Datasheet LF442CN, LF442CDR2, LF442CD, LF444CN, LF444CD Datasheet (MOTOROLA)

...
Page 1
  
SEMICONDUCTOR
TECHNICAL DATA
LOW POWER
JFET INPUT
OPERATIONAL AMPLIFIERS
Order this document by LF441C/D
1
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
N SUFFIX
PLASTIC PACKAGE
CASE 626
Offset Null
Inputs
V
EE
(Single, Top View)
NC V
CC
Output Offset Null
Output 1
Inputs 1
V
EE
(Dual, Top View)
Inputs 2
Output 2
V
CC
1 2 3 4
8 7 6 5
+
– +
2
1 2 3 4
8 7 6 5
8
1
8
1
PIN CONNECTIONS
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
N SUFFIX
PLASTIC PACKAGE
CASE 646
Output 1
Inputs 1
V
CC
Inputs 2
Output 2
Output 4
Inputs 4
V
EE
Inputs 3
Output 3
(Quad, Top View)
1
2
3
4 5
6
78
9
10
11
12
13
14
4
23
++ ++
1
14
1
14
1
––
––
PIN CONNECTIONS
1
MOTOROLA ANALOG IC DEVICE DATA
     
These JFET input operational amplifiers are designed for low power applications. They feature high input impedance, low input bias current and low input offset current. Advanced design techniques allow for higher slew rates, gain bandwidth products and output swing. The LF441C device provides for the external null adjustment of input offset voltage.
These devices are specified over the commercial temperature range. All are available in plastic dual in–line and SOIC packages.
Low Supply Current: 200 µA/Amplifier
Low Input Bias Current: 5.0 pA
High Gain Bandwidth: 2.0 MHz
High Slew Rate: 6.0 V/µs
High Input Impedance: 10
12
Large Output Voltage Swing: ±14 V
Output Short Circuit Protection
Representative Schematic Diagram
(Each Amplifier)
1
5
V
EE
LF441C input offset voltage
null adjust circuit
100 k
1.5 k
15
*
*
Inputs
J1 J2
R1 R2
R3
R4
Q1 Q2
Q3
Q4
Q5
R5
C1
C2
Q6
D1
Q7
D2
V
EE
Output
V
CC
*Null adjustment pins for LF441 only.
+
+
ORDERING INFORMATION
Device Function
Operating
Temperature Range
Package
LF441CD LF441CN
Single
SO–8
Plastic DIP
LF442CD LF442CN
Dual
TA = 0° to +70°C
SO–8
Plastic DIP
LF444CD LF444CN
Quad SO–14
Plastic DIP
Motorola, Inc. 1996 Rev 0
Page 2
LF441C LF442C LF444C
2
MOTOROLA ANALOG IC DEVICE DATA
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (from VCC to VEE) V
S
+36 V
Input Differential Voltage Range (Note 1) V
IDR
±30 V
Input Voltage Range (Notes 1 and 2) V
IR
±15 V
Output Short Circuit Duration (Note 3) t
SC
Indefinite sec
Operating Junction Temperature (Note 3) T
J
+150 °C
Storage Temperature Range T
stg
–60 to +150 °C
NOTES: 1. Differential voltages are at the noninverting input terminal with respect to the inverting
input terminal.
2.The magnitude of the input voltage must never exceed the magnitude of the supply or 15 V, whichever is less.
3.Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 1).
DC ELECTRICAL CHARACTERISTICS (V
CC
= +15 V , VEE = –15 V , TA = 0° to 70°C, unless otherwise noted.)
Characteristic
Symbol Min Typ Max Unit
Input Offset Voltage (RS = 10 k, VO = 0 V) V
IO
mV
Single: TA = +25°C 3.0 5.0
TA = 0° to +70°C 7.5
Dual: TA = +25°C 3.0 5.0
TA = 0° to +70°C 7.5
Quad: TA = +25°C 3.0 10
TA = 0° to +70°C 12
Average Temperature Coefficient of Offset V oltage VIO/T 10 µV/°C
(RS = 10 k, VO = 0 V)
Input Offset Current (VCM = 0 V, VO = 0 V) I
IO
TA = +25°C 0.5 50 pA TA = 0° to +70°C 1.5 nA
Input Bias Current (VCM = 0 V, VO = 0 V) I
IB
TA = +25°C 3.0 100 pA TA = 0° to +70°C 3.0 nA
Common Mode Input Voltage Range (TA = +25°C) V
ICR
–11
+14.5
–12
+11
V
Large Signal Voltage Gain (VO = ±10 V, RL = 10 k) A
VOL
V/mV TA = +25°C 25 60 – TA = 0° to +70°C 15
Output Voltage Swing (RL = 10 k) VO +
VO –
+12
+14
–14
–12
V
Common Mode Rejection (RS 10 kΩ, VCM = V
ICR
, VO = 0 V) CMR 70 86 dB Power Supply Rejection (RS = 100 Ω, VCM = 0 V, VO = 0 V) PSR 70 84 dB Power Supply Current (No Load, VO = 0 V) I
D
µA Single 200 250 Dual 400 500 Quad 800 1000
Page 3
LF441C LF442C LF444C
3
MOTOROLA ANALOG IC DEVICE DATA
AC ELECTRICAL CHARACTERISTICS (V
CC
