1.
[7 : 0] R side factor of carrier balance (complement of 2)
C_GAM[5 : 3] Select characteristics of color gamma.
YL_SEL[2 : 1] Manner of YL signal production ([2 : 1])
00 : Avg. of 3 lines 01 : Each R, B line 1X : Fixed ratio
C1_RB_SEL[0]Manner of RG signal production
0 : Use color separation factor (address 20h, 21h)
1 : Use fixed color separation factor.
MODE_MAT[7]Matrix factor 0 : Unsigned 1 : Signed
LC_ON_RB[6]1 : Operation against line crawl in color processing.
YL_SUB[5]1 : Set YL to 0 in chrominance generation.
UV_CTRL1[4]Switch order of UV digital output
SEL_RB[3]Swap R and B after color separation.
SEL_RB2[2]Swap R – Y and B – Y in output
SPCTRL[1]Switch attributes of SP1 and SP2.
IDCO[0]Switch attribute of color separation HG.
MAX_WBR[7 : 0] Upper limit of R side range of AWB gain (9 bits data which includes 1 at LSB)
MIN_WBR[7 : 0] Lower limit of R side range of AWB gain (9 bits data which includes 1 at LSB)
MAX_WBB[7 : 0] Upper limit of B side range of AWB gain (9 bits data which includes 1 at LSB)
MIN_WBB[7 : 0] Lower limit of B side range of AWB gain (9 bits data which includes 1 at LSB)
JMP_OFF[4]0 : Normal 1 : Suppress AWB skipping
AWB_HIGH[3]0 : Normal 1 : Force fast processing in small frame
MAX_IQAREA[2]0 : Address 36h to 3Dh 1 : Fix WB frame to maximum.
IQ_LPF[1 : 0] Select LPF of AWB I, Q.
00 : Avg. of 4 V 01 : Avg. of 2 V 1X : Non
K_WBB_H[7 : 0] B side multiplier of capture speed in AWB fast processing.
CMP_CT[7 : 0] Number of operations of white balance (each CMP_CT x VD timing)
INT_I_R_Y[7]AWB detected data
0 : I, Q 1 : R – Y, B – Y
CW_IQ[6 : 0] Ratio of AWB weighted center and downward.
9
LR38603
ADDRESS
34h
NAMEBITCONTENTS
CWPA_IQ[7 : 0] Position and area of AWB center.
35hCTLD_AW0[7 : 0] Reset range of WB frame (compared with IRIS)
36hAWB_IP_L[7 : 0] Outside, I-axis positive of AWB detect area (in fast processing)
37hAWB_IM_L[7 : 0] Outside, I-axis negative of AWB detect area (in fast processing)
38hAWB_QP_L[7 : 0] Outside, Q-axis positive of AWB detect area (in fast processing)
39hAWB_QM_L[7 : 0] Outside, Q-axis negative of AWB detect area (in fast processing)
3AhAWB_IP_S[7 : 0] Inside, I-axis positive of AWB detect area (in normal processing)
3BhAWB_IM_S[7 : 0] Inside, I-axis negative of AWB detect area (in normal processing)
3ChAWB_QP_S[7 : 0] Inside, Q-axis positive of AWB detect area (in normal processing)
3DhAWB_QM_S[7 : 0] Inside, Q-axis negative of AWB detect area (in normal processing)
3Eh
AWB_IW_L[6 : 0] White area, I-axis, outside (for hysteresis).
3FhAWB_QW_L[6 : 0] White area, Q-axis, outside (for hysteresis).
40hAWB_IW_S[7 : 4] White area, I-axis, inside (for targeted white area).
AWB_QW_S[3 : 0] White area, Q-axis, inside (for targeted white area).
41hAWB_C_I[7 : 4] WB convergence orientation, I-axis coordinate (complement of 2)
1 R side constant (9 bits data which includes 0 at MSB)
B side constant (9 bits data which includes 0 at MSB)
1
2 R side constant (9 bits data which includes 0 at MSB)
45hWBB2[7 : 0] WB2 B side constant (9 bits data which includes 0 at MSB)
46hWBR3[7 : 0] WB
3 R side constant (9 bits data which includes 0 at MSB)
47hWBB3[7 : 0] WB3 B side constant (9 bits data which includes 0 at MSB)
48hREF_GA_R1M[7 : 0] Chrominance gain of R – Y negative direction when WB
1 is fixed or auto-
controlled (present WBR factor ≤ WBR1).
