Datasheet LM3668SD-3.3, LM3668 Datasheet (NSC)

Page 1
July 2007
LM3668 1A, High Efficiency Dual Mode Single Inductor Buck-Boost DC/DC Converter
General Description
The LM3668 is a synchornous buck-boost DC-DC converter optimized for powering low voltage circuits from a Li-Ion bat­tery and input voltage rails between 2.5V and 5.5V. It has the capability to support up to 1A output current over a output voltage range of 2.8V/3.3V. The LM3668 regulates the output voltage over the complete input voltage range by automati­cally switching between buck or boost modes depending on the input voltage.
The LM3668 has 2 N-channel MOSFETS and 2 P-channel MOSFETS arranged in a topology that provides continuous operation through the buck and boost operating modes. There is a MODE pin that allows the user to choose between an intelligent automatic PFM-PWM mode operation and forced PWM operation. During PWM mode, a fixed-frequency
2.2MHz (typ.) is used. PWM mode drives load up to 1A. Hys­teretic PFM mode extends the battery life through reduction of the quiescent current to 45µA (typ.) at light loads during system standby. Internal synchronous rectification provides high efficiency. In shutdown mode (Enable pin pulled low) the device turns off and reduces battery consumption to 0.01µA (typ.).
The LM3668 is available in a 12-pin LLP package. A high switching frequency of 2.2MHz (typ.) allows the use of tiny surface-mount components including a 2.2µH inductor, a 10µF input capacitor, and a 22µF output capacitor.
Features
45µA typical quiescent current
1A maximum load current for VIN = 2.8V to 5.5V
800mA maximum load current for VIN = 2.7V
600mA maximum load current for VIN = 2.5V
2.2 MHz PWM fixed switching frequency (typ.)
Automatic PFM-PWM Mode or Forced PWM Mode
Wide Input Voltage Range: 2.5V to 5.5V
Output Voltage Range: 2.8V/3.3V
Internal synchronous rectification for high efficiency
Internal soft start: 600µs Maximum start-up time
0.01µA typical shutdown current
Current overload and Thermal shutdown protection
Frequency Sync Pin: 1.6Mhz to 2.7MHz
Applications
Handset Peripherals
MP3 players
Pre-Regulation for linear regulators
PDAs
Portable Hard Disk Drives
WiMax Modems
Typical Applications
20191401
Typical Application Circuit
20191425
Efficiency at 3.3V Output
© 2007 National Semiconductor Corporation 201914 www.national.com
LM3668 1A, High Efficiency Dual Mode Single Inductor Buck-Boost DC/DC Converter
Page 2
Functional Block Diagram
20191404
FIGURE 1. Functional Block Diagram
www.national.com 2
LM3668
Page 3
Connection Diagrams and Package Mark Information
20191402
Top View
20191403
Bottom View
Pin Descriptions
Pin # Pin Name Description
1 VOUT Connect to output capacitor.
2 SW2 Switching Node connection to the internal PFET switch (P2) and
NFET synchronous rectifier (N2).
3 PGND Power Ground.
4 SW1 Switching Node connection to the internal PFET switch (P1) and
NFET synchronous rectifier (N1).
5 PV
IN
Supply to the power switch, connect to the input capacitor.
6 EN Enable Input. Set this digital input high for normal operation. For
shutdown, set low.
7 VDD Signal Supply input. If board layout is not optimum an optional
1µF ceramic capacitor is suggested as close to this pin as possible.
8 NC* No connect. Connect this pin to GND on PCB layout.
9 SGND Analog and Control Ground.
10 MODE/SYNC Mode = LOW, Automatic Mode. Mode= HI, Forced PWM Mode
SYNC = external clock synchronization from 1.6MHz to 2.7MHz (When SYNC function is used, device is forced in PWM mode).
