Datasheet LM1972MX, LM1972M, LM1972N Datasheet (NSC)

Page 1
LM1972 µPot
2-Channel 78dB Audio Attenuator with Mute
General Description
The LM1972 is a digitally controlled 2-channel 78dB audio attenuator fabricated on a CMOS process. Each channel has attenuation steps of 0.5dB from 0dB–47.5dB, 1.0dB steps from 48dB–78dB, with a mute function attenuating 104dB. Its logarithmic attenuation curve can be customized through software to fit the desired application.
The performance of a µPot is demonstrated through its ex­cellent Signal-to-Noise Ratio, extremely low (THD+N), and high channel separation. Each µPot contains a mute function that disconnects the input signal from the output, providing a minimum attenuation of 96dB. Transitions between any at­tenuation settings are pop free.
The LM1972’s 3-wire serial digital interface is TTL and CMOS compatible; receiving data that selects a channel and the desired attenuation level. The Data-Out pin of the LM1972 allows multiple µPots to be daisy-chained together, reducing the number of enable and data lines to be routed for a given application.
Key Specifications
n Total Harmonic Distortion + Noise: 0.003%(max)
n Frequency response: 100 kHz (−3dB) (min) n Attenuation range (excluding mute): 78dB (typ) n Differential attenuation:
±
0.25dB (max)
n Signal-to-noise ratio (ref. 4 Vrms): 110dB (min) n Channel separation: 100dB (min)
Features
n 3-wire serial interface n Daisy-chain capability n 104dB mute attenuation n Pop and click free attenuation changes
Applications
n Automated studio mixing consoles n Music reproduction systems n Sound reinforcement systems n Electronic music (MIDI) n Personal computer audio control
Typical Application Connection Diagram
µPot™and Overture™are trademarks of National Semiconductor Corporation.
DS011978-1
FIGURE 1. Typical Audio Attenuator Application Circuit
Dual-In-Line Plastic or
Surface Mount Package
DS011978-2
Top View
Order Number LM1972M or LM1972N
See NS Package Number M20B or N20A
April 1995
LM1972 µPot 2-Channel 78dB Audio Attenuator with Mute
© 1999 National Semiconductor Corporation DS011978 www.national.com
Page 2
Absolute Maximum Ratings (Notes 2, 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage (V
DD–VSS
) 15V
Voltage at Any Pin V
SS
− 0.2V to VDD+ 0.2V Power Dissipation (Note 3) 150 mW ESD SusceptabiIity (Note 4) 2000V Junction Temperature 150˚C
Soldering Information
N Package (10 sec.) +260˚C
Storage Temperature −65˚C to +150˚C
Operating Ratings (Note 1) (Note 2)
T
MINTA
T
MAX
Temperature Range T
MIN≤TA≤TMAX
0˚C T
A
+70˚C
Supply Voltage (V
DD−VSS
) 4.5V to 12V
Electrical Characteristics (Note 1) (Note 2)
The following specifications apply for all channels with V
DD
=
+6V, V
SS
=
−6V, V
IN
=
5.5 Vpk, and f=1 kHz, unless otherwise
specified. Limits apply for T
A
=
25˚C. Digital inputs are TTL and CMOS compatible.
