Datasheet LM358N, LM358D, LM358AN, LM358, LM258N Datasheet (SGS Thomson Microelectronics)

...
Page 1
LM158,A-LM258,A
®
LOW POWER DUAL OPERATIONAL AMPLIFIERS
.INTERNALLY FREQUENCY COMPENSATED
.LARGE DC VOLTAGE GAIN : 100dB
.WIDE BANDWIDTH (unity gain) : 1.1MHz
(temperature compensated)
.VERY LOW SUPPL Y CU RRENT/ OP (5 00µ A) -
ESSENTIALLY INDEPENDENT OF SUPPLY VOLTAGE
.LOW INPUT BIAS CURRENT : 20nA
(temperature compensated)
.LOW INPUT OFFSET VOLTAGE : 2mV
.LOW INPUT OFFSET CURRENT : 2nA
.INPUT COMMON-MODE VOLTAGE RANGE
INCLUDES GROUND
.DIFFERENTIAL INPUT VOLTAGE RANGE
EQUAL TO THE POWER SUPPLY VOLTAGE
.LARGE OUTPUT VOLTAGE SWING 0V TO
– 1.5V)
(V
CC
LM358,A
N
DIP8
(Plast ic Pac kag e)
(Thin Shrink Small Outline Package)
(Plastic Micropackage)
P
TSSOP8
D
SO8
DESCRIPTION
These circuits co nsist of two independent, high ga in, internally frequency compensated which were designed spec ifically to opera te from a single p ower supply over a wide range of volt ages. The low power supply drain is in dependent of the magnit ude o f the power supply voltage.
Application areas include transducer amplifiers, dc gain blo cks and all the conv entiona l op-amp c ircuit s which now can be mor e easily implemented in s ingle power supply systems. For example, these circuits can be directly supplied with the standard + 5V which is used in logic systems and will easily provide the required interface electronics without requiring any additional pow er su pply .
In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a sin gle po wer supp l y volt ag e.
ORDER CODES
Part
Number
LM158,A –55 LM258,A –40 LM358,A 0
Example : LM258N
PIN CONNECTIONS (top view)
1 - Output 1 2 - Inverting input 1 3 - Non-inver ti ng inpu t 1
-
4 - V
CC
Temperature
Range
o
C, +125oC •••
o
C, +105oC •••
o
C, +70oC •••
1
2
-
+
3
45
-
+
5 - Non-inverting input 2 6 - Inverting input 2 7 - Ouput 2 8 - V
CC
Package
NDP
8
7
6
+
June 1998
1/12
Page 2
LM158,A - L M258,A - L M358,A
SCHEMATIC DIAGRAM (1/2 LM158)
V
CC
Inverting
input
Non-inverting
input
Q2
Q8 Q9
6µA
Q3
4µA
C
C
Q4Q1
100µA
Q5
Q7
Q6
R
SC
Q11
Output
Q13
Q10
Q12
50µA
GND
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter LM158,A LM258,A LM358,A Unit
V
T
2/12
Supply Voltage +32 +32 +32 V
CC
Input Voltage –0.3 to +32 –0.3 to +32 –0.3 to +32 V
V
i
Differential Input Voltage +32 +32 +32 V
V
id
Output Short-circuit Duration - (note 2) Infinite Power Dissipation 500 500 500 mW
P
tot
I
Input Current - (note 1) 50 50 50 mA
in
Operating Free-air Temperature Range –55 to +125 –40 to +105 0 to +70
oper
Storage Temperature Range –65 to +150 –65 to +150 –65 to +150
T
stg
o
C
o
C
Page 3
ELECTRICAL CHARACTERISTICS
V
CC
+
= +5V, V
= Ground, VO = 1.4V, T
CC
Symbol Parameter
V
A
SVR Supply Voltage Rejection Ratio (R
I
V
Input Offset Voltage - (note 3)
I
I
CC
io
io
ib
vd
icm
T
= 25oC
amb
T
T
T
min.
amb
max
.
Input Offset Current
= 25oC
T
amb
T
T
T
min.
amb
max
.
Input Bias Current - (note 4)
T
= 25oC
amb
T
T
T
min.
amb
max
.
Large Signal Voltage Gain (VCC = +15V, RL = 2k, VO = 1.4V to 11.4V)
T
= 25oC
amb
T
T
T
max
max
.
.
(V
CC
T
min.
+
= 5 to 30V)
T
= 25oC
amb
T
T
min.
amb
amb
Supply Current, all Amp, no Load
VCC = +5V, T VCC = +30V, T
min.
min.
T
T
amb
amb
Input Common Mode Voltage Range (VCC = +30V) - (note 6)
= 25oC
T
amb
T
. T
T
min
amb
max
.