11 VSEL Logic input low = 2.8V and logic high = 3.3V to set output Voltage.
12 FB Feedback Analog Input. Connect to the output at the output filter.
Ordering Information
Order Number Package
NSC Package
Marking
Supplied As
LM3668SD - 3.3
LLP-12
S016B 1000 units, Tape and Reel
LM3668SDX - 3.3 S016B 4500 units, Tape and Reel
3 www.national.com
LM3668
Page 4
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
PV
IN, VDD
Pin, SW1, SW2 & V
OUT
:
Voltage to SGND & PGND
−0.2V to +6.0V
FB, EN,MODE,SYNC pin: (PGND &
SGND-0.2V) to
(PVIN + 0.2)
PGND to SGND -0.2V to 0.2V Continuous Power Dissipation
 (Note 3)
Internally Limited
Maximum Junction Temperature (T
J-MAX
)
+125°C
Storage Temperature Range −65°C to +150°C Maximum Lead Temperature
(Soldering, 10 sec)
+260°C
Operating Ratings
Input Voltage Range 2.5V to 5.5V Recommended Load Current 0mA to 1A Junction Temperature (TJ) Range −40°C to +125°C
Ambient Temperature (TA) Range  (Note 3)
−40°C to +85°C
Thermal Properties
Junction-to-Ambient Thermal Resistance (θJA),
34°C/W
Leadless Lead frame Package (Note 5)
Electrical Characteristics (Notes 6, 7) Limits in standard typeface are for T
J
= +25°C. Limits in boldface type
apply over the full operating ambient temperature range (−40°C = TA +85°C). Unless otherwise noted: specifications apply to the LM3668. VIN = 3.6V = EN, V
OUT
= 3.3V, CIN = 10 µF & C
OUT
= 22µF (Note 8).
Symbol Parameter Conditions Min Typ Max Units
V
FB
Feedback Voltage (Note 7)
-3 3 %
I
LIM
Switch Peak Current Limit Open loop(Note 2)
1.6 1.85 2.05 A
I
SHDN
Shutdown Supply Current EN =0V
0.01
1
µA
I
Q_PFM
DC Bias Current in PFM No load, device is not switching
(FB Forced higher than programmed output voltage)
45 60 µA
I
Q_PWM
DC Bias Current in PWM PWM Mode, No Switching
600 750 µA
R
DSON(P)
Pin-Pin Resistance for PFET Switches P1 and P2
130 180
m
R
DSON(N)
Pin-Pin Resistance for NFET Switches N1 and N2
100 150
m
F
OSC
Internal Oscillator Frequency PWM Mode
1.9 2.2 2.5 MHz
F
SYNC
Sync Frequency Range VIN = 3.6V
1.6 2.7 MHz
V
IH
Logic High Input for EN, MODE/ SYNC pins
1.1 V
V
IL
Logic Low Input for EN, MODES/ SYNC pins
0.4 V
I
EN, MODE, SYNC
EN,MODES/SYNC pin Input Current
0.3 1 µA
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.
Note 2: Electrical Characteristic table reflects open loop data (FB = 0V and current drawn from SW pin ramped up until cycle by cycle current limits is activated). Closed loop current limit is the peak inductor current measured in the application circuit by increasing output current until output voltage drops by 10%.
Note 3: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (T
A-MAX
) is dependent on the maximum operating junction temperature (T
J-MAX-OP
= 125ºC), the maximum power
dissipation of the device in the application (P
D-MAX
), and the junction-to ambient thermal resistance of the part/package in the application (θJA), as given by the
following equation: T
A-MAX
= T
J-MAX-OP
– (θJA × P
D-MAX
).
Note 4: The Human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin. MIL-STD-883 3015.7
Note 5: Junction-to-ambient thermal resistance (θJA) is taken from a thermal modeling result, performed under the conditions and guidelines set forth in the JEDEC standard JESD51-7. The test board is a 4-layer FR-4 board measuring 101.6mm x 76.2mm x 1.6mm. Thickness of the copper layers are 2oz/1oz/1oz/ 2oz. The middle layer of the board is 60mm x 60mm. Ambient temperature in simulation is 22°C, still air.
Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.
Note 6: All voltage is with respect to SGND.
Note 7: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm.
Note 8: CIN and C
OUT
: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
www.national.com 4
LM3668
Page 5
Typical Performance Characteristics Typical Application circuit Figure 1, V
IN
= 3.6V, L = 2.2µH, CIN =
10µF, C
OUT
= 22µF , TA = 25°C , Unless otherwise Stated.
