Datasheet LM3402HV, LM3402 Datasheet (NSC)

Page 1
June 2007
LM3402/LM3402HV
0.5A Constant Current Buck Regulator for Driving High Power LEDs
LM3402/LM3402HV 0.5A Constant Current Buck Regulator for Driving High Power LEDs

General Description

The LM3402/02HV are monolithic switching regulators de­signed to deliver constant currents to high power LEDs. Ideal for automotive, industrial, and general lighting applications, they contain a high-side N-channel MOSFET switch with a current limit of 735 mA (typical) for step-down (Buck) regula­tors. Hysteretic control with controlled on-time coupled with an external resistor allow the converter output voltage to ad­just as needed to deliver a constant current to series and series - parallel connected arrays of LEDs of varying number and type, LED dimming by pulse width modulation (PWM), broken/open LED protection, low-power shutdown and ther­mal shutdown complete the feature set.

Typical Application

Features

Integrated 0.5A N-channel MOSFET
VIN Range from 6V to 42V (LM3402)
VIN Range from 6V to 75V (LM3402HV)
500 mA Output Current Over Temperature
Cycle-by-Cycle Current Limit
No Control Loop Compensation Required
Separate PWM Dimming and Low Power Shutdown
Supports all-ceramic output capacitors and capacitor-less
outputs Thermal shutdown protection
MSOP-8, PSOP-8 Packages

Applications

LED Driver
Constant Current Source
Automotive Lighting
General Illumination
Industrial Lighting
20192101
© 2007 National Semiconductor Corporation 201921 www.national.com
Page 2

Connection Diagrams

LM3402/LM3402HV
20192145
8-Lead Plastic MSOP-8 Package
NS Package Number MUA08A
20192102
8-Lead Plastic PSOP-8 Package
NS Package Number MRA08B

Ordering Information

Order Number Package Type NSC Package Drawing Supplied As
LM3402MM
LM3402MMX 3500 units on tape and reel
LM3402HVMM 1000 units on tape and reel
LM3402HVMMX 3500 units on tape and reel
LM3402MR
LM3402MRX 2500 units on tape and reel
LM3402HVMR 95 units in anti-static rails
LM3402HVMRX 2500 units on tape and reel
MSOP-8 MUA08A
PSOP-8 MRA08B
1000 units on tape and reel
95 units in anti-static rails

Pin Descriptions

Pin(s) Name Description Application Information
1 SW Switch pin Connect this pin to the output inductor and Schottky diode.
2 BOOT MOSFET drive bootstrap pin Connect a 10 nF ceramic capacitor from this pin to SW.
3 DIM Input for PWM dimming Connect a logic-level PWM signal to this pin to enable/disable the
power FET and reduce the average light output of the LED array.
4 GND Ground pin Connect this pin to system ground.
5 CS Current sense feedback pin Set the current through the LED array by connecting a resistor from
this pin to ground.
6 RON On-time control pin A resistor connected from this pin to VIN sets the regulator controlled
on-time.
7 VCC Output of the internal 7V linear
regulator
8 VIN Input voltage pin Nominal operating input range is 6V to 42V (LM3402) or 6V to 75V
DAP GND Thermal Pad Connect to ground. Place 4 to 6 vias from DAP to bottom layer ground
Bypass this pin to ground with a minimum 0.1 µF ceramic capacitor with X5R or X7R dielectric.
(LM3402HV).
plane.
www.national.com 2
Page 3

Absolute Maximum Ratings (LM3402) (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
VIN to GND -0.3V to 45V BOOT to GND -0.3V to 59V SW to GND -1.5V BOOT to VCC -0.3V to 45V BOOT to SW -0.3V to 14V VCC to GND -0.3V to 14V DIM to GND -0.3V to 7V CS to GND -0.3V to 7V RON to GND -0.3V to 7V Junction Temperature 150°C Storage Temp. Range -65°C to 125°C ESD Rating (Note 2) 2kV Soldering Information Lead Temperature (Soldering,
10sec) 260°C Infrared/Convection Reflow (15sec) 235°C

Operating Ratings (LM3402) (Note 1)

V
IN
Junction Temperature Range −40°C to +125°C
Thermal Resistance θJA (MSOP-8 Package) (Note 3) 200°C/W
Thermal Resistance θJA (PSOP-8 Package) (Note 5) 50°C/W
6V to 42V
LM3402/LM3402HV
3 www.national.com
Page 4

Absolute Maximum Ratings (LM3402HV) (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
VIN to GND
LM3402/LM3402HV
BOOT to GND -0.3V to 90V SW to GND -1.5V BOOT to VCC -0.3V to 76V BOOT to SW -0.3V to 14V VCC to GND -0.3V to 14V DIM to GND -0.3V to 7V CS to GND -0.3V to 7V RON to GND -0.3V to 7V Junction Temperature 150°C
-0.3V to 76V
Storage Temp. Range -65°C to 125°C ESD Rating (Note 2) 2kV Soldering Information Lead Temperature (Soldering,
10sec) 260°C Infrared/Convection Reflow (15sec) 235°C

Operating Ratings (LM3402HV) (Note 1)

V
IN
Junction Temperature Range −40°C to +125°C
Thermal Resistance θJA (MSOP-8 Package) (Note 3) 200°C/W
Thermal Resistance θJA (PSOP-8 Package) (Note 5) 50°C/W
6V to 75V
www.national.com 4
Page 5

LM3402/LM3402HV

Electrical Characteristics V

= 24V unless otherwise indicated. Typicals and limits appearing in plain type apply
IN
for TA = TJ = +25°C. (Note 4) Limits appearing in boldface type apply over full Operating Temperature Range. Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

LM3402

Symbol Parameter Conditions Min Typ Max Units
SYSTEM PARAMETERS
t
ON-1
t
ON-2
On-time 1
On-time 2
VIN = 10V, RON = 200 k
VIN = 40V, RON = 200 k
2.1 2.75 3.4 µs
490 650 810 ns