CMR Common-mode Rejection Ratio (R
= 25oC
T
amb
T
T
T
min.
I
source
I
V
V
V
Output Current Source (VCC = +15V, Vo = 2V, Vid = +1V) 20 40 60 20 40 60
Output Current Sink (Vid = -1V)
sink
OPP
OH
OL
= +15V, VO = 2V
V
CC
VCC = +15V, VO = +0.2V
Output Voltage Swing (RL = 2k)
T
= 25oC
amb
T
T
min.
High Level Output Voltage (V
T
= 25oCR
amb
T
. T
min
= 25oCR
T
amb
T
T
min.
Low Level Output Voltage (RL = 10k)
T
= 25oC
amb
. T
T
min
SR Slew Rate (V
2k, CL = 100pF, unity gain) 0.3 0.6 0.3 0.6
amb
amb
amb
amb
amb
CC
.
max
T
.
max
T
.
max
T
.
max
T
max.
= 15V, VI = 0.5 to 3V, RL =
GBP Gain Bandwidth Product
(V
= 30V, f = 100kHz,
CC
= 10mV, RL = 2k, CL = 100pF) 0.7 1.1 0.7 1.1
V
in
THD Total Harmonic Distortion
(f = 1kHz, A
= 100pF, VO = 2 PP)
C
L
e
Equivalent Input Noise voltage
n
(f = 1kHz, R
= 20dB, RL = 2k, VCC = 30V,
v
= 100, VCC = 30V) 55 55
s
amb
LM158, LM258 LM158A
LM158, LM258
= 10k)
S
T
.
max
T
.
max
= 10k)
S
+
= 30V)
CC
= 2k
L
= 10k
L
LM158,A - LM258,A - LM358,A
= 25oC (unless otherwise specified)
LM158A-LM258A
LM358A
Min. Typ. Max. Min. Typ. Max.
13
2 4
210
30
20 50
100
5025100 5025100
6565100 6565100
0.7 1.2 2
0 0
V
CC
V
CC
+
–1.5
+
–200
706085 706085
101220
50
V
CC
V
CC
+
–1.5
+
–200
26
0 0
27 26 27
28 27
520
20
0.02 0.02
LM158-LM258
101220
26 26 27 27
LM358
27
5 9
7
230
40
20 150
200
0.7 1.2 2
+
V
–1.5
CC
+
V
–2
CC
50
+
V
–1.5
CC
+
–2
V
CC
27 28
520
20
Unit
mV
nA
nA
V/mV
dB
mA
V
dB
mA
mA
µA
V
V
mV
V/µs
MHz
%
nV
Hz
3/12
Page 4
LM158,A - L M258,A - L M358,A
ELECTRICAL CHARACTERISTICS (continued)
LM158A
Symbol Parameter
LM258A LM358A
Min. Typ. Max. Min. Typ. Max.
DV
DI
V
O1/VO2
Notes : 1. This input current only exist when the voltage at any of the input leads is driven negative. It is due to the collec-
OPEN LOOP FREQUENCY RESPONSE
Input Offset Voltage Drift 7 15 7 30 µV/oC
io
Input Offset Current Drift 10 200 10 300 pA/oC
io
Channel Separation (note 5)
1kHz f 20kHz 120 120
tor-base junction of the i nput PNP transi stor becoming fo rward biased and thereby acti ng as input d iode clamps. In addition to this di ode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the V duration that an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than –0.3V.
2. Short-circuits from the output to V
can cause excessive heating if V
CC
approximatively 40mA independent of the magnitude of V short-circuits on all amplifiers.
3. V
= 1.4V, RS = 0, 5V < V
O
+
< 30 V, 0 < Vic < V
CC
4. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
5. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. T his typically can be detec ted as this typ e of capacitan ce increases at higher freque nces.
6. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than
0.3V. The upper end of the common-mode voltage range is V But either or both inputs can go to +32V without damage.
(NOTE 3)
140
10M
120
100
0.1mF
V
I
VCC/2
80
VCC = 30V &
60
-55°C
W
V
-
CC
V
O
+
T
+125°C
amb
voltage level (or to ground for a large overdrive) for the time
CC
+
> 15V. The maximum output current is
+
– 1.5V.
CC
+
– 1.5V.