49hREF_GA_B1M[7 : 0] Chrominance gain of B – Y negative direction when WB
1 is fixed or auto-
controlled (present WBR factor ≤ WBR1).
is fixed or auto-
4Ah
REF_GA_R1P[7 : 0] Chrominance gain of R – Y positive direction when WB
1
controlled (present WBR factor ≤ WBR1).
4BhREF_GA_B1P[7 : 0] Chrominance gain of B – Y positive direction when WB
1 is fixed or auto-
controlled (present WBR factor ≤ WBR1).
4Ch
REF_GA_R2M[7 : 0] Chrominance gain of R – Y negative direction when WB
2 is fixed or auto-
controlled (present WBR factor ≤ WBR2).
4DhREF_GA_B2M[7 : 0] Chrominance gain of B – Y negative direction when WB
2 is fixed or auto-
controlled (present WBR factor ≤ WBR2).
4EhREF_GA_R2P[7 : 0] Chrominance gain of R – Y positive direction when WB
2 is fixed or auto-
controlled (present WBR factor ≤ WBR2).
4FhREF_GA_B2P[7 : 0] Chrominance gain of B – Y positive direction when WB
2 is fixed or auto-
controlled (present WBR factor ≤ WBR2).
50hREF_GA_R3M[7 : 0] Chrominance gain of R – Y negative direction when WB
3 is fixed or auto-
controlled (present WBR factor ≤ WBR3).
51hREF_GA_B3M[7 : 0] Chrominance gain of B – Y negative direction when WB
3 is fixed or auto-
controlled (present WBR factor ≤ WBR3).
10
LR38603
ADDRESS
NAMEBITCONTENTS
52hREF_GA_R3P[7 : 0] Chrominance gain of R – Y positive direction when WB3 is fixed or auto-
controlled (present WBR factor ≤ WBR3).
53hREF_GA_B3P[7 : 0] Chrominance gain of B – Y positive direction when WB
3 is fixed or auto-
controlled (present WBR factor ≤ WBR3).
54hK_GA_R1M[6 : 0] Chrominance gain slope of R – Y negative direction in WB auto control
(WBR1 < present WBR < WBR2)
55hK_GA_B1M[6 : 0] Chrominance gain slope of B – Y negative direction in WB auto control
(WBR1 < present WBR < WBR2)
56hK_GA_R1P[6 : 0] Chrominance gain slope of R – Y positive direction in WB auto control
(WBR1 < present WBR < WBR2)
57hK_GA_B1P[6 : 0] Chrominance gain slope of B – Y positive direction in WB auto control
(WBR1 < present WBR < WBR2)
58hK_GA_R2M[6 : 0] Chrominance gain slope of R – Y negative direction in WB auto control
(WBR2 < present WBR < WBR3)
59hK_GA_B2M[6 : 0] Chrominance gain slope of B – Y negative direction in WB auto control
(WBR2 < present WBR < WBR3)
5AhK_GA_R2P[6 : 0] Chrominance gain slope of R – Y positive direction in WB auto control
(WBR2 < present WBR < WBR3)
5BhK_GA_B2P[6 : 0] Chrominance gain slope of B – Y positive direction in WB auto control
(WBR2 < present WBR < WBR3)
5ChREF_MAT_R1M [5 : 0] Matrix correction factor of R – Y negative direction when WB
1 is fixed or
autocontrolled (present WBR factor ≤ WBR1).
5DhREF_MAT_B1M [5 : 0] Matrix correction factor of B – Y negative direction when WB
1 is fixed or
autocontrolled (present WBR factor ≤ WBR1).
5EhREF_MAT_R1P [5 : 0] Matrix correction factor of R – Y positive direction when WB
1 is fixed or
autocontrolled (present WBR factor ≤ WBR1).
is fixed or
5FhREF_MAT_B1P [5 : 0] Matrix correction factor of B – Y positive direction when WB
1
autocontrolled (present WBR factor ≤ WBR1).