LM3402HV

Symbol Parameter Conditions Min Typ Max Units
SYSTEM PARAMETERS
t
ON-1
t
ON-2
On-time 1
On-time 2
VIN = 10V, RON = 200 k
VIN = 70V, RON = 200 k
2.1 2.75 3.4 µs
290 380 470 ns
LM3402/LM3402HV
Symbol Parameter Conditions Min Typ Max Units
REGULATION AND OVER-VOLTAGE COMPARATORS
V
REF-REG
V
REF-0V
I
CS
SHUTDOWN
V
SD-TH
V
SD-HYS
OFF TIMER
t
OFF-MIN
INTERNAL REGULATOR
V
CC-REG
V
IN-DO
V
CC-BP-TH
V
CC-BP-HYS
V
CC-Z-6
V
CC-Z-8
V
CC-Z-24
V
CC-LIM
V
CC-UV-TH
V
CC-UV-HYS
V
CC-UV-DLY
I
IN-OP
I
IN-SD
CURRENT LIMIT
I
LIM
DIM COMPARATOR
V
IH
V
IL
CS Regulation Threshold CS Decreasing, SW turns on 194 200 206 mV
CS Over-voltage Threshold CS Increasing, SW turns off 300 mV
CS Bias Current CS = 0V 0.1 µA
Shutdown Threshold RON / SD Increasing 0.3 0.7 1.05 V
Shutdown Hysteresis RON / SD Decreasing 40 mV
Minimum Off-time CS = 0V 300 ns
VCC Regulated Output 6.6 7 7.4 V
VIN - VCC Dropout ICC = 5 mA, 6.0V < VIN < 8.0V 300 mV
VCC Bypass Threshold VIN Increasing 8.8 V
VCC Bypass Hysteresis VIN Decreasing 225 mV
VCC Output Impedance (0 mA < ICC < 5 mA)
VIN = 6V 55
VIN = 8V 50
VIN = 24V 0.4
VCC Current Limit (Note 3) VIN = 24V, VCC = 0V 16 mA
VCC Under-voltage Lock-out
VCC Increasing 5.25 V
Threshold
VCC Under-voltage Lock-out
VCC Decreasing 150 mV
Hysteresis
VCC Under-voltage Lock-out
100 mV Overdrive 3 µs
Filter Delay
I
Operating Current Non-switching, CS = 0V 600 900 µA
IN
IIN Shutdown Current RON / SD = 0V 90 180 µA
Current Limit Threshold 530 735 940 mA
Logic High DIM Increasing 2.2 V
Logic Low DIM Decreasing 0.8 V
5 www.national.com
Page 6
Symbol Parameter Conditions Min Typ Max Units
I
DIM-PU
DIM Pull-up Current DIM = 1.5V 75 µA
N-MOSFET AND DRIVER
R
DS-ON
V
DR-UVLO
Buck Switch On Resistance ISW = 200mA, BOOT-SW = 6.3V 0.7 1.5
BOOT Under-voltage Lock-out
BOOT–SW Increasing 1.7 3 4 V
Threshold
LM3402/LM3402HV
V
DR-HYS
BOOT Under-voltage Lock-out
BOOT–SW Decreasing 400 mV
Hysteresis
THERMAL SHUTDOWN
T
SD
T
SD-HYS
THERMAL RESISTANCE
θ
JA
Thermal Shutdown Threshold 165 °C
Thermal Shutdown Hysteresis 25 °C
Junction to Ambient MSOP-8 Package 200 °C/W
PSOP-8 Package 50
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see Electrical Characteristics.
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 k resistor into each pin.
Note 3: VCC provides self bias for the internal gate drive and control circuits. Device thermal limitations limit external loading.
Note 4: Typical specifications represent the most likely parametric norm at 25°C operation.
Note 5: θJA of 50°C/W with DAP soldered to a minimum of 2 square inches of 1 oz. copper on the top or bottom PCB layer.
www.national.com 6
Page 7

Typical Performance Characteristics

V
vs Temperature (VIN = 24V)
REF
V
vs VIN, LM3402 (TA = 25°C)
REF
LM3402/LM3402HV
20192129
V
vs VIN, LM3402HV (TA = 25°C)
REF
20192131
Current Limit vs VIN, LM3402 (TA = 25°C)
20192130
Current Limit vs Temperature (VIN = 24V)
20192132
Current Limit vs VIN, LM3402HV (TA = 25°C)
20192133
20192134
7 www.national.com
Page 8
LM3402/LM3402HV
TON vs VIN,
RON = 100 kΩ (TA = 25°C)
TON vs VIN,
(TA = 25°C)
TON vs VIN, (TA = 25°C)
TON vs RON, LM3402HV
(TA = 25°C)
20192135
20192137
TON vs RON, LM3402
(TA = 25°C)
VCC vs V
(TA = 25°C)
IN
20192136
20192144
20192138
www.national.com 8
20192139
Page 9
V
vs fSW, LM3402
O-MAX
(TA = 25°C)
V
vs fSW, LM3402
O-MIN
(TA = 25°C)
LM3402/LM3402HV
V
vs fSW, LM3402HV
O-MAX
(TA = 25°C)
20192140
20192142
V
vs fSW, LM3402HV
O-MIN
(TA = 25°C)
20192141
20192143
9 www.national.com
Page 10

Block Diagram

LM3402/LM3402HV

Application Information

THEORY OF OPERATION

The LM3402 and LM3402HV are buck regulators with a wide input voltage range, low voltage reference, and a fast output enable/disable function. These features combine to make them ideal for use as a constant current source for LEDs with forward currents as high as 500 mA. The controlled on-time (COT) architecture is a combination of hysteretic mode con­trol and a one-shot on-timer that varies inversely with input voltage. Hysteretic operation eliminates the need for small­signal control loop compensation. When the converter runs in continuous conduction mode (CCM) the controlled on-time maintains a constant switching frequency over the range of input voltage. Fast transient response, PWM dimming, a low power shutdown mode, and simple output overvoltage pro­tection round out the functions of the LM3402/02HV.

CONTROLLED ON-TIME OVERVIEW

Figure 1 shows the feedback system used to control the cur­rent through an array of LEDs. A voltage signal, V
SNS
, is
20192103
created as the LED current flows through the current setting resistor, R where it is compared against a 200 mV reference, V on-comparator turns on the power MOSFET when V below V on-time, tON, set by an external resistor, RON, and by the input
, to ground. V
SNS
. The power MOSFET conducts for a controlled
REF
is fed back to the CS pin,
SNS
REF
SNS
. The
falls
voltage, VIN. On-time is governed by the following equation:
At the conclusion of tON the power MOSFET turns off for a minimum off-time, t plete the CS comparator compares V waiting to begin the next cycle.
, of 300 ns. Once t
OFF-MIN
SNS
OFF-MIN
and V
is com-
again,
REF
www.national.com 10
Page 11

FIGURE 1. Comparator and One-Shot

The LM3402/02HV regulators should be operated in contin­uous conduction mode (CCM), where inductor current stays positive throughout the switching cycle. During steady-state operationin the CCM, the converter maintains a constant switching frequency, which can be selected using the follow­ing equation:
20192105
The maximum number of LEDs, n a single series string is governed by V mum forward voltage of the LEDs used, V
, that can be placed in
MAX
O(MAX)
expression:
and the maxi-
, using the
F(MAX)
LM3402/LM3402HV
VF = forward voltage of each LED, n = number of LEDs in
series

AVERAGE LED CURRENT ACCURACY

The COT architecture regulates the valley of ΔV portion of V is also the average inductor current) the valley inductor cur-
. To determine the average LED current (which
SNS
SNS
, the AC
rent is calculated using the following expression:
In this equation t CS comparator, and is approximately 220 ns. The average inductor/LED current is equal to I ductor current ripple, ΔiL:
represents the propagation delay of the
SNS
plus one-half of the in-
L-MIN
IF = IL = I
L-MIN
+ ΔiL / 2
Detailed information for the calculation of ΔiL is given in the Design Considerations section.