CC
. Destructive dissipation can result from simultaneous
CC
CC
LARGE SIGNAL FREQUENCY RESPONSE
20
15
10
V
LM158 LM258 LM358
Unit
dB
100k
1k
W
I
+7V
W
+15V
-
+
VO
2k
W
40
VOLTAGE GAIN (dB)
20
0
1.0 10 100 1k 10k 100k 1M 10M
VOLAGE FOLLOWER PULSE RESPONSE
4
3
2
OUTPUT
1
VOLTAGE (V)
0
3
2
1
INPUT
VOLTAGE (V)
4/12
VCC = +10 to + 15V &
T
amb
+125°C
-55°C
FREQUENCY (Hz)
RL 2 k
W
VCC = +15V
010203040
TIME (ms)
5
OUTPUT SWING (Vpp)
0
1k 10k 100k 1M
FREQUENCY (Hz)
OUTPUT CHARACTERISTICS
10
1
0.1
OUTPUT VOLTAGE (V)
0.01
0,001 0,01 0,1 1 10 100
VCC = +5V VCC = +15V VCC = +30V
vcc/2
T
-
+
amb
v
cc
= +25°C
OUTPUT SINK CURRENT (mA)
I
O
V
O
Page 5
LM158,A - LM258,A - LM358,A
VOLTAGE FOLLOWER PULSSE RESPONSE
(SMALL SIGNAL)
500
e
l
+
-
Output
e
O
50pF
Input
T
amb
VCC= 30 V
= +25°C
450
400
350
OUTPUT VOLTAGE (mV)
300
250
0 1 2 3 4 5 6 7 8
TIME (ms)
INPUT CURRENT (Note 1)
90
80
VI = 0 V
70
60
VCC = +30 V
50
40
VCC = +15 V
30
20
INPUT CURRENT (mA)
VCC = +5 V
10
0
-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE (°C)
INPUT VOLTAGE RANGE
15
10
Négative
5
Positive
INPUT VOLTAGE (V)
0 5 10 15
POWER SUPPLY VOLTAGE (±V)
OUTPUT CHARACTERISTICS
8
7
VCC/2
6
(V)
5
+
CC
4
TO V
OUTPUT VOLTAGE REFERENCED
Independent of V
3
T
2
amb
1
0,01 0,1 1 10 100
0,001
+
-
= +25°C
V
CC
V
O
I
O
CC
OUTPUT SOURCE CURRENT (mA)
CURRENT LIMITING (Note 1)
90
80
-
I
O
70
60
+
50
40
30
20
OUTPUT CURRENT (mA)
10
0
-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE (°C)
SUPPLY CURRENT
4
V
CC
I
3
mA
2
D
-
+
T
= 0°C to +125°C
amb
1
SUPPLY CURRENT (mA)
T
= -55°C
amb
0102030
POSITIVE SUPPLY VOLTAGE (V)
5/12
Page 6
LM158,A - L M258,A - L M358,A
160
R = 20k
L
120
R = 2k
80
L
40
VOLTAGE GAIN (dB)
0 10 20 30 40
POSITIVE SUPPLY VOLTAGE (V)
160
R = 20k
L
120
R = 2k
80
L
40
VOLTAGE GAIN (dB)
0 10 20 30
POSITIVE SUPPLY VOLTAGE (V)
100
W
75
W
50
25
INPUT CURRENT (nA)
T = +25°C
amb
0 10 20 30
POSITIVE SUPPLY VOLTAGE (V)
1.5
W
1.35
1.2
1.05
W
0.9
0.75
V = 15V
CC
0.6
0.45
0.3
0.15
0
GAIN BANDWIDTH PRODUCT (MHz)
-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
115 110
105 100
95 90 85 80 75
70 65
-55-35-15 5 25 45 65 85 105 125
60
POWER SUPPLY REJECTION RATIO (dB)
6/12
TEMPERATURE (°C)
SVR
115 110
105 100
95 90 85 80 75
70 65
-55-35-15 5 25 45 65 85 105 125
60
COMMON MODE REJECTION RATIO (dB)
TEMPERATURE (°C)
Page 7
LM158,A - LM258,A - LM358,A
TYPICAL APPLICATIONS (single supp ly voltage) VCC = +5V
AC COUPLED INVERTING AMPLIFIER
R
f
100k
R1
C
I
10k
1/2
LM158
R
B
6.2k
e
~
I
R2
100k
V
CC
C1
10
µ
F
100k
R3
R
f
A = -
V
R1
(as shown A = -10)
V
C
o
0
e
o
R
L
10k
2V
PP
AC COUPLED NON-INVERTING AMPLIFIER
R1
100k
C1
µ
F
0.1
C
I
e
I
R3
~
1M
C2
10
DC
R2
µ
1M
1/2
LM158
R
B
6.2k
R4
100k
V
CC
R5
100k
F
R2
A = 1 +
V
R1
(as sho w n A = 11)
V
C
o
0
e
o
R
L
10k
2V
PP
NON-INVERTING DC AMPLIFIER
A
= 1 +
V
(As shown = 101)
e
O
+5V
(V)
O
e
0
e
R1
10k
10k
1/2
LM158
R2
1M
I
R2 R1
(mV)
DC SUM MI NG AM PLI FI ER
100k
e
1
A
V
100k
1/2
e
O
LM158
100k
e
2
100k
e
3
100k
100k
e
4
eo = e1 + e2 - e3 - e where (e1 + e2) (e3 + e4) to keep eo 0V
4
7/12
Page 8
LM158,A - L M258,A - L M358,A
HIGH INPU T Z, DC DIF FERE NTIAL
AMPLIFIER
R2
100k
1/2
LM158 +V1 +V2
R1
100k
if R1 = R5 and R3 = R4 = R6 = R
2R
eo = [ 1+ As shown e
1
] (e2 e1)
R
2
= 101 (e2 - e1).