60hREF_MAT_R2M [5 : 0] Matrix correction factor of R – Y negative direction when WB
2 is fixed or
autocontrolled (present WBR factor = WBR2).
61hREF_MAT_B2M [5 : 0] Matrix correction factor of B – Y negative direction when WB
2 is fixed or
autocontrolled (present WBR factor = WBR2).
62hREF_MAT_R2P [5 : 0] Matrix correction factor of R – Y positive direction when WB
2 is fixed or
autocontrolled (present WBR factor = WBR2).
63hREF_MAT_B2P [5 : 0] Matrix correction factor of B – Y positive direction when WB
2 is fixed or
autocontrolled (present WBR factor = WBR2).
64hREF_MAT_R3M [5 : 0] Matrix correction factor of R – Y negative direction when WB
3 is fixed or
autocontrolled (present WBR factor = WBR3).
65hREF_MAT_B3M [5 : 0] Matrix correction factor of B – Y negative direction when WB
3 is fixed or
autocontrolled (present WBR factor = WBR3).
66hREF_MAT_R3P [5 : 0] Matrix correction factor of R – Y positive direction when WB
3 is fixed or
autocontrolled (present WBR factor = WBR3).
11
LR38603
ADDRESS
67hREF_MAT_B3P [5 : 0] Matrix correction factor of B – Y positive direction when WB3 is fixed or
68hK_MAT_R1M[7 : 0] Matrix correction slope factor of R – Y negative direction in WB auto control
69hK_MAT_B1M[7 : 0] Matrix correction slope factor of B – Y negative direction in WB auto control
6AhK_MAT_R1P[7 : 0] Matrix correction slope factor of R – Y positive direction in WB auto control
6BhK_MAT_B1P[7 : 0] Matrix correction slope factor of B – Y positive direction in WB auto control
6ChK_MAT_R2M[7 : 0] Matrix correction slope factor of R – Y negative direction in WB auto control
6DhK_MAT_B2M[7 : 0] Matrix correction slope factor of B – Y negative direction in WB auto control
6EhK_MAT_R2P[7 : 0] Matrix correction slope factor of R – Y positive direction in WB auto control
6FhK_MAT_B2P[7 : 0] Matrix correction slope factor of B – Y positive direction in WB auto control
70h
71hCOL_S[7 : 0] Start point of low luminance color suppression (PGA gain).
72hCOL_H[5 : 0] Low luminance color suppression gain.
73hCKI_HCL[7 : 0] Start level of high luminance color suppression.
74hCKI_LCL[7 : 0] Start level of low luminance color suppression.
75hCKI_HLGA
76h
77hCKI_HECL[7 : 0] Start point of horizontal edge color suppression.
78hCKI_EVCL[7 : 0] Start point of vertical edge color suppression.
79hCKI_EGA
7Ah
7Bh
7Ch
NAMEBITCONTENTS
autocontrolled (present WBR factor = WBR3).
(WBR1 < present WBR < WBR2)
(WBR1 < present WBR < WBR2)
(WBR1 < present WBR < WBR2)
(WBR1 < present WBR < WBR2)
(WBR2 < present WBR < WBR3)
(WBR2 < present WBR < WBR3)
(WBR2 < present WBR < WBR3)
(WBR2 < present WBR < WBR3)
CKIL_OFF[6]1 : Color killer OFF
COL_Y[5 : 0] Start point of luminance color suppression in maximum PGA gain.
[7 : 4] High luminance color suppression gain.
[3 : 0] Low luminance color suppression gain.
CKI_HLTI
NSUP_R
NSUP_B[3 : 0] B – Y signal low level suppression
LC_ON_YL
Y_GAM[6 : 4] Select characteristics of luminance gamma.
SEL_LPF_Y[3]Select characteristics of luminance LPF.
Y_SEL[2]Switch luminance signal processing 0 : Use only 1H 1 : 3-line process
VAPT_OFF
HAPT_OFF[0]1 : Horizontal aperture is OFF
HAPT_SEL[7]Switch characteristics of horizontal aperture.