MAXIMUM OUTPUT VOLTAGE

The 300 ns minimum off-time limits on the maximum duty cy­cle of the converter, D voltage V
is determined by the following equations:
O(MAX)
, and in turn ,the maximum output
MAX
At low switching frequency the maximum duty cycle and out­put voltage are higher, allowing the LM3402/02HV to regulate output voltages that are nearly equal to input voltage. The following equation relates switching frequency to maximum output voltage.

MINIMUM OUTPUT VOLTAGE

The minimum recommended on-time for the LM3402/02HV is 300 ns. This lower limit for tON determines the minimum duty cycle and output voltage that can be regulated based on input voltage and switching frequency. The relationship is deter­mined by the following equation:
11 www.national.com
Page 12

HIGH VOLTAGE BIAS REGULATOR

The LM3402/02HV contains an internal linear regulator with a 7V output, connected between the VIN and the VCC pins. The VCC pin should be bypassed to the GND pin with a 0.1 µF ceramic capacitor connected as close as possible to the pins of the IC. VCC tracks VIN until VIN reaches 8.8V (typical) and then regulates at 7V as VIN increases. Operation begins when VCC crosses 5.25V.
LM3402/LM3402HV

INTERNAL MOSFET AND DRIVER

The LM3402/02HV features an internal power MOSFET as well as a floating driver connected from the SW pin to the BOOT pin. Both rise time and fall time are 20 ns each (typical) and the approximate gate charge is 3 nC. The high-side rail for the driver circuitry uses a bootstrap circuit consisting of an internal high-voltage diode and an external 10 nF capacitor, CB. VCC charges CB through the internal diode while the power MOSFET is off. When the MOSFET turns on, the internal diode reverse biases. This creates a floating supply equal to the VCC voltage minus the diode drop to drive the MOSFET when its source voltage is equal to VIN.

FAST SHUTDOWN FOR PWM DIMMING

The DIM pin of the LM3402/02HV is a TTL logic compatible input for low frequency PWM dimming of the LED. A logic low (below 0.8V) at DIM will disable the internal MOSFET and shut off the current flow to the LED array. While the DIM pin is in a logic low state the support circuitry (driver, bandgap, VCC) remains active in order to minimize the time needed to turn the LED array back on when the DIM pin sees a logic high (above 2.2V). A 75 µA (typical) pull-up current ensures that the LM3402/02HV is on when DIM pin is open circuited, eliminating the need for a pull-up resistor. Dimming frequen­cy, f
, and duty cycle, D
DIM
rise time and fall time and the delay from activation of the DIM
, are limited by the LED current
DIM
pin to the response of the internal power MOSFET. In general, f
should be at least one order of magnitude lower than the
DIM
steady state switching frequency in order to prevent aliasing.

PEAK CURRENT LIMIT

The current limit comparator of the LM3402/02HV will engage whenever the power MOSFET current (equal to the inductor
current while the MOSFET is on) exceeds 735 mA (typical). The power MOSFET is disabled for a cool-down time that is 10x the steady-state on-time. At the conclusion of this cool­down time the system re-starts. If the current limit condition persists the cycle of cool-down time and restarting will con­tinue, creating a low-power hiccup mode, minimizing thermal stress on the LM3402/02HV and the external circuit compo­nents.

OVER-VOLTAGE/OVER-CURRENT COMPARATOR

The CS pin includes an output over-voltage/over-current comparator that will disable the power MOSFET whenever V
exceeds 300 mV. This threshold provides a hard limit
SNS
for the output current. Output current overshoot is limited to 300 mV / R
by this comparator during transients.
SNS
The OVP/OCP comparator can also be used to prevent the output voltage from rising to V open-circuit. This is the most common failure mode for LEDs,
in the event of an output
O(MAX)
due to breaking of the bond wires. In a current regulator an output open circuit causes V maximum duty cycle. Figure 2 shows a method using a zener
to fall to zero, commanding
SNS
diode, Z1, and zener limiting resistor, RZ, to limit output volt­age to the reverse breakdown voltage of Z1 plus 200 mV. The zener diode reverse breakdown voltage, VZ, must be greater than the maximum combined VF of all LEDs in the array. The maximum recommended value for RZ is 1 kΩ.
As discussed in the Maximum Output Voltage section, there is a limit to how high VO can rise during an output open-circuit that is always less than VIN. If no output capacitor is used, the output stage of the LM3402/02HV is capable of withstanding V
indefinitely, however the voltage at the output end of
O(MAX)
the inductor will oscillate and can go above VIN or below 0V. A small (typically 10 nF) capacitor across the LED array dampens this oscillation. For circuits that use an output ca­pacitor, the system can still withstand V long as CO is rated to handle VIN. The high current paths are
indefinitely as
O(MAX)
blocked in output open-circuit and the risk of thermal stress is minimal, hence the user may opt to allow the output voltage to rise in the case of an open-circuit LED failure.

FIGURE 2. Output Open Circuit Protection

www.national.com 12
20192112
Page 13
LM3402/LM3402HV

LOW POWER SHUTDOWN

The LM3402/02HV can be switched to a low power state (I
= 90 µA) by grounding the RON pin with a signal-level
SD
MOSFET as shown in Figure 3. Low power MOSFETs like the
IN-
2N7000, 2N3904, or equivalent are recommended devices for putting the LM3402/02HV into low power shutdown. Logic gates can also be used to shut down the LM3402/02HV as

FIGURE 3. Low Power Shutdown

long as the logic low voltage is below the over temperature minimum threshold of 0.3V. Noise filter circuitry on the RON pin can cause a few pulses with a longer on-time than normal after RON is grounded or released. In these cases the OVP/ OCP comparator will ensure that the peak inductor or LED current does not exceed 300 mV / R
SNS
20192113
.