o
R3
100k
7
100k
1/2
LM158
R4
USING SYMMETRICAL AMPLIFIERS TO
REDUCE INPUT CURRENT
I
e
I
I
B
I
B
2N 929
LM158
1/2
I
0.001µF
I
3M
B
1/2
LM158
I
B
I
1.5M
B
V
o
e
o
Input current compensation
HIGH INPUT Z ADJUSTABLE GAIN DC
INSTRUM ENTATI ON AMPLIF IER
R1
100k
1/2
LM158
R7
100k
R4
100k
1/2
e
1
R2
2k
e
2
LM158
Gain adjust
100k
1/2
LM158
R5
if R1 = R5 and R3 = R4 = R6 = R7
2R
eo = [ 1+ As shown e
1
] (e2 e1)
R
2
= 101 (e2 - e1)
o
R3
100k
R6
100k
LOW DRIF T PEAK DETEC TOR
I
B
1/2
I
LM158
1/2
LM158
e
e
O
I
Z
I
1
F
µ
2I
B
R
1M
B
0.001µF
I
B
3R
3M
I
B
Z
1/2
LM158
C
2I
B
2N 929
o
Input current compensation
e
o
8/12
Page 9
ACTI VE BA ND- PAS S FIL TER
R2
100k
+V1
R3
100k
Fo = 1kHz Q = 50 A
= 100 (40dB)
V
R1
100k
1/2
LM158
R4
10M
LM158
C2
330pF
1/2
R6
470k
R8
100k
LM158,A - LM258,A - LM358,A
C1
330pF
R5
470k
1/2
LM158
V
o
R7
100k
V
CC
C3
10
µ
F
9/12
Page 10
LM158,A - L M258,A - L M358,A
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP
Dim.
Min. Typ. Max. Min. Typ. Max.
Millimeters Inches
A 3.32 0.131
a1 0.51 0.020
B 1.15 1.65 0.045 0.065
b 0.356 0.55 0.014 0.022
b1 0.204 0.304 0.008 0.012
D 10.92 0.430 E 7.95 9.75 0.313 0.384
e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300
F 6.6 0260
i 5.08 0.200 L 3.18 3.81 0.125 0.150 Z 1.52 0.060
PM-DIP8.EPS
DIP8.TBL
10/12
Page 11
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)
LM158,A - LM258,A - LM358,A
Dim.
Min. Typ. Max. Min. Typ. Max.
Millimeters Inches
A 1.75 0.069 a1 0.1 0.25 0.004 0.010 a2 1.65 0.065 a3 0.65 0.85 0.026 0.033
b 0.35 0.48 0.014 0.019
b1 0.19 0.25 0.007 0.010
C 0.25 0.5 0.010 0.020 c1 45
o
(typ.) D 4.8 5.0 0.189 0.197 E 5.8 6.2 0.228 0.244
e 1.27 0.050
e3 3.81 0.150
F 3.8 4.0 0.150 0.157
L 0.4 1.27 0.016 0.050 M 0.6 0.024 S8
o
(max.)
PM-SO8.EPS
SO8.TBL
11/12
Page 12
LM158,A - L M258,A - L M358,A
PACKAGE MECHANICAL DAT A
8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE
Dim.
Min. Typ. Max. Min. Typ. Max.
Millimeters Inches
A 1.20 0.05
A1 0.05 0.15 0.01 0.006 A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.15
c 0.09 0.20 0.003 0.012 D 2.90 3.00 3.10 0.114 0.118 0.122
E 6.40 0.252
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.025
k0
o
o
8
o
0
o
8
l 0.50 0.60 0.75 0.09 0.0236 0.030
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of pat ents or other rights of t hird parties which may result from its use. No license is granted by implication or otherwise under any pate nt o r patent rights of STMicroelectronics. Specifi­cations mentioned in this publication are subject to change without notice. This publication supersedes and replaces all infor­mation previously supplied. STMicroelectronics products are not authorized for use as critical components in life support de­vices or systems without express written approva l of STMicroelectronics.
© The ST logo is a trademark of STMicroelectronics
© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
12/12
ORDER CODE :
Loading...