Supply Current vs. Temperature ( Not switching)
20191439
Switching Frequency vs. Temperature
20191438
P_FET R
DS(ON)
vs. Temperature
20191442
N_FET R
DS(ON)
vs. Temperature
20191441
ILimit vs. Temperature
20191437
Efficiency at V
OUT
= 2.8V ( Forced PWM Mode)
20191427
5 www.national.com
LM3668
Page 6
Efficiency at V
OUT
= 2.8V ( Auto Mode)
20191428
Efficiency at V
OUT
= 3.3V ( Forced PWM Mode)
20191426
Efficiency V
OUT
= 3.3V ( Auto Mode)
20191425
Line Transient in Buck Mode ( V
OUT
= 3.3V, Load = 500mA)
20191431
Line Transient in Boost Mode
( V
OUT
= 3.3V, Load = 500mA)
20191432
Line Transient in Buck or Boost Mode
( V
OUT
= 3.3V, Load = 500mA)
20191433
www.national.com 6
LM3668
Page 7
Load Transient in Buck Mode ( PWM Mode)
VIN = 4.2V, V
OUT
= 3.3V, Load = 0-500mA
20191420
Load Transient in Boost Operation ( PWM Mode)
VIN = 2.7V, V
OUT
= 3.3V, Load = 0-500mA
20191422
Load Transient in Buck-Boost Operation ( PWM Mode)
V
IN
= 3.4V, V
OUT
= 3.3V, Load = 0-500mA
20191421
Load Transient in Boost Operation (Auto Mode)
VIN = 2.7V, V
OUT
= 3.3V, Load = 50-150mA
20191434
Load Transient in Buck Operation ( Auto Mode)
VIN = 4.2V, V
OUT
= 3.3V, Load = 50-150mA
20191436
Load Transient in Buck - Boost Mode ( Auto Mode)
VIN = 3.6V, V
OUT
= 3.3V, Load = 50-150mA
20191435
7 www.national.com
LM3668
Page 8
Typical PWM Switching Waveform ( Boost operation)
VIN = 3V, V
OUT
= 3.3V, Load = 500mA
20191416
Typical PWM Switching Waveform ( Buck operation)
VIN = 4V, V
OUT
= 3.3V, Load = 500mA
20191417
Typical PFM Switching Waveform ( Buck operation)
VIN = 4V, V
OUT
= 3.3V,Load = 50mA
20191418
Typical PFM Switching Waveform ( Boost operation)
VIN = 3V, V
OUT
= 3.3V, Load = 50mA
20191419
Start up in PWM Mode
20191429
Start up in PWM Mode
20191430
www.national.com 8
LM3668
Page 9
Circuit Description
The LM3668, a high efficiency Buck or Boost DC-DC con­verter, delivers a constant voltage from either a single Li-Ion or three cell NIMH/NiCd battery to portable devices such as mobiles phone and PDAs. Using a voltage mode architec­tures with synchronous rectification, the LM3668 has the ability to deliver up to 1A depending on the input voltage, out­put voltage, ambient temperature and the chosen inductor.
In addition, the device incorporates a seamless transition from buck to boost or boost to buck mode. The internal error amplifier continuously monitors the output to determine the transition from buck to boost or boost to buck operation. Fig- ure 2 shows the four switches network used for the buck and boost operation. Table 1 summarizes the state of the swtiches in different Modes.
There are three modes of operation depending on the current required: PWM (Pulse Width Modulation), PFM (Pulse Fre­quency Modulation), and shutdown. The device operates in PWM mode at load currents of approximately 80mA or higher to improve efficiency. Lighter load current causes the device to automatically switch into PFM mode to reduce current con­sumption and extend battery life. Shutdown mode turns off the device, offering the lowest current consumption.
20191405
FIGURE 2. Simplified Diagram of Switches
State of Switches in Different Modes
Mode Always ON Always
OFF
Switching
Buck SW P2 SW N2 SW P1 & N1
Boost SW P1 SW N1 SW N2 & P2
TABLE 1
Buck Operation
When the input voltage is greater than the output voltage, the device operates in buck mode where switch P2 is always ON and P1 & N1 control the output . Figure 4 shows the simplified circuit for buck mode operation.
20191406
FIGURE 3. Simplified Circuit for Buck Operation
Boost Operation
When the input voltage is smaller than the output voltage, the device enters boost mode operation where P1 is always ON, while Switches N2 & P2 control the output. Figure 5 shows the simplified circuit for boost mode operation.
20191408
FIGURE 4. Simplified Circuit for Boost Operation
PWM Operation
In PWM operation, the output voltage is regulated by switch­ing at a constant frequency and then modulating the energy per cycle to control power to the load. In Normal operation, the internal error amplifier provides an error signal, Vc, from the feedback voltage and Vref. The error amplifier signal, Vc, is compared with a voltage, Vcenter, and used to generate the PWM signals for both Buck & Boost Modes. Signal Vcen­ter is a DC signal which sets the transition point of the buck and boost modes. Below are three regions of operation:
Region I, If Vc is less than Vcenter, Buck mode.