THERMAL SHUTDOWN

Internal thermal shutdown circuitry is provided to protect the IC in the event that the maximum junction temperature is ex-
ceeded. The threshold for thermal shutdown is 165°C with a 25°C hysteresis (both values typical). During thermal shut­down the MOSFET and driver are disabled.
13 www.national.com
Page 14

Design Considerations

SWITCHING FREQUENCY

Switching frequency is selected based on the tradeoffs be­tween efficiency (better at low frequency), solution size/cost (smaller at high frequency), and the range of output voltage that can be regulated (wider at lower frequency.) Many appli­cations place limits on switching frequency due to EMI sen-
LM3402/LM3402HV
sitivity. The on-time of the LM3402/02HV can be programmed for switching frequencies ranging from the 10’s of kHz to over 1 MHz. The maximum switching frequency is limited only by the minimum on-time requirement.

LED RIPPLE CURRENT

Selection of the ripple current, ΔiF, through the LED array is analogous to the selection of output ripple voltage in a stan­dard voltage regulator. Where the output ripple in a voltage regulator is commonly ±1% to ±5% of the DC output voltage, LED manufacturers generally recommend values for Δi ranging from ±5% to ±20% of IF. Higher LED ripple current allows the use of smaller inductors, smaller output capacitors, or no output capacitors at all. The advantages of higher ripple current are reduction in the solution size and cost. Lower rip­ple current requires more output inductance, higher switching frequency, or additional output capacitance. The advantages of lower ripple current are a reduction in heating in the LED itself and greater range of the average LED current before the current limit of the LED or the driving circuitry is reached.
ered, making the magnetics smaller and less expensive. Alternatively, the circuit could be run at lower frequency but keep the same inductor value, improving the efficiency and expanding the range of output voltage that can be regulated. Both the peak current limit and the OVP/OCP comparator still monitor peak inductor current, placing a limit on how large ΔiL can be even if ΔiF is made very small. A parallel output capacitor is also useful in applications where the inductor or input voltage tolerance is poor. Adding a capacitor that re­duces ΔiF to well below the target provides headroom for changes in inductance or VIN that might otherwise push the peak LED ripple current too high.
Figure 4 shows the equivalent impedances presented to the inductor current ripple when an output capacitor, CO, and its equivalent series resistance (ESR) are placed in parallel with the LED array. The entire inductor ripple current flows through R
to provide the required 25 mV of ripple voltage for proper
SNS
operation of the CS comparator.
F

BUCK CONVERTERS WITHOUT OUTPUT CAPACITORS

The buck converter is unique among non-isolated topologies because of the direct connection of the inductor to the load during the entire switching cycle. By definition an inductor will control the rate of change of current that flows through it, and this control over current ripple forms the basis for component selection in both voltage regulators and current regulators. A current regulator such as the LED driver for which the LM3402/02HV was designed focuses on the control of the current through the load, not the voltage across it. A constant current regulator is free of load current transients, and has no need of output capacitance to supply the load and maintain output voltage. Referring to the Typical Application circuit on the front page of this datasheet, the inductor and LED can form a single series chain, sharing the same current. When no output capacitor is used, the same equations that govern inductor ripple current, ΔiL, also apply to the LED ripple cur­rent, ΔiF. For a controlled on-time converter such as LM3402/02HV the ripple current is described by the following expression:
A minimum ripple voltage of 25 mV is recommended at the CS pin to provide good signal-to-noise ratio (SNR). The CS pin ripple voltage, ΔV
, is described by the following:
SNS
ΔV
= ΔiF x R
SNS
SNS

BUCK CONVERTERS WITH OUTPUT CAPACITORS

A capacitor placed in parallel with the LED or array of LEDs can be used to reduce the LED current ripple while keeping the same average current through both the inductor and the LED array. This technique is demonstrated in Design Exam­ple 1. With this topology the output inductance can be low-
20192115

FIGURE 4. LED and CO Ripple Current

To calculate the respective ripple currents the LED array is represented as a dynamic resistance, rD. LED dynamic resis­tance is not always specified on the manufacturer’s datasheet, but it can be calculated as the inverse slope of the LED’s VF vs. IF curve. Note that dividing VF by IF will give an incorrect value that is 5x to 10x too high. Total dynamic re­sistance for a string of n LEDs connected in series can be calculated as the rD of one device multiplied by n. Inductor ripple current is still calculated with the expression from Buck Regulators without Output Capacitors. The following equa­tions can then be used to estimate ΔiF when using a parallel capacitor:
The calculation for ZC assumes that the shape of the inductor ripple current is approximately sinusoidal.
Small values of CO that do not significantly reduce ΔiF can also be used to control EMI generated by the switching action of the LM3402/02HV. EMI reduction becomes more important as the length of the connections between the LED and the rest of the circuit increase.
www.national.com 14
Page 15
LM3402/LM3402HV

INPUT CAPACITORS

Input capacitors at the VIN pin of the LM3402/02HV are se­lected using requirements for minimum capacitance and rms ripple current. The input capacitors supply pulses of current approximately equal to IF while the power MOSFET is on, and are charged up by the input voltage while the power MOSFET is off. Switching converters such as the LM3402/02HV have a negative input impedance due to the decrease in input cur­rent as input voltage increases. This inverse proportionality of input current to input voltage can cause oscillations (some­times called ‘power supply interaction’) if the magnitude of the negative input impedance is greater the the input filter impedance. Minimum capacitance can be selected by com­paring the input impedance to the converter’s negative resis­tance; however this requires accurate calculation of the input voltage source inductance and resistance, quantities which can be difficult to determine. An alternative method to select the minimum input capacitance, C imum voltage ripple which can be tolerated. This value,Δv
, is equal to the change in voltage across CIN during the
(MAX)
converter on-time, when CIN supplies the load current. C
can be selected with the following:
(MIN)
, is to select the max-
IN(MIN)
A good starting point for selection of CIN is to use an input voltage ripple of 5% to 10% of VIN. A minimum input capaci­tance of 2x the C LM3402/02HV circuits. To determine the rms current rating,
value is recommended for all
IN(MIN)
the following formula can be used:
Ceramic capacitors are the best choice for the input to the LM3402/02HV due to their high ripple current rating, low ESR, low cost, and small size compared to other types. When se­lecting a ceramic capacitor, special attention must be paid to the operating conditions of the application. Ceramic capaci­tors can lose one-half or more of their capacitance at their rated DC voltage bias and also lose capacitance with ex­tremes in temperature. A DC voltage rating equal to twice the expected maximum input voltage is recommended. In addi­tion, the minimum quality dielectric which is suitable for switching power supply inputs is X5R, while X7R or better is preferred.