Symbol Parameter Conditions LM1972 Units
(Limits)
Typical Limit
(Note 5) (Note 6)
I
S
Supply Current Inputs are AC Grounded 2 4 mA (max)
THD+N Total Harmonic Distortion plus Noise V
IN
=
0.5 Vpk
@
0dB Attenuation 0.0008 0.003
%
(max)
XTalk Crosstalk (Channel Separation) 0dB Attenuation for V
IN
110 100 dB (min)
V
CH
measured@−78dB
SNR Signal-to-Noise Ratio Inputs are AC Grounded
@
−12dB Attenuation 120 110 dB (min)
A-Weighted
A
M
Mute Attenuation 104 96 dB (min) Attenuation Step Size Error 0dB to −47.5dB
±
0.05 dB (max)
−48dB to −78dB
±
0.25 dB (max)
Absolute Attenuation Error Attenuation
@
0dB 0.03 0.5 dB (min)
Attenuation
@
−20dB 19.8 19.0 dB (min)
Attenuation
@
−40dB 39.5 39.0 dB (min)
Attenuation
@
−60dB 59.3 57.5 dB (min)
Attenuation
@
−78dB 76.3 74.5 dB (min)
Channel-to-Channel Attenuation Attenuation
@
0dB, −20dB, −40dB, −60dB
±
0.5 dB (max)
Tracking Error Attenuation
@
−78dB
±
0.75 dB (max)
I
LEAK
Analog Input Leakage Current Inputs are AC Grounded 10.0 100 nA (max)
R
IN
AC Input Impedance Pins 4, 20, V
IN
=
1.0 Vpk, f=1 kHz 40 20 k(min) 60 k(max)
I
IN
Input Current
@
Pins 9, 10, 11@0V<V
IN
<
5V 1.0
±
100 nA (max)
f
CLK
Clock Frequency 3 2 MHz (max)
V
IH
High-Level Input Voltage
@
Pins 9, 10, 11 2.0 V (min)
V
IL
Low-Level Input Voltage
@
Pins 9, 10, 11 0.8 V (max)
Data-Out Levels (Pin 12) V
DD
=
6V, V
SS
=
0V 0.1 V (max)
5.9 V (min)
Note 1: All voltages are measured with respect to GND pins (1, 3, 5, 6, 14, 16, 19), unless otherwise specified. Note 2:
Absolute Maximum Ratings
indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is func-
tional, but do not guarantee specific performance limits.
Electrical Characteristics
state DC and AC electrical specifications under particular test conditions which guar­antee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T
JMAX
, θJA, and the ambient temperature TA. The maximum
allowable power dissipation is PD=(T
JMAX−TA
)/θJAor the number given in the Absolute Maximum Ratings, whichever is lower. For the LM1972, T
JMAX
=
+150˚C,
and the typical junction-to-ambient thermal resistance, when board mounted, is 65˚C/W.
Note 4: Human body model, 100 pF discharged through a 1.5 kresistor. Note 5: Typicals are measured at 25˚C and represent the parametric norm. Note 6: Limits are guaranteed to National’s AOQL (Average Output Quality Level).
www.national.com 2
Page 3
Electrical Characteristics (Note 1) (Note 2) (Continued)
Pin Description
Signal Ground (3, 19): Each input has its own independent
ground, GND1 and GND2. Signal Input (4, 20): There are 2 independent signal inputs,
IN1 and IN2. Signal Output (2, 17): There are 2 independent signal out-
puts, OUT1 and OUT2. Voltage Supply (13, 15): Positive voltage supply pins, V
DD1
and V
DD2
.
Voltage Supply (7, 18): Negative voltage supply pins, V
SS1
and V
SS2
. To be tied to ground in a single supply configura-
tion. AC Ground (1, 5, 6, 14, 16): These five pins are not physi-
cally connected to the die in any way (i.e., No bondwires). These pins must be AC grounded to prevent signal coupling between any of the pins nearby. Pin 14 should be connected to pins 13 and 15 for ease of wiring and the best isolation, as an example.
Logic Ground (8): Digital signal ground for the interface lines; CLOCK, LOAD/SHIFT, DATA-IN and DATA-OUT.
Clock (9): The clock input accepts a TTL or CMOS level sig­nal. The clock input is used to load data into the internal shift register on the rising edge of the input clock waveform.
Load/Shift (10): The load/shift input accepts a TTL or CMOS level signal. This is the enable pin of the device, al­lowing data to be clocked in while this input is low (0V).
Data-In (11):The data-in input accepts a TTLor CMOS level signal. This pin is used to accept serial data from a micro­controller that will be latched and decoded to change a chan­nel’s attenuation level.
Data-Out (12): This pin is used in daisy-chain mode where more than one µPot is controlled via the same data line. As the data is clocked into the chain from the µC, the preceding data in the shift register is shifted out the DATA-OUT pin to the next µPot in the chain or to ground if it is the last µPot in the chain. The LOAD/SHIFT line goes high once all of the new data has been shifted into each of its respective regis­ters.