APT_HTIM[6 : 5] Timing of horizontal aperture : –1 to +1
APT_HGA[4 : 0] Initial value of APT_HGA (gain of horizontal edge signal)
[5 : 3] Timing adjustment of high luminance color suppression : –2 to +2
[2 : 0] Timing adjustment of low luminance color suppression : –2 to +2
[7 : 4] Gain of horizontal edge color suppression.
[3 : 0] Gain of vertical edge color suppression.
[7 : 4] R – Y signal low level suppression
[7]1 : Execute measure against line crawl in processing luminance signal.
[1]1 : Vertical aperture is OFF
0 : (–1 + Z1) (1 – Z2) 1 : (–1 + Z1) (1 – Z1)
12
LR38603
ADDRESS
7DhAPT_HCL[6 : 0] Suppression level of horizontal edge signal.
7EhAPT_VGA[4 : 0] Initial value of APT_VGA (gain of vertical edge signal)
7FhAPT_VCL[6 : 0] Suppression level of vertical edge signal.
80h
81hAPT_H[5 : 0] Gain of edge signal suppression.
82h
83h
84h
85hLC_K1[7 : 0] Difference of 0H, 2H signal allowed level, for judgment of line crawl.
86hLC_K2[7 : 0] Difference of R, B signal allowed level, for judgment of line crawl.
87h
88h
89hBAS_R[7]Sign of burst level R – Y 1 : – direction 0 : + direction
8AhBAS_B[7]Sign of burst level B – Y 1 : – direction 0 : + direction
8BhOUTGA[6]1 : Mute in encoder.
8ChSYNCLEV
8DhMUTE_OUT
8EhSEL_FH[7]Switch attribute of FH1 : Inverted
8FhSEL_FH2[7 : 6] FH
90hSTANDBY
NAMEBITCONTENTS
APT_S[7 : 0] Start point of edge signal suppression (PGA gain).
APT_Y[5 : 0] Start point of edge signal suppression in maximum PGA gained luminance.
CKI_HCL2[7 : 0] Luminance suppression point of high luminance aperture.
CKI_ETI[6]Select level of edge signal, used in internal calculation. 1 : 1/4 times
[5 : 3] Delete timing of horizontal edge : –2 to +2
[2 : 0] Delete timing of vertical edge : –2 to +2
LC_MAX[7 : 0] Judgment of luminance level, for judgment of line crawl.
SETUP[6]Switch CBLK level.
[5 : 0] Adjustment of setup level (complement of 2).
[6 : 0] Burst level R – Y.
[6 : 0] Burst level B – Y (sign + absolute value).
[5]1 : Stop adding SYNC to analog output.
[4 : 0] Gain of analog output (1 time at 10h).
[7 : 0] Adjustment of SYNC level.
[7]1 : Disable output mute at power-on.
[6 : 0] Period of mute (MUTE_OUT x 2 vertical period)
When using 270 k, 320 k-pixel CCDs 000 : standard to 101 : 300˚ (delayed
from "000" to "101" every 60˚.)
When using 410 k, 470 k-pixel CCDs 000 : standard to 101 : 270˚ (delayed
from "000" to "101" every 45˚.)
SEL_FS
SEL_FCDS[5 : 3] FCDS phase adjustment 000 : standard to 111 : 14 ns delay (delayed from
SEL_RS
[2 : 0] FS phase adjustment 000 : standard to 111 : 14 ns delay (delayed from
[2 : 0] RS phase adjustment 000 : standard to 111 : 14 ns delay (delayed from
"000" to "111" every 2 ns.)
[6]1 : Standby
[5 : 0] Period of return from standby (STANDBY x vertical period)
13
LR38603
ADDRESS
91hKNEE[7]1 : Invert OBCP clock
92hKEI_KEISU[7 : 0] Gain of PGA which produces KEI pulse.
93hENCIN_PH[3]Latch encoder clock inverted.
94hANA_VARI[6 : 4] Delay adjustment of addition of luminance and color modulation.