RECIRCULATING DIODE

The LM3402/02HV is a non-synchronous buck regulator that requires a recirculating diode D1 (see the Typical Application circuit) to carrying the inductor current during the MOSFET off-time. The most efficient choice for D1 is a Schottky diode due to low forward drop and near-zero reverse recovery time. D1 must be rated to handle the maximum input voltage plus any switching node ringing when the MOSFET is on. In prac­tice all switching converters have some ringing at the switch­ing node due to the diode parasitic capacitance and the lead inductance. D1 must also be rated to handle the average cur­rent, ID, calculated as:
ID = (1 – D) x I
F
This calculation should be done at the maximum expected input voltage. The overall converter efficiency becomes more
IN
dependent on the selection of D1 at low duty cycles, where the recirculating diode carries the load current for an increas-
IN
ing percentage of the time. This power dissipation can be calculated by checking the typical diode forward voltage, VD, from the I-V curve on the product datasheet and then multi­plying it by ID. Diode datasheets will also provide a typical junction-to-ambient thermal resistance, θJA, which can be used to estimate the operating die temperature of the Schot­tky. Multiplying the power dissipation (PD = ID x VD) by θ gives the temperature rise. The diode case size can then be
JA
selected to maintain the Schottky diode temperature below the operational maximum.

Design Example 1: LM3402

The first example circuit will guide the user through compo­nent selection for an architectural accent lighting application. A regulated DC voltage input of 24V ±10% will power a single 1W white LED at a forward current of 350 mA ±5%. The typical forward voltage of a 1W InGaN LED is 3.5V, hence the esti­mated average output voltage will be 3.7V. The objective of this application is to place the complete current regulator and LED in the compact space formerly occupied by an MR16 halogen light bulb. (The LED will be on a separate metal-core PCB.) Switching frequency will be as fast as the 300 ns t limit allows, with the emphasis on space savings over effi­ciency. Efficiency cannot be ignored, however, as the con­fined space with little air-flow requires a maximum tempera­ture rise of 40°C in each circuit component. A complete bill of materials can be found in Table 1 at the end of this datasheet.
ON
15 www.national.com
Page 16
LM3402/LM3402HV
20192119

FIGURE 5. Schematic for Design Example 1

RON and t
ON
To select RON the expression relating tON to input voltage from the Controlled On-time Overview section can be re-written as:
Minimum on-time occurs at the maximum VIN, which is 24V x 110% = 26.4V. RON is therefore calculated as:
RON = (300 x 10-9 x 26.4) / 1.34 x 10
-10
= 59105 Ω
The closest 1% tolerance resistor is 59.0 k. The switching frequency of the circuit can then be found using the equation relating RON to fSW:
fSW = 3.7 / (59000 x 1.34 x 10
-10
) = 468 kHz

USING AN OUTPUT CAPACITOR

The inductor will be the largest component used in this design. Because the application does not require any PWM dimming, an output capacitor can be used to greatly reduce the induc­tance needed without worry of slowing the potential PWM dimming frequency. The total solution size will be reduced by using an output capacitor and small inductor as opposed to one large inductor.

OUTPUT INDUCTOR

Knowing that an output capacitor will be used, the inductor can be selected for a larger current ripple. The desired max­imum value for ΔiL is ±30%, or 0.6 x 350 mA = 210 mA Minimum inductance is selected at the maximum input volt-
P-P
age. Re-arranging the equation for current ripple selection yields the following:
The closest standard inductor value is 33 µH. Off-the-shelf inductors rated at 33 µH are available from many magnetics manufacturers.
Inductor datasheets should contain three specifications which are used to select the inductor. The first of these is the aver­age current rating, which for a buck regulator is equal to the average load current, or IF. The average current rating is given by a specified temperature rise in the inductor, normally 40° C. For this example, the average current rating should be greater than 350 mA to ensure that heat from the inductor does not reduce the lifetime of the LED or cause the LM3402 to enter thermal shutdown.
The second specification is the tolerance of the inductance itself, typically ±10% to ±30% of the rated inductance. In this example an inductor with a tolerance of ±20% will be used. With this tolerance the typical, minimum, and maximum in­ductor current ripples can be calculated:
Δi
= [(26.4 – 3.7) x 300 x 10-9] / 33 x 10
L(TYP)
= 206 mA
P-P
-6
Δi
= [(26.4 – 3.7) x 300 x 10-9] / 39.6 x 10
L(MIN)
= 172 mA
P-P
-6
Δi
= [(26.4 – 3.7) x 300 x 10-9] / 26.4 x 10
L(MAX)
= 258 mA
P-P
-6
The third specification for an inductor is the peak current rat­ing, normally given as the point at which the inductance drops
.
off by a given percentage due to saturation of the core. The worst-case peak current occurs at maximum input voltage and at minimum inductance, and can be determined with the equation from the Design Considerations section:
L
= [(26.4 – 3.7) x 300 x 10-9] / (0.6 x 0.35) = 32.4 µH
MIN
www.national.com 16
I
= 0.35 + 0.258 / 2 = 479 mA
L(PEAK)
Page 17
LM3402/LM3402HV
For this example the peak current rating of the inductor should be greater than 479 mA. In the case of a short circuit across the LED array, the LM3402 will continue to deliver rated cur­rent through the short but will reduce the output voltage to equal the CS pin voltage of 200 mV. Worst-case peak current in this condition is equal to:
Δi
L(LED-SHORT)
= [(26.4 – 0.2) x 300 x 10-9] / 26.4 x 10
= 298 mA
I
= 0.35 + 0.149 = 499 mA
L(PEAK)
P-P
-6
In the case of a short at the switch node, the output, or from the CS pin to ground the short circuit current limit will engage at a typical peak current of 735 mA. In order to prevent in­ductor saturation during these short circuits the inductor’s peak current rating must be above 735 mA. The device se­lected is an off-the-shelf inductor rated 33 µH ±20% with a DCR of 96 m and a peak current rating of 0.82A. The phys­ical dimensions of this inductor are 7.0 x 7.0 x 4.5 mm.
R
SNS
The current sensing resistor value can be determined by re­arranging the expression for average LED current from the LED Current Accuracy section:
R
= 0.74Ω, t
SNS
= 220 ns
SNS
Sub-1 resistors are available in both 1% and 5% tolerance. A 1%, 0.75 resistor will give the best accuracy of the aver­age LED current. To determine the resistor size the power dissipation can be calculated as:
P
= (IF)2 x R
SNS
P
= 0.352 x 0.75 = 92 mW
SNS
SNS
Standard 0805 size resistors are rated to 125 mW and will be suitable for this application.
To select the proper output capacitor the equation from Buck Regulators with Output Capacitors is re-arranged to yield the following:
The target tolerance for LED ripple current is ±5% or 10%
= 35 mA
P
rD of 1.0 at 350 mA. The required capacitor impedance to reduce the worst-case inductor ripple current of 258 mA therefore:
, and the LED datasheet gives a typical value for
P-P
P-P
is
ZC = [0.035 / (0.258 - 0.035] x 1.0 = 0.157
A ceramic capacitor will be used and the required capacitance is selected based on the impedance at 468 kHz:
CO = 1/(2 x π x 0.157 x 4.68 x 105) = 2.18 µF
This calculation assumes that impedance due to the equiva­lent series resistance (ESR) and equivalent series inductance (ESL) of CO is negligible. The closest 10% tolerance capacitor value is 2.2 µF. The capacitor used should be rated to 10V or more and have an X7R dielectric. Several manufacturers pro­duce ceramic capacitors with these specifications in the 0805 case size. A typical value for ESR of 1 m can be read from the curve of impedance vs. frequency in the product datasheet.