Region II, If Vc and Vcenter are equal, both PMOS switches (P1, P2) are on and both NMOS switches (N1, N2) are off. The power passes directly from input to output via P1 & P2
Region III, If Vc is greater than Vcenter, Boost Mode.
The Buck-boost operation is avoided, to improve the efficien­cy across VIN and load range.
20191415
FIGURE 5. PWM Generator Block Diagram
9 www.national.com
LM3668
Page 10
Internal Synchronous Rectification
While in PWM mode, the LM3668 uses an internal MOSFET as a synchronous rectifier to reduce rectifier forward voltage drop and associated power loss. Synchronous rectification provides a significant improvement in efficiency whenever the output voltage is relatively low compare to the voltage drop across an ordinary rectifier diode.
PFM Operation
At very light loads, the converter enters PFM mode and op­erates with reduced switching frequency and supply current to maintain high efficiency. The part automatically transitions into PFM mode when either of two following conditions occur for a duration of 128 or more clock cycles:
A. The inductor current reaches zero. B. The peak inductor current drops below the I
MODE
level,
(Typically I
MODE
< 45mA + VIN/80 Ω ).
In PFM operation, the compensation circuit in the error am­plifier is turned off. The error amplifier works as a hysteretic comparator. The PFM comparator senses the output voltage via the feedback pin and controls the switching of the output FETs such that the output voltage ramps between ~0.8% and
~1.6% of the nominal PWM output voltage (Figure 6). If the output voltage is below the ‘high’ PFM comparator threshold, the P1 & P2 (Buck mode) or N2 & P1 (Boost mode) power switches are turned on. It remains on until the output voltage reaches the ‘high’ PFM threshold or the peak current exceeds the I
PFM
level set for PFM mode. The typical peak current in
PFM mode is: I
PFM
= 220mA
Once the P1 ( Buck mode) or N2 ( Boost mode) power switch is turned off, the N1 & P2 ( Buck mode) or P1 & P2 (Boost mode) power switches are turned on until the inductor current ramps to zero. When the zero inductor current condition is detected, the N1( Buck mode) or P2 ( Boost mode) power switches are turned off. If the output voltage is below the ‘high’ PFM comparator threshold, the P1 & P2 (Buck mode) or N2 & P1 ( Boost mode) switches are again turned on and the cycle is repeated until the output reaches the desired level. Once the output reaches the ‘high’ PFM threshold, the N1 & P2 (Buck mode) or P1 & P2 ( Boost mode) switches are turned on briefly to ramp the inductor current to zero and then both output switches are turned off and the part enters an ex­tremely low power mode. Quiescent supply current during this ‘sleep’ mode is 45µA (typ), which allows the part to achieve high efficiency under extremely light load conditions.
20191413
FIGURE 6. PFM to PWM Mode Transition
In addition to the auto mode transition, the LM3668 operates in PFM Buck or PFM Boost based on the following conditions. There is a small delta (~500mV) known as dv1(~200mV) & dv2(~300mV) when V
OUT_TARGET
is very close to V
IN
where the LM3668 can be in either buck or boost mode. For example when V
OUT_TARGET
= 3.3V and VIN is between 3.1V & 3.6V, the LM3668 can be in either mode depending on the VIN vs V
OUT_TARGET
.
Region I: If VIN < V
OUT_TARGET
- dv1, the regulator operates
in boost mode.
Region II: If V
OUT_TARGET
- dv1 < VIN < V
OUT_TARGET
+
dv2 ,the regulator operates in either buck or boost mode.
Region III: If VIN > V
OUT_TARGET
+ dv2, the regulator
operates in buck mode.
20191414
FIGURE 7. V
OUT
vs VIN Transition
www.national.com 10
LM3668
Page 11
In the buck PFM operation, P2 is always turned on and N2 is always turned off , P1 and N1 power switches are switching. P1 and N1 are turned off to enter " sleep mode" when the output voltage reaches the "high" comparator threshold. In boost PFM operation, P2 and N2 are switching. P1 is turned on and N1 is turned off when the output voltage is below the "high" threshold. Unlike in buck mode, all four power switches are turned off to enter "sleep" mode when the output voltage reaches the "high" threshold in boost mode. In addition, the internal current sensing of the I
PFM
is used to determine the precise condition to switch over to buck or boost mode via the PFM generator.
Current Limit Protection
The LM3668 has current limit protection to prevent excessive stress on itself and external components during overload con­ditions. The internal current limit comparator will disable the power device at a typical switch peak current limit of 1.85A (typ.).