95hBUNSYU8_SEL[7]Output 1/8 of original clock from DCK
96hREF_AW[7 : 0] Factor for white detect correction
97hREF_BW[7 : 0] Factor for white detect correction
98hREF_CW[7 : 0] Factor for white detect correction
99hREF_DW[7 : 0] Factor for white detect correction
9AhREF_AB[7 : 0] Factor for black detect correction
9BhREF_BB[7 : 0] Factor for black detect correction
9ChREF_CB[7 : 0] Factor for black detect correction
NAMEBITCONTENTS
[6]1 : Invert DCK2INV_DCK2
INV_DCK1[5]1 : Invert DCK1
BUSY_SEL[4]1 : Reset auto control factor, when EEPSL is at H.
EI_ON_SEL[3]1 : Enable KEI pulse function.
HRI_SEL[2]1 : Invert HRES (minus attribute)
VRI_SEL[1]1 : Invert VRES (minus attribute)
IN_VRES[0]Select vertical reset timing.
0 : Reset at CSYNC pulse timing.
1 : Reset at VD pulse timing.
[2]1 : Enable DFF.
VARI_ENC[1 : 0] Delay adjustment of addition of luminance and color modulation.
(Delay of color signal)
00 : 0 clock delay to 11 : 3 clocks delay (delayed from "00" to "11" every 1
clock .) 1 clock : Original clock
(Delay of luminance signal)
101 : –3 clocks delay to 011 : 3 clocks delay (delayed from "101" to "011"
every 1 clock .)
1 clock : Pixel CK (complement of 2)
VARI_Y[3 : 0] Timing adjustment of luminance processing.
1001 : –7 clocks delay to 0111 : 7 clocks delay (delayed from "1001" to
"0111" every 1 clock.) 1 clock : Pixel CK (complement of 2)
.
1
TEST[6]Test mode. Set 0 in normal operation.
(The LR38603 does not read EEPROM and registers are set by serial data.)
STDBY[5]Make D/A converter standby.
CHG_CKIL[4]Swap R and B of color killer.
CHG_WB[3]Swap R and B of white balance.
CHG_MTX[2]Swap R and B of matrix input.
CHG_CCD4[1]Swap U and V of digital output.
HG_YL_SEL[0]Swap YL line selection for each R and B.
14
LR38603
ADDRESS
9DhREF_DB[7 : 0] Factor for black detect correction
9EhAWNC_SEL[5 : 0] ON/OFF control signal for each condition.
9FhAPT_O_LIM[7 : 0] Limiter of aperture output.
A0hWN00H[7 : 0] Lower bits of horizontal coordinate 1 of white defect.
A1hWN00V[7 : 0] Lower bits of vertical coordinate 1 of white defect.
A2hWN00HV[3 : 0] [3 : 2] Upper bits of vertical coordinate 1 of white defect.
A3hWN01H[7 : 0] Lower bits of horizontal coordinate 2 of white defect.
A4hWN01V[7 : 0] Lower bits of vertical coordinate 2 of white defect.
A5hWN01HV[3 : 0] [3 : 2] Upper bits of vertical coordinate 2 of white defect.
A6hWN02H[7 : 0] Lower bits of horizontal coordinate 3 of white defect.
A7hWN02V[7 : 0] Lower bits of vertical coordinate 3 of white defect.
A8hWN02HV[3 : 0] [3 : 2] Upper bits of vertical coordinate 3 of white defect.
A9hWN03H[7 : 0] Lower bits of horizontal coordinate 4 of white defect.
AAhWN03V[7 : 0] Lower bits of vertical coordinate 4 of white defect.
ABhWN03HV[3 : 0] [3 : 2] Upper bits of vertical coordinate 4 of white defect.
AChWN04H[7 : 0] Lower bits of horizontal coordinate 5 of white defect.
ADhWN04V[7 : 0] Lower bits of vertical coordinate 5 of white defect.
AEhWN04HV[3 : 0] [3 : 2] Upper bits of vertical coordinate 5 of white defect.
AFhWN05H[7 : 0] Lower bits of horizontal coordinate 6 of white defect.
B0hWN05V[7 : 0] Lower bits of vertical coordinate 6 of white defect.
B1hWN05HV[3 : 0] [3 : 2] Upper bits of vertical coordinate 6 of white defect.
B2hWN06H[7 : 0] Lower bits of horizontal coordinate 7 of white defect.
B3hWN06V[7 : 0] Lower bits of vertical coordinate 7 of white defect.