INPUT CAPACITOR

Following the calculations from the Input Capacitor section, Δv pacitance is:
IN(MAX)
will be 1%
= 240 mV. The minimum required ca-
P-P
C
= (0.35 x 300 x 10-9) / 0.24 = 438 nF
IN(MIN)
In expectation that more capacitance will be needed to pre­vent power supply interaction a 1.0 µF ceramic capacitor rated to 50V with X7R dielectric in a 1206 case size will be used. From the Design Considerations section, input rms cur­rent is:
I
= 0.35 x Sqrt(0.154 x 0.846) = 126 mA
IN-RMS
Ripple current ratings for 1206 size ceramic capacitors are typically higher than 1A, more than enough for this design.

RECIRCULATING DIODE

The first parameter for D1 which must be determined is the reverse voltage rating. Schottky diodes are available at re­verse ratings of 30V and 40V, often in the same package, with the same forward current rating. To account for ringing a 40V Schottky will be used.
The next parameters to be determined are the forward current rating and case size. In this example the low duty cycle (D =
3.7 / 24 = 15%) requires the recirculating diode D1 to carry the load current much longer than the internal power MOS­FET of the LM3402. The estimated average diode current is:
ID = 0.35 x 0.85 = 298 mA
Schottky diodes are available at forward current ratings of
0.5A, however the current rating often assumes a 25°C am­bient temperature and does not take into account the appli­cation restrictions on temperature rise. A diode rated for higher current may be needed to keep the temperature rise below 40°C.To determine the proper case size, the dissipa-
P-
tion and temperature rise in D1 can be calculated as shown in the Design Considerations section. VD for a small case size such as SOD-123 in a 40V, 0.5A Schottky diode at 350 mA is approximately 0.4V and the θJA is 206°C/W. Power dissipa­tion and temperature rise can be calculated as:
PD = 0.298 x 0.4 = 119 mW
T
= 0.119 x 206 = 24.5°C
RISE
According to these calculations the SOD-123 diode will meet the requirements. Heating and dissipation are among the fac-
17 www.national.com
Page 18
tors most difficult to predict in converter design. If possible, a footprint should be used that is capable of accepting both SOD-123 and a larger case size, such as SMA. A larger diode with a higher forward current rating will generally have a lower forward voltage, reducing dissipation, as well as having a lower θJA, reducing temperature rise.
CB and C
LM3402/LM3402HV
The bootstrap capacitor CB should always be a 10 nF ceramic
F
capacitor with X7R dielectric. A 25V rating is appropriate for all application circuits. The linear regulator filter capacitor C should always be a 100 nF ceramic capacitor, also with X7R dielectric and a 25V rating.

EFFICIENCY

To estimate the electrical efficiency of this example the power dissipation in each current carrying element can be calculated and summed. This term should not be confused with the op­tical efficacy of the circuit, which depends upon the LEDs themselves.
Total output power, PO, is calculated as:
PO = IF x VO = 0.35 x 3.7 = 1.295W
Conduction loss, PC, in the internal MOSFET:
2
PC = (I
x R
F
) x D = (0.352 x 1.5) x 0.154 = 28 mW
DSON
Gate charging and VCC loss, PG, in the gate drive and linear regulator:
PG = (600 x 10-6 + 468000 x 3 x 10-9) x 24 = 48 mW
PG = (I
+ fSW x QG) x V
IN-OP
IN
Switching loss, PS, in the internal MOSFET:
PS = 0.5 x 24 x 0.35 x (40 x 10-9) x 468000 = 78 mW
PS = 0.5 x VIN x IF x (tR + tF) x f
SW
AC rms current loss, P
, in the input capacitor:
CIN
2
P
= I
CIN
x ESR = (0.126)2 x 0.006 = 0.1 mW (negligible)
IN(rms)
DCR loss, PL, in the inductor
2
x DCR = 0.352 x 0.096 = 11.8 mW
PL = I
F
Recirculating diode loss, PD = 119 mW Current Sense Resistor Loss, P
= 92 mW
SNS
Electrical efficiency, η = PO / (PO + Sum of all loss terms) =
1.295 / (1.295 + 0.377) = 77%

DIE TEMPERATURE

T
= (PC + PG + PS) x θ
T
LM3402
LM3402
= (0.028 + 0.05 + 0.078) x 200 = 31°C
JA

Design Example 2: LM3402HV

The second example application is an RGB backlight for a flat screen monitor. A separate boost regulator provides a 60V
±5% DC input rail that feeds three LM3402HV current regu­lators to drive one series array each of red, green, and blue 1W LEDs. The target for average LED current is 350 mA ±5% in each string. The monitor will adjust the color temperature dynamically, requiring fast PWM dimming of each string with external, parallel MOSFETs. 1W green and blue InGaN LEDs have a typical forward voltage of 3.5V, however red LEDs use AlInGaP technology with a typical forward voltage of 2.9V. In order to match color properly the design requires 14 green LEDs, twice as many as needed for the red and blue LEDs. This example will follow the design for the green LED array,
F
providing the necessary information to repeat the exercise for the blue and red LED arrays. The circuit schematic for Design Example 2 is the same as the Typical Application on the front page. The bill of materials (green array only) can be found in Table 2 at the end of this datasheet.

OUTPUT VOLTAGE

Green Array: V
Blue Array: V
Red Array: V
= 14 x 3.5 + 0.2 = 49.2V
O(G)
= 7 x 3.5 + 0.2 = 24.7V
O(B)
= 7 x 2.9 + 0.2 = 20.5V
O(R)
RON and t
ON
A compromise in switching frequency is needed in this appli­cation to balance the requirements of magnetics size and efficiency. The high duty cycle translates into large conduc­tion losses and high temperature rise in the IC. For best response to a PWM dimming signal this circuit will not use an output capacitor; hence a moderate switching frequency of 300 kHz will keep the inductance from becoming so large that a custom-wound inductor is needed. This design will use only surface mount components, and the selection of off-the-shelf SMT inductors for switching regulators is poor at 1000 µH and above. RON is selected from the equation for switching fre­quency as follows:
RON = 49.2 / (1.34 x 10
-10
x 3 x 105) = 1224 k
The closest 1% tolerance resistor is 1.21 MΩ. The switching frequency and on-time of the circuit can then be found using the equations relating RON and tON to fSW:
fSW = 49.2 / (1210000 x 1.34 x 10
-10
) = 303 kHz
tON = (1.34 x 10
-10
x 1210000) / 60 = 2.7 µs

USING AN OUTPUT CAPACITOR

This application is dominated by the need for fast PWM dim­ming, requiring a circuit without any output capacitance.