Under Voltage Protection
The LM3668 has an UVP comparator to turn the power device off in case the input voltage or battery voltage is too low . The typical UVP threshold is around 2V.
Short Circuit Protection
When the output of the LM3668 is shorted to GND, the current limit is reduced to about half of the typical current limit value until the short is removed.
Thermal Shutdown
The LM3668 has an internal thermal shutdown function to protect the die from excessive temperatures. The thermal shutdown trip point is typically 150°C, Normal operation re­sumes when the temperature drops below 125°C.
Start-up
The LM3668 has a soft-start circuit that smooth the output voltage and ramp current during start-up. During start-up the bandgap reference is slowly ramped up and switch current limit is reduced to half the typical value. Soft start is activated only if EN goes from logic low to logic high after Vin reaches
2.5V. The start-up time thereby depends on the output ca­pacitor and load current demanded at start-up. It is not rec­ommended to start up the device at full load while in softstart.
Application Information
SYNC/MODE PIN
If the SYNC/MODE pin is set high, the device is set to operate at PWM mode only. If SYNC/MODE pin is set low, the device is set to automatically transition from PFM to PWM or PWM to PFM depending on the load current. Do not leave this pin floating. The SYNC/MODE pin can also be driven by an ex­ternal clock to set the desired switching frequency between
1.6MHz to 2.7MHz.
V
SEL
Pin
The LM3668 has built in logic for conveniently setting the out­put voltage, with V
SEL
high, the output is set to 3.3V; with
V
SEL
low the output is set to 2.8V. It is not recommended to
use this function for dynamically switching between 2.8V and
3.3V.
Maximum Current
The LM3668 is designed to operate up to 1A. For input volt­ages at 2.5V, the maximum operating current is 600mA and 800mA for 2.7V input voltage. In any mode it is recommended to avoid starting up the device at minmum input voltage and maximum load. Special attention must be taken to avoid op­erating near thermal shutdown when operating in boost mode at maximum load (1A). A simple calculation can be used to determine the power dissipation at the operating condition; P
D-MAX
= (T
J-MAX-OP
– T
A-MAX
)/θJA . The LM3668 has thermal
resistance θ
JA
= 34°C/W ((Note 3) and (Note 5)), and maxi­mum operating ambient of 85°C. As a result, the maximum power dissipation using the above formula is around 1176mW. Refer to dissipation table below for P
D-MAX
value at
different ambient temperatures.
Dissipation Rating Table
θ
JA
TA 25°C TA 60°C TA 85°C
34°C/W ( 4 layers board per JEDEC standard)
2941mW 1912mW 1176mW
Inductor Selection
There are two main considerations when choosing an induc­tor; the inductor should not saturate, and the inductor current ripple should be small enough to achieve the desired output voltage ripple. Different saturation current rating specifica­tions are followed by different manufacturers so attention must be given to details. Saturation current ratings are typi­cally specified at 25°C. However, ratings at the maximum ambient temperature of application should be requested from the manufacturer. Shielded inductors radiate less noise and should be preferred.
In the case of the LM3668, there are two modes ( Buck & Boost) of operation that must be consider when selecting an inductor with appropriate saturation current. The saturation current should be greater than the sum of the maximum load current and the worst case average to peak inductor current. The first equation shows the buck mode operation for worst case conditions and the second equation for boost condition.
I
RIPPLE
: peak inductor current
I
OUTMAX
: maximum load current
VIN: maximum input voltage in application
11 www.national.com
LM3668
Page 12
L : min inductor value including worst case tolerances (30% drop can be considered)
f : minimum switching frequency
V
OUT
: output voltage
D: Duty Cycle for CCM Operation
V
OUT
: Output Voltage
VIN: Input Voltage
Example using above equations:
VIN = 2.8V to 4V
V
OUT
= 3.3V
I
OUT
= 500mA
L = 2.2µH
F = 2MHz
Buck: I
SAT
= 567mA
Boost: I
SAT
= 638mA
As a result the inductor should be selected according to the highest of the two I
SAT
values.
A more conservative and recommended approach is to choose an inductor that has a saturation current rating greater than the maximum current limit of 2.05A.
A 2.2 µH inductor with a saturation current rating of at least
2.05A is recommended for most applications.The inductor’s resistance should be less than 100m for good efficiency. For low-cost applications, an unshielded bobbin inductor could be considered. For noise critical applications, a toroidal or shield­ed-bobbin inductor should be used. A good practice is to lay out the board with overlapping footprints of both types for de­sign flexibility. This allows substitution of a low-noise shielded inductor, in the event that noise from low-cost bobbin model is unacceptable.