Connection Diagram
DS011978-3
FIGURE 2. Timing Diagram
DS011978-4
www.national.com3
Page 4
Typical Performance Characteristics
Supply Current vs Supply Voltage
DS011978-15
Supply Current vs Temperature
DS011978-16
Noise Floor Spectrum by FFT Amplitude vs Frequency
DS011978-17
THD vs Freq by FFT V
DD−VSS
=
12V
DS011978-18
THD vs V
OUT
at 1 KHz by FFT V
DD−VSS
=
12V
DS011978-19
Crosstalk Test
DS011978-20
THD+Nvs Frequency and Amplitude
DS011978-21
FFT of 1 kHz THD
DS011978-22
FFT of 20 kHz THD
DS011978-23
www.national.com 4
Page 5
Typical Performance Characteristics (Continued)
Application Information
ATTENUATION STEP SCHEME
The fundamental attenuation step scheme for the LM1972 µPot is shown in
Figure 3
. This attenuation step scheme, however, can be changed through programming techniques to fit different application requirements. One such example would be a constant logarithmic attenuation scheme of 1dB steps for a panning function as shown in
Figure 4
. The only restriction to the customization of attenuation schemes are the given attenuation levels and their corresponding data bits shown in
Table 1
. The device will change attenuation levels only when a channel address is recognized. When recognized, the attenuation level will be changed corre­sponding to the data bits shown in
Table1
. As shown in
Fig-
ure 6
, an LM1972 can be configured as a panning control which separates the mono signal into left and right channels. This circuit may utilize the fundamental attenuation scheme of the LM1972 or be programmed to provide a constant 1dB logarithmic attenuation scheme as shown in
Figure 4
.
THD+NvsAmplitude
DS011978-24
THD+NvsAmplitude
DS011978-25
THD+NvsAmplitude
DS011978-26
LM1972 Channel Attenuation
vs Digital Step Value
DS011978-6
FIGURE 3. LM1972 Attenuation Step Scheme
LM1972 Channel Attenuation
vs Digital Step Value
(Programmed 1.0dB Steps)
DS011978-7
FIGURE 4. LM1972 1.0dB
Attenuation Step Scheme
LM1972 Channel Attenuation
vs Digital Step Value
(Programmed 2.0dB Steps)
DS011978-8
FIGURE 5. LM1972 2.0dB Attenuation Step Scheme
www.national.com5
Page 6
Application Information (Continued)
INPUT IMPEDANCE
The input impedance of a µPot is constant at a nominal 40 k. To eliminate any unwanted DC components from propagating through the device it is common to use 1 µF in­put coupling caps. This is not necessary, however, if the dc offset from the previous stage is negligible. For higher per­formance systems, input coupling caps are preferred.
OUTPUT IMPEDANCE
The output of a µPot varies typically between 25 kand 35 kand changes nonlinearly with step changes. Since a µPot is made up of a resistor ladder network with a logarith­mic attenuation, the output impedance is nonlinear. Due to this configuration, a µPot cannot be considered as a linear potentiometer, but can be considered only as a logarithmic attenuator.
It should be noted that the linearity of a µPot cannot be mea­sured directly without a buffer because the input impedance of most measurement systems is not high enough to provide the required accuracy.Due to the low impedance of the mea­surement system, the output of the µPot would be loaded down and an incorrect reading will result. To prevent loading from occurring, a JFET input op amp should be used as the buffer/amplifier.The performance of a µPot is limited only by the performance of the external buffer/amplifier.
MUTE FUNCTION
One major feature of a µPot is its ability to mute the input sig­nal to an attenuation level of 104dB as shown in
Figure 3
. This is accomplished internally by physically isolating the output from the input while also grounding the output pin through approximately 2 k.
The mute function is obtained during power-up of the device or by sending any binary data of 01111111 and above (to
DC INPUTS
Although the µPot was designed to be used as an attenuator for signals within the audio spectrum, the device is capable of tracking an input DC voltage. The device will track DC voltages to a diode drop above each supply rail.