OUTPUT INDUCTOR

In this example the ripple current through the LED array and the inductor are equal. Inductance is selected to give the smallest ripple current possible while still providing enough Δv
signal for the CS comparator to operate correctly. De-
SNS
www.national.com 18
Page 19
LM3402/LM3402HV
signing to a desired Δv average inductor current will equal the desired average LED
of 25 mV and assuming that the
SNS
current of 350 mA yields the target current ripple in the in­ductor and LEDs:
ΔiF = ΔiL = Δv
SNS
/ R
SNS
, R
SNS
= V
SNS
/ I
F
ΔiF = 0.025 / 0.57 = 43.8 mA
With the target ripple current determined the inductance can be chosen:
L
= [(60 – 49.2) x 2.7 x 10-6] / (0.044) = 663 µH
MIN
The closest standard inductor value is 680 µH. As with the previous example, the average current rating should be greater than 350 mA. Separation between the LM3402HV drivers and the LED arrays mean that heat from the inductor will not threaten the lifetime of the LEDs, but an overheated inductor could still cause the LM3402HV to enter thermal shutdown.
The inductance itself of the standard part chosen is ±20%. With this tolerance the typical, minimum, and maximum in­ductor current ripples can be calculated:
Δi
= [(60 - 49.2) x 2.7 x 10-6] / 680 x 10
F(TYP)
= 43 mA
P-P
-6
Δi
= [(60 - 49.2) x 2.7 x 10-6] / 816 x 10
F(MIN)
= 36 mA
P-P
-6
Δi
= [(60 - 49.2) x 2.7 x 10-6] / 544 x 10
F(MAX)
= 54 mA
P-P
-6
The peak LED/inductor current is then estimated:
I
L(PEAK)
= IL + [Δi
L(MAX)
] / 2
I
= 0.35 + 0.027 = 377 mA
L(PEAK)
In the case of a short circuit across the LED array, the LM3402HV will continue to deliver rated current through the short but will reduce the output voltage to equal the CS pin voltage of 200 mV. Worst-case peak current in this condition would be equal to:
Δi
F(LED-SHORT)
= [(63 – 0.2) x 2.7 x 10-6] / 544 x 10
= 314 mA
I
= 0.35 + 0.156 = 506 mA
F(PEAK)
P-P
-6
In the case of a short at the switch node, the output, or from the CS pin to ground the short circuit current limit will engage at a typical peak current of 735 mA. In order to prevent in­ductor saturation during these fault conditions the inductor’s peak current rating must be above 735 mA. A 680 µH off-the
shelf inductor rated to 1.2A (peak) and 0.72A (average) with a DCR of 1.1 will be used for the green LED array.
R
SNS
A preliminary value for R ΔiL. This value should be re-evaluated based on the calcula-
was determined in selecting
SNS
tions for ΔiF:
Sub-1 resistors are available in both 1% and 5% tolerance. A 1%, 0.56 device is the closest value, and a 0.125W, 0805 size device will handle the power dissipation of 69 mW. With the resistance selected, the average value of LED current is re-calculated to ensure that current is within the ±5% toler­ance requirement. From the expression for LED current ac­curacy:
IF = 0.19 / 0.56 + 0.043 / 2 = 361 mA, 3% above 350 mA

INPUT CAPACITOR

Following the calculations from the Input Capacitor section, Δv pacitance is:
IN(MAX)
will be 1%
= 600 mV. The minimum required ca-
P-P
C
= (0.35 x 2.7 x 10-6) / 0.6 = 1.6 µF
IN(MIN)
In expectation that more capacitance will be needed to pre­vent power supply interaction a 2.2 µF ceramic capacitor rated to 100V with X7R dielectric in an 1812 case size will be used. From the Design Considerations section, input rms cur­rent is:
I
= 0.35 x Sqrt(0.82 x 0.18) = 134 mA
IN-RMS
Ripple current ratings for 1812 size ceramic capacitors are typically higher than 2A, more than enough for this design.

RECIRCULATING DIODE

The input voltage of 60V ±5% requires Schottky diodes with a reverse voltage rating greater than 60V. Some manufactur­ers provide Schottky diodes with ratings of 70, 80 or 90V; however the next highest standard voltage rating is 100V. Selecting a 100V rated diode provides a large safety margin for the ringing of the switch node and also makes cross-ref­erencing of diodes from different vendors easier.
The next parameters to be determined are the forward current rating and case size. In this example the high duty cycle (D =
49.2 / 60 = 82%) places less thermals stress on D1 and more on the internal power MOSFET of the LM3402. The estimated average diode current is:
ID = 0.361 x 0.18 = 65 mA
A Schottky with a forward current rating of 0.5A would be ad­equate, however at 100V the majority of diodes have a mini­mum forward current rating of 1A. To determine the proper case size, the dissipation and temperature rise in D1 can be calculated as shown in the Design Considerations section. VD for a small case size such as SOD-123F in a 100V, 1A
19 www.national.com
Page 20
Schottky diode at 350 mA is approximately 0.65V and the
θJA is 88°C/W. Power dissipation and temperature rise can be
calculated as:
PD = 0.065 x 0.65 = 42 mW
T
= 0.042 x 88 = 4°C
RISE
LM3402/LM3402HV
CB AND C
F
The bootstrap capacitor CB should always be a 10 nF ceramic capacitor with X7R dielectric. A 25V rating is appropriate for all application circuits. The linear regulator filter capacitor C should always be a 100 nF ceramic capacitor, also with X7R dielectric and a 25V rating.