B4hWN06HV[3 : 0] [3 : 2] Upper bits of vertical coordinate 7 of white defect.
B5hWN07H[7 : 0] Lower bits of horizontal coordinate 8 of white defect.
B6hWN07V[7 : 0] Lower bits of vertical coordinate 8 of white defect.
B7hWN07HV[3 : 0] [3 : 2] Upper bits of vertical coordinate 8 of white defect.
C0hTST_SEL31[7 : 0] Test address (Set 00h)
C1hTST_SEL32[7 : 0] Test address (Set 00h)
C2hTST_SEL33[0]Test address (Set 00h)
C3hTST_SEL1A[7 : 0] Test address (Set 00h)
C4hTST_SEL1B[7 : 0] Test address (Set 00h)
C5hTST_SEL1C[7 : 0] Test address (Set 00h)
NAMEBITCONTENTS
[1 : 0] Upper bits of horizontal coordinate 1 of white defect.
[1 : 0] Upper bits of horizontal coordinate 2 of white defect.
[1 : 0] Upper bits of horizontal coordinate 3 of white defect.
[1 : 0] Upper bits of horizontal coordinate 4 of white defect.
[1 : 0] Upper bits of horizontal coordinate 5 of white defect.
[1 : 0] Upper bits of horizontal coordinate 6 of white defect.
[1 : 0] Upper bits of horizontal coordinate 7 of white defect.
[1 : 0] Upper bits of horizontal coordinate 8 of white defect.
15
LR38603
ADDRESS
C6hTST_SEL1D[1 : 0] Test address (Set 00h)
C7hTST_SEL1V1[7 : 0] Test address (Set 00h)
C8hTST_SEL1V2[7 : 0] Test address (Set 00h)
C9hTST_SEL1V3[7 : 0] Test address (Set 00h)
CAhTST_SEL1V4[7 : 0] Test address (Set 00h)
CBhTST_C2_OB3[6 : 0] Test address (Set 00h)
CChTST_C2_OB4[6 : 0] Test address (Set 00h)
CDhTST_C2_DL1[7 : 0] Test address (Set 00h)
CEhTST_C2_DL2[7 : 0] Test address (Set 00h)
CFhTST_C2_YL[5 : 0] Test address (Set 00h)
D0h
D1hTST_SSG_SEL[2]Test address (Set 00h)
D2hTST_C6_00[7 : 0] Test address (Set 00h)
D3hTST_C6_01[7 : 0] Test address (Set 00h)
D4hTST_C6_02[6 : 0] Test address (Set 00h)
D5hTST_C4_IO0[7 : 0] Test address (Set 00h)
D6hTST_C4_IO1[4 : 0] Test address (Set 00h)
D7hTST_C4_IO2[7 : 0] Test address (Set 00h)
D8hTST_C4_S0[7 : 0] Test address (Set 00h)
D9hTST_C4_S1[7 : 0] Test address (Set 00h)
DAhTST_C4_S2[0]Test address (Set 00h)
DBhTST_C5_T0[7 : 0] Test address (Set 00h)
DChTST_C5_T1[7 : 0] Test address (Set 00h)
DDhTST_C5_T2[5 : 0] Test address (Set 00h)
DEhTST_SEL71[7 : 0] Test address (Set 00h)
DFhTST_SEL72[1 : 0] Test address (Set 00h)
E0hTEST_C8_00[7 : 0] Test address (Set 00h)
E1hTEST_C8_01[7 : 0] Test address (Set 00h)
E2hTEST_C8_02[7 : 0] Test address (Set 00h)
E3hTEST_C8_03[7 : 0] Test address (Set 00h)
E4hTEST_C8_04[7 : 0] Test address (Set 00h)
E5hTEST_C8_05[7 : 0] Test address (Set 00h)
E6hTEST_C8_06[7 : 0] Test address (Set 00h)
E7hTEST_C8_07[7 : 0] Test address (Set 00h)
E8hTEST_C8_08[7 : 0] Test address (Set 00h)
E9hTEST_C8_09[6 : 0] Test address (Set 00h)
F0hTST_REG1[7 : 0] Test address (Set 00h)