One point to remember about DC tracking is that with a buffer at the output of the µPot, the resolution of DC tracking will depend upon the gain configuration of that output buffer and its supply voltage. It should also be remembered thatthe output buffer’s supply voltage does not have to be the same as the µPot’s supply voltage. This could allow for more reso­lution when DC tracking.
SERIAL DATA FORMAT
The LM1972 uses a 3-wire serial communication format that is easily controlled by a microcontroller. The timing for the 3-wire set, comprised of DATA-IN, CLOCK, and LOAD/ SHIFT is shown in
Figure 2.Figure 9
exhibits in block dia­gram form how the digital interface controls the tap switches which select the appropriate attenuation level.As depicted in
Figure 2
, the LOAD/SHIFT line is to go low at least 150 ns before the rising edge of the first clock pulse and is to remain low throughout the transmission of each set of 16 data bits. The serial data is comprised of 8 bits for channel selection and 8 bits for attenuation setting. For both address data and attenuation setting data, the MSB is sent first and the 8 bits of address data are to be sent before the 8 bits of attenuation data. Please refer to
Figure 7
to confirm the serial data for-
mat transfer process.
TABLE 1. LM1972 Micropot Attenuator
Register Set Description
MSB: LSB
Address Register (Byte 0)
0000 0000 Channel 1 0000 0001 Channel 2 0000 0010 Channel 3
Data Register (Byte 1)
Contents Attenuation Level dB
0000 0000 0.0 0000 0001 0.5 0000 0010 1.0 0000 0011 1.5
::::: :: 0001 1110 15.0 0001 1111 15.5 0010 0000 16.0 0010 0001 16.5 0010 0010 17.0
::::: :: 0101 1110 47.0 0101 1111 47.5 0110 0000 48.0 0110 0001 49.0 0110 0010 50.0
::::: :: 0111 1100 76.0 0111 1101 77.0 0111 1110 78.0 0111 1111 100.0 (Mute) 1000 0000 100.0 (Mute)
::::: ::
DS011978-9
FIGURE 6. Mono Panning Circuit
www.national.com 6
Page 7
Application Information (Continued)
TABLE 1. LM1972 Micropot Attenuator
Register Set Description (Continued)
MSB: LSB
Data Register (Byte 1)
1111 1110 100.0 (Mute) 1111 1111 100.0 (Mute)
µPot SYSTEM ARCHITECTURE
The µPot’s digital interface is essentially a shift register, where serial data is shifted in, latched, and then decoded. As new data is shifted into the DATA-IN pin, the previously latched data is shifted out the DATA-OUTpin. Once the data is shifted in, the LOAD/SHIFT line goes high, latching in the new data. The data is then decoded and the appropriate switch is activated to set the desired attenuation level for the selected channel. This process is continued each and every time an attenuation change is made. Each channel is up­dated, only, when that channel is selected for an attenuator change or the system is powered down and then back up again. When the µPot is powered up, each channel is placed into the muted mode.
µPot LADDER ARCHITECTURE
Each channel of a µPot has its own independent resistor lad­der network. As shown in
Figure 8
, the ladder consists of multiple R1/R2 elements which make up the attenuation scheme. Within each element there are tap switches that se­lect the appropriate attenuation level corresponding to the data bits in
Table1
. It can be seen in
Figure 8
that the input impedance for the channel is a constant value regardless of which tap switch is selected, while the output impedance varies according to the tap switch selected.
DIGITAL LINE COMPATIBILITY
The µPot’s digital interface section is compatible with either TTL or CMOS logic due to the shift register inputs acting upon a threshold voltage of 2 diode drops or approximately
1.4V.
DIGITAL DATA-OUT PIN
The DATA-OUT pin is available for daisy-chain system con­figurations where multiple µPots will be used. The use of the daisy-chain configuration allows the system designer to use only one DATA and one LOAD/SHIFT line per chain, thus simplifying PCB trace layouts.
In order to provide the highest level of channel separation and isolate any of the signal lines from digital noise, the DATA-OUT pin should be terminated througha2kΩresistor if not used. The pin may be left floating, however, any signal noise on that line may couple to adjacent lines creating higher noise specs.