EFFICIENCY

To estimate the electrical efficiency of this example the power dissipation in each current carrying element can be calculated and summed. Electrical efficiency, η, should not be confused with the optical efficacy of the circuit, which depends upon the LEDs themselves.
Total output power, PO, is calculated as:
PO = IF x VO = 0.361 x 49.2 = 17.76W
Conduction loss, PC, in the internal MOSFET:
2
PC = (I
F
x R
) x D = (0.3612 x 1.5) x 0.82 = 160 mW
DSON
Gate charging and VCC loss, PG, in the gate drive and linear regulator:
PG = (600 x 10-6 + 3 x 105 x 3 x 10-9) x 60 = 90 mW
PG = (I
+ fSW x QG) x V
IN-OP
IN
Switching loss, PS, in the internal MOSFET:
PS = 0.5 x 60 x 0.361 x 40 x 10-9 x 3 x 105 = 130 mW
PS = 0.5 x VIN x IF x (tR + tF) x f
SW
AC rms current loss, P
, in the input capacitor:
CIN
2
P
= I
CIN
x ESR = (0.134)2 x 0.006 = 0.1 mW (negligible)
IN(rms)
DCR loss, PL, in the inductor
2
x DCR = 0.352 x 1.1 = 135 mW
PL = I
F
F
Recirculating diode loss, PD = 42 mW Current Sense Resistor Loss, P
= 69 mW
SNS
Electrical efficiency, η = PO / (PO + Sum of all loss terms) =
17.76 / (17.76 + 0.62) = 96% Temperature Rise in the LM3402HV IC is calculated as:
T
= (PC + PG + PS) x θJA = (0.16 + 0.084 + 0.13) x 200
LM3402
= 74.8°C

Layout Considerations

The performance of any switching converter depends as much upon the layout of the PCB as the component selection. The following guidelines will help the user design a circuit with maximum rejection of outside EMI and minimum generation of unwanted EMI.

COMPACT LAYOUT

Parasitic inductance can be reduced by keeping the power path components close together and keeping the area of the loops that high currents travel small. Short, thick traces or copper pours (shapes) are best. In particular, the switch node (where L1, D1, and the SW pin connect) should be just large enough to connect all three components without excessive heating from the current it carries. The LM3402/02HV oper­ates in two distinct cycles whose high current paths are shown in Figure 6:

FIGURE 6. Buck Converter Current Loops

The dark grey, inner loop represents the high current path during the MOSFET on-time. The light grey, outer loop rep­resents the high current path during the off-time.

GROUND PLANE AND SHAPE ROUTING

The diagram of Figure 6 is also useful for analyzing the flow of continuous current vs. the flow of pulsating currents. The circuit paths with current flow during both the on-time and off-
www.national.com 20
20192128
time are considered to be continuous current, while those that carry current during the on-time or off-time only are pulsating currents. Preference in routing should be given to the pulsat­ing current paths, as these are the portions of the circuit most likely to emit EMI. The ground plane of a PCB is a conductor and return path, and it is susceptible to noise injection just as any other circuit path. The continuous current paths on the ground net can be routed on the system ground plane with
Page 21
LM3402/LM3402HV
less risk of injecting noise into other circuits. The path be­tween the input source and the input capacitor and the path between the recirculating diode and the LEDs/current sense resistor are examples of continuous current paths. In contrast, the path between the recirculating diode and the input capac­itor carries a large pulsating current. This path should be routed with a short, thick shape, preferably on the component side of the PCB. Multiple vias in parallel should be used right at the pad of the input capacitor to connect the component side shapes to the ground plane. A second pulsating current loop that is often ignored is the gate drive loop formed by the SW and BOOT pins and capacitor CB. To minimize this loop at the EMI it generates, keep CB close to the SW and BOOT pins.

CURRENT SENSING

The CS pin is a high-impedance input, and the loop created by R
, RZ (if used), the CS pin and ground should be made
SNS
as small as possible to maximize noise rejection. R therefore be placed as close as possible to the CS and GND
SNS
should
pins of the IC.

REMOTE LED ARRAYS

In some applications the LED or LED array can be far away (several inches or more) from the LM3402/02HV, or on a sep­arate PCB connected by a wiring harness. When an output capacitor is used and the LED array is large or separated from the rest of the converter, the output capacitor should be placed close to the LEDs to reduce the effects of parasitic inductance on the AC impedance of the capacitor. The current sense resistor should remain on the same PCB, close to the LM3402/02HV.
21 www.national.com
Page 22
ID Part Number Type Size Parameters Qty Vendor
U1 LM3402 LED Driver MSOP-8 40V, 0.5A 1 NSC
L1 SLF7045T-330MR82 Inductor 7.0x7.0 x4.5mm
D1 CMHSH5-4 Schottky Diode SOD-123 40V, 0.5A 1 Central Semi
LM3402/LM3402HV
Cf VJ0805Y104KXXAT Capacitor 0805 100nF 10% 1 Vishay
Cb VJ0805Y103KXXAT Capacitor 0805 10nF 10% 1 Vishay
Cin C3216X7R1H105M Capacitor 1206 1µF 50V 1 TDK
Co C2012X7R1A225M Capacitor 0805 2.2 µF 10V 1 TDK
Rsns ERJ6BQFR75V Resistor 0805
Ron CRCW08055902F Resistor 0805
ID Part Number Type Size Parameters Qty Vendor
U1 LM3402HV LED Driver MSOP-8 75V, 0.5A 1 NSC
L1 DO5022P-684 Inductor 18.5x15.2 x7.1mm
D1 CMMSH1-100 Schottky Diode SOD-123F 100V, 1A 1 Central Semi
Cf VJ0805Y104KXXAT Capacitor 0805 100nF 10% 1 Vishay
Cb VJ0805Y103KXXAT Capacitor 0805 10nF 10% 1 Vishay
Cin C4532X7R2A225M Capacitor 1812 2.2µF 100V 1 TDK
Rsns ERJ6BQFR56V Resistor 0805
Ron CRCW08051214F Resistor 0805

TABLE 1. BOM for Design Example 1

33µH, 0.82A, 96m

TABLE 2. BOM for Design Example 2

680µH, 1.2A, 1.1
0.75Ω 1%
59.0 kΩ 1%
0.56Ω 1%
1.21MΩ 1%
1 TDK
1 Panasonic
1 Vishay
1 Coilcraft
1 Panasonic
1 Vishay
www.national.com 22
Page 23

Physical Dimensions inches (millimeters) unless otherwise noted

LM3402/LM3402HV
8-Lead MSOP Package
NS Package Number MUA08A
8-Lead PSOP Package
NS Package Number MRA08B
23 www.national.com
Page 24
Notes
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright© 2007 National Semiconductor Corporation
For the most current product information visit us at www.national.com
LM3402/LM3402HV 0.5A Constant Current Buck Regulator for Driving High Power LEDs
www.national.com
National Semiconductor Americas Customer Support Center
Email: new.feedback@nsc.com Tel: 1-800-272-9959
National Semiconductor Europe Customer Support Center
Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790
National Semiconductor Asia Pacific Customer Support Center
Email: ap.support@nsc.com
National Semiconductor Japan Customer Support Center
Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560
Loading...