F1hTST_REG2[7 : 0] Test address (Set 00h)
F2hTST_REG3[7 : 0] Test address (Set 00h)
F3hTST_REG4[7 : 0] Test address (Set 00h)
NAMEBITCONTENTS
TST_C2_GAMMA1
TST_C2_GAMMA2
[7 : 0] Test address (Set 00h)
[1 : 0] Test address (Set 00h)
16
LR38603
ADDRESS
F4hTST_REG5[7 : 0] Test address (Set 00h)
F5hTST_REG6[7 : 0] Test address (Set 00h)
F6hTST_REG7[5 : 0] Test address (Set 00h)
F7hTST_REG8[7 : 0] Test address (Set 00h)
F8hTST_REG9[7 : 0] Test address (Set 00h)
F9hTST_REGA[7 : 0] Test address (Set 00h)
FAhTST_REGB[7 : 0] Test address (Set 00h)
FBhTST_SEL_REG [5 : 0] Test address (Set 00h)
FChWT_DAT30[7 : 0] Test address (Set 00h)
FDhWT_DAT31[6 : 0] Test address (Set 00h)
FEhTST_C5_WT3[5 : 0] Test address (Set 00h)
NAMEBITCONTENTS
17
LR38603
ABSOLUTE MAXIMUM RATINGS
PARAMETERSYMBOL
Supply voltageV
DD
Input voltageVI–0.3 to VDD + 0.3
Storage temperature
STG
RATINGUNIT
–0.3 to +4.3
DD + 0.3VOOutput voltage
V
V
V–0.3 to V
˚C–55 to +150T
RECOMMENDED OPERATING CONDITIONS
PARAMETERSYMBOL
Input voltageV
DD
Output voltageTOPR–20
MIN.UNIT
3.0
TYP.MAX.
3.33.6
+25+70
V
˚C
MHzFCKInput clock28.6
ELECTRICAL CHARACTERISTICS 1(VDD = 3.3 V±10%, TA = –20 to +70˚C)
1. Applied to inputs/outputs (IO4MU, IO4MD) and inputs
(IC, ICU, ICD, OSCI).
2. Applied to input (ICSU), input/output (IO4MSU).
3. Applied to input (IC, OSCI).
4. Applied to inputs (ICU, ICSU), input/output (IO4MSU).
5. Applied to input/output (IO4MU).
6. Applied to input (ICD), input/output (IO4MD).
7. Applied to inputs/outputs (IO4MU, IO4MD), output
(OBF4M).
8. Applied to output (OBF12M).
9. Applied to output (OSCO).
1
2Input "Low" voltageVIL0.2VDDV
3
4
5
6
7
8
9
18
LR38603
ELECTRICAL CHARACTERISTICS 2(VDD = 3.3±10%, TA = –20 to +70˚C)
PARAMETERSYMBOLCONDITIONSMIN.TYP.MAX.UNIT NOTE
ResolutionRES9Bit
Error of linearityELV
Error of differential linearityED±1.0LSB
Full scaled currentIFS13mA
REF = 1.0 V
RREF = 4.8 k$
OUT = 75 $
R
Output impedanceROUT75$
Reference voltageV
REF1.0V2
Reference resistanceRREF4.8k$3
NOTES :
1. Applied to pin (VIDEO).
2. Applied to pin (V
3. Applied to pin (I
REF).
REF).
±5.0LSB
1
19
LR38603
AUTOMATIC CAMERA FUNCTION
CONTROL
speed is held. And then PGA gain is controlled so
that the exposure control data will be less than the
data of CTLD_0 (Address 08h).
Automatic Electronic Exposure Control
Electronic shutter speed is controlled so that the
exposure control data approach the data of
If the exposure control data are greater than the
data of CTLD_AGC (address 07h), exposure
control starts again.
REF_IRIS1 (address 06h).
Under BLC mode, the data of REF_IRIS2 (address
09h) are available instead of REF_IRIS1.