DS011978-10
FIGURE 7. Serial Data Format Transfer Process
DS011978-12
FIGURE 8. µPot Ladder Architecture
www.national.com7
Page 8
Application Information (Continued)
DAISY-CHAIN CAPABILITY
Since the µPot’s digital interface is essentially a shift register, multiple µPots can be programmed utilizing the same data and load/shift lines. As shown in
Figure 11
, for an n-µPot daisy-chain, there are 16n bits to be shifted and loaded for the chain. The data loading sequence is the same for n-µPots as it is for one µPot. First the LOAD/SHIFT line goes low,then the data is clockedin sequentially while the preced­ing data in each µPot is shifted out the DATA-OUT pin to the next µPot in the chain or to ground if it is the last µPot in the chain. Then the LOAD/SHIFT line goes high; latching the data into each of their corresponding µPots. The data is then decoded according to the address (channel selection) and the appropriate tap switch controlling the attenuation level is selected.
CROSSTALK MEASUREMENTS The crosstalk of a µPot as shown in the Typical Perfor-
mance Characteristics section was obtained by placing a
signal on one channel and measuring the level at the output of another channel of the same frequency. It is important to be sure that the signal level being measured is of the same frequency such that a true indication of crosstalk may be ob­tained. Also, to ensure an accurate measurement, the mea­sured channel’s input should be AC grounded througha1µF capacitor.
CLICKS AND POPS
So, why is that output buffer needed anyway? There are three answers to this question, all of which are important from a system point of view.
The first reason to utilize a buffer/amplifier at the output of a µPot is to ensure that there are no audible clicks or pops due to attenuation step changes in the device. If an on-board bi­polar op amp had been used for the output stage, its require­ment of a finite amount of DC bias current for operation would cause a DC voltage “pop” when the output impedance of the µPot changes. Again, this phenomenon is due to the fact that the output impedance of the µPot is changing with step changes and a bipolar amplifier requires a finite amount
Secondly, the µPot has no drive capability, so any desired gain needs to be accomplished through a buffer/ non-inverting amplifer.
Clicks and pops can be avoided by using a JFET input buffer/amplifier such as an LF412ACN. The LF412 has a high input impedance and exhibits both a low noise floor and low THD+N throughout the audio spectrum which maintains signal integrity and linearity for the system.The performance of the system solution is entirely dependent upon the quality and performance of the JFET input buffer/amplifier.
LOGARITHMIC GAIN AMPUFIER
Figure 10
, a µPot used in the feedback loop creates a loga­rithmic gain amplifier. In this configuration the attenuation levels from
Table1
, now become gain levels with the largest possible gain value being 78dB. For most applications 78dB of gain will cause signal clipping to occur, however, because of the µPot’s versatility the gain can be controlled through programming such that the clipping level of the system is never obtained.An important point to remember is that when in mute mode the input is disconnected from the output. In this configuration this will place the amplifier in its open loop gain state, thus resulting in severe comparator action. Care should be taken with the programming and design of this type of circuit. To provide the best performance, a JFETinput amplifier should be used.
DS011978-11
FIGURE 9. µPot System Architecture
www.national.com 8
Page 9
Application Information (Continued)
DS011978-14
FIGURE 10. Digitally-Controlled Logarithmic Gain Amplifier Circuit
DS011978-13
FIGURE 11. n-µPot Daisy-Chained Circuit
www.national.com9
Page 10
Physical Dimensions inches (millimeters) unless otherwise noted
Surface Mount Package
Order Number LM1972M
NS Package Number M20B
Dual-In-Line Plastic Package
Order Number LM1972N
NS Package Number N20A
www.national.com 10
Page 11
Notes
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
National Semiconductor Corporation
Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com
National Semiconductor Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80
National Semiconductor Asia Pacific Customer Response Group
Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com
National Semiconductor Japan Ltd.
Tel: 81-3-5639-7560 Fax: 81-3-5639-7507
www.national.com
LM1972 µPot 2-Channel 78dB Audio Attenuator with Mute
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
Loading...