Suggest Inductors and Suppliers
Model Vendor Dimension
s
LxWxH
(mm)
D.C.R
(max)
I
SAT
LPS4012-
222L
Coilcraft 4 x 4 x 1.2
100 m
2.1A
LPS4018-
222L
Coilcraft 4 x 4 x 1.8
70 m
2.5A
1098AS-2
R0M (2µF)
TOKO 3 x 2.8x 1.2
67 m
1.8A ( lower current application s)
Input Capacitor Selection
A ceramic input capacitor of at least 10 µF, 6.3V is sufficient for most applications. Place the input capacitor as close as possible to the PVIN pin of the device. A larger value may be used for improved input voltage filtering. Use X7R or X5R types; do not use Y5V. DC bias characteristics of ceramic ca­pacitors must be considered when selecting case sizes like 0805 or 0603. The input filter capacitor supplies current to the PFET switch of the LM3668 in the first half of each cycle and reduces voltage ripple imposed on the input power source. A ceramic capacitor’s low ESR provides the best noise filtering of the input voltage spikes due to this rapidly changing current.
Output Capacitor Selection
A ceramic output capacitor of 22µF, 6.3V is sufficient for most applications. Multilayer ceramic capacitors such as X5R or X7R with low ESR is a good choice for this as well. These capacitors provide an ideal balance between small size, cost, reliability and performance. Do not use Y5V ceramic capaci­tors as they have poor dielectric performance over tempera­ture and poor voltage characteristic for a given value.
Extra attention is required if a smaller case size capacitor is used in the application. Smaller case size capacitors typically have less capacitance for a given bias voltage as compared to a larger case size capacitor with the same bias voltage. Please contact the capacitor manufacturer for detail informa­tion regarding capacitance verses case size. Table 1 lists several capacitor suppliers.
The output filter capacitor smoothes out current flow from the inductor to the load, helps maintain a steady output voltage during transient load changes and reduces output voltage ripple. These capacitors must be selected with sufficient ca­pacitance and sufficiently low ESR to perform these functions.
Note that the output voltage ripple is dependent on the induc­tor current ripple and the equivalent series resistance of the output capacitor (R
ESR
).
The R
ESR
is frequency dependent (as well as temperature dependent); make sure the value used for calculations is at the switching frequency of the part.
TABLE 1. Suggested Capacitors and Suppliers
Model Type Vendor Voltage Rating
Case Size Inch (mm)
10 µF for C
IN
GRM21BR60J106K Ceramic, X5R Murata 6.3V 0805 (2012)
JMK212BJ106K Ceramic, X5R Taiyo-Yuden 6.3V 0805 (2012)
C2012X5R0J106K Ceramic, X5R TDK 6.3V 0805 (2012)
22 µF for C
OUT
JMK212BJ226MG Ceramic, X5R Taiyo-Yuden 6.3V 0805 (2012)
www.national.com 12
LM3668
Page 13
Layout Considerations
As for any high frequency switcher, it is important to place the external components as close as possible to the IC to maxi­mize device performance. Below are some layout recommen­dations:
1) Place input filter and output filter capacitors close to the IC to minimize copper trace resistance which will directly effect the overall ripple voltage.
2) Route noise sensitive trace away from noisy power com­ponents. Separate power GND ( Noisy GND) and Signal GND ( quiet GND) and star GND them at a single point on the PCB prefereably close to the device GND pin.
3) Connect the ground pins and filter capacitors together via a ground plane to prevent switching current circulating through the ground plane. Additional layout consideration re­garding the LLP package can be found in Application AN1187
13 www.national.com
LM3668
Page 14
Physical Dimensions inches (millimeters) unless otherwise noted
12–Pin LLP
NS Package Number SDF12A
www.national.com 14
LM3668
Page 15
Notes
15 www.national.com
LM3668
Page 16
Notes
LM3668 1A, High Efficiency Dual Mode Single Inductor Buck-Boost DC/DC Converter
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright© 2007 National Semiconductor Corporation
For the most current product information visit us at www.national.com
National Semiconductor Americas Customer Support Center
Email: new.feedback@nsc.com Tel: 1-800-272-9959
National Semiconductor Europe Customer Support Center
Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790
National Semiconductor Asia Pacific Customer Support Center
Email: ap.support@nsc.com
National Semiconductor Japan Customer Support Center
Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560
www.national.com
Loading...