If the exposure control data are less than the data
Electronic Shutter Speed Setting
Electronic shutter speeds below can be selected by
either hardware or coefficient data.
of CTLD_AGC (address 07h), an electronic shutter
EEMDSEEMD1EEMD2EEMD3
00001/60 s1/50 s
00011/100 s1/120 s
00101/250 s1/250 s
00111/500 s1/500 s
01001/1 000 s1/1 000 s
01011/2 000 s1/2 000 s
01101/5 000 s1/5 000 s
01111/10 000 s1/10 000 s
10001/20 000 s1/20 000 s
10011/50 000 s1/50 000 s
10101/100 000 s1/100 000 s
10111/30 s1/25 s
11001/15 s1/12.5 s
11011/7.5 s1/6.25 s
1110
1111
AUTO
1/60 s to MAX_SH (address 05h)
AUTO
1/60 s to 1/100 000 s
ELECTRONIC SHUTTER SPEED
NTSCPAL
AUTO
1/50 s to MAX_SH (address 05h)
AUTO
1/50 s to 1/100 000 s
A slower shutter speed of less than 1/60 s (1/50 s
of PAL) can make images whose interval is every
two fields, every four fields, etc.
VD pulse is also converted to the same frequency
as the output image rate.
Electronic exposure control data come from the
following equation using averaged luminance levels
of 64 areas in one image, made by DSP.
20
LR38603
Electronic exposure control data =
[{Weighted data 1
q x (64 – CW_E (address 13h))
+ Weighted data 2 w x CW_E}/64
x (256 – P_HEE (address 17h) – P_LEE (address 18h))
+ Top level e x P_HEE + Bottom level r x
P_LEE]/256
q Weighted data 1
This comes from the following equation weighting in
horizontal.
Weighting factors are the data from UW_E1
(address 0Bh) to UW_E8 (address 12h).
Weighted data 1 =
11 + Y12 + π + Y18)/8 x UW_E1 (address 0Bh)
{(Y
+ (Y
+ Y22 + π + Y28)/8 x UW_E2 (address 0Ch)
21
:
81 + Y82 + π + Y88)/8 x UW_E8 (address
+ (Y
12h)}/256
e Top level : The highest luminance data in one
image by averaging either 4 pixels
or 8 pixels in horizontal.
r Bottom level : The lowest luminance data in
one image by averaging either 4
pixels or 8 pixels in horizontal.
Auto White Balance Control
If white balance control data are less than the data
of AWB_IW_S and AWB_QW_S (address 40h),
then AWB stops.
If white balance control data are less than the data
of AWB_IW_L (address 3Eh) and AWB_QW_L
(address 3Fh) AWB is made active so that white
balance control data are less than the data of
AWB_IW_S and AWB_QW_S.
When the data are greater than AWB_IW_L and
AWB_QW_L, AWB will be active again.
White balance data come from the following
equation using averaged I and Q data of 16 areas
in one image.
w Weighted data 2
Weighting area can be set by the data of CWP_E
(address 14h), CWA_E (address 15h).
Weighting position can be set by the data of
CWP_E.
Weighting area size can be set by the data of
CWA_E.
Weighted data come from averaged data in chosen
area.
White balance data =
{Weighted data 3 q x (64 – CW_IQ (address 33h))
+ weighted data 4 w x CW_IQ}/64
21
LR38603
q Weighted data 3
I (or Q) data come from the following equation.
Weighted data 3 =
11 + I12 + I13 + I
{(I
31 + I32 + I33 + I34)/4 + (I41 + I42 + I43 +
+ (I
44)/4}/4
I
w Weighted data 4
Weighting area can be chosen by CWPA_IQ
(address 34h).
Weighted data come from averaged data in chosen
area.
e White balance area setting
The sum of I and Q can be regulated by the
luminance level and the color level.
Setting available luminance level range :
High level :
AWB_HCL (address 2Eh) + [{K_CL (address 31h)
x H peak level + (256 – K_CL) x Exposure control
data}/256 – REF_WBPK (address 30h)] x
K_WBCL (address 32h)
Low level :
AWB_LCL (address 2Fh) + [{K_CL (address 31h) x
H peak level + (256 – K_CL) x Exposure control
data}/256 – REF_WBPK (address 30h)] x
K_WBCL (address 32h)
If white balance data are less than the data of
AWB_IW_S and AWB_QW_S (address 40h) the
target zone of auto white balance changes to the
zone by the data below.