= +15 V , VEE = –15 V , TA = +25°C, unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
Slew Rate (Vin = –10 V to +10 V, RL = 10 k, CL = 10 pF, AV = +1.0) SR 0.6 6.0 V/ µs Settling Time To within 10 mV t
s
1.6 µs
(AV = –1.0, RL = 10 k, VO = 0 V to +10 V) To within 1.0 mV 2.2
Gain Bandwidth Product (f = 200 kHz) GBW 0.6 2.0 MHz Equivalent Input Noise Voltage (RS = 100 , f = 1.0 kHz) e
n
47
nV/ Hz
Equivalent Input Noise Current (f = 1.0 kHz) i
n
0.01
pA/ Hz
Input Resistance R
i
10
12
Channel Separation (f = 1.0 Hz to 20 kHz) CS 120 dB
I
D,
SUPPLY CURRENT PER AMPLIFIER ( A)
P
D,
MAXIMUM POWER DISSIPATION (mW)
I
IB,
INPUT BIAS CURRENT (nA)
I
IB
, INPUT BIAS CURRENT (pA)
TA, AMBIENT TEMPERATURE (°C) V
ICR
, INPUT COMMON MODE VOLTAGE (V)
VCC,
VEE
, SUPPLY VOLTAGE (V)
2400
2000
1600
1200
800
400
0 –55 –40 –20 0 20 40 60 80 100 120 140 160
TA, AMBIENT TEMPERATURE (°C)
µ
Figure 1. Maximum Power Dissipation versus
Temperature for Package Variations
Figure 2. Input Bias Current versus
Input Common Mode Voltage
Figure 3. Input Bias Current versus Temperature Figure 4. Supply Current versus Supply Voltage
8 & 14 Pin Plastic
Package
SO–14
SO–8
VCC = +15 V VEE = –15 V TA = 25
°
C
20
15
10
5.0
0
1000
100
10
1.0
0.1
0.01
0.001
300
260
220
180
140
100
–10 –5.0 0 5.0 10
–55 –25 0 25 50 75 100 125 0 5.0 10 15 20 25
VCC = +15 V VEE = –15 V VCM = 0 V
125°C
25°C
–55°C
Page 4
LF441C LF442C LF444C
4
MOTOROLA ANALOG IC DEVICE DATA
VCC = +15 V VEE = –15 V
25°C
–55°C
125°C
+V
ICR,
POSITIVE INPUT COMMON MODE
VOLTAGE RANGE (V)
–V
ICR,
NEGATIVE INPUT COMMON MODE
VOLTAGE RANGE (V)
VCC, POSITIVE SUPPLY VOLTAGE (V) VEE, NEGATIVE SUPPLY VOLTAGE (V)
20
15
10
5.0
0
2015105.00
–20
–15
–10
–5.0
0
0 –5.0 –10 –15 –20
Figure 5. Positive Input Common Mode Voltage
Range versus Positive Supply Voltage
Figure 6. Negative Input Common Mode Voltage
Range versus Negative Supply Voltage
Figure 7. Output Voltage versus Output
Source Current
Figure 8. Output Voltage versus
Output Sink Current
Figure 9. Output Voltage Swing
versus Supply Voltage
Figure 10. Output Voltage Swing
versus Load Resistance
IO, OUTPUT SOURCE CURRENT (mA) –IO, OUTPUT SINK CURRENT (mA)
VCC,
VEE
, SUPPLY VOLTAGE (V) RL, LOAD RESISTANCE (Ω)
20
15
10
5.0
0
0
–20
–15
–10
–5.0
0
0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 2.0 4.0 6.0 8.0 10 12 14 16 18 20
40 35 30 25 20 15 10
5.0 0
0 2.0 4.0 6.0 8.0 10 12 14 16 1.0 k 2.0 k 3.0 k 4.0 k 6.0 k 8.0 k 10 k
28 26 24 22
20 18
16
V
O
, OUTPUT VOLTAGE (V)
V
O
, OUTPUT VOLTAGE (V)
–55°C ≤ TA ≤ 125°C –55°C ≤ TA ≤ 125°C
RL = 10 k
–55°C ≤ TA ≤ 125°C
VCC = +15 V VEE = –15 V TA = 25
°
C
V
O
, OUTPUT VOL TAGE SWING (V
p–p
)
V
O
, OUTPUT VOL TAGE SWING (V
p–p
)
VCC = +15 V VEE = –15 V
125°C
25°C
–55°C
Page 5
LF441C LF442C LF444C
5
MOTOROLA ANALOG IC DEVICE DATA
Figure 11. Normalized Gain Bandwidth
Product versus Temperature
Figure 12. Open Loop Voltage Gain and
Phase versus Frequency
GBW, NORMALIZED GAIN BANDWIDTH PRODUCT
A
VOL
, OPEN LOOP VOL TAGE GAIN (dB)
TA, AMBIENT TEMPERATURE (°C) f, FREQUENCY (MHz)
VCC = +15 V VEE = –15 V RL = 10 k
CL = 100 pF
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
20
10
0
–10
–20
0.1 1.0 10
90
135
180
225
270
–75 –50 –25 0 25 50 75 100 125
EXCESS PHASE (DEGREES)
φ,
Phase
Gain
Figure 13. Slew Rate versus Temperature
Figure 14. Total Output Distortion
versus Frequency
Figure 15. Output Voltage Swing
versus Frequency
Figure 16. Open Loop Voltage
Gain versus Frequency
TA, AMBIENT TEMPERATURE (°C) f, FREQUENCY (Hz)
f, FREQUENCY (Hz) f, FREQUENCY (Hz)
SR, SLEW RATE (V/
µ
s)
THD, OUTPUT DISTORTION (%)
A
VOL
, OPEN LOOP VOL TAGE GAIN (dB)
8.0
7.0
6.0
5.0
4.0 –75 –50 –25 0 25 50 75 100 125
30
20
10
0
1.0 k
10 k
100 k 1.0 M
100
80
60
40
20
0
0.1 1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M
2.5
2.0
1.5
1.0
0.5
0
10 100 1.0 k 10 k 100 k
VCC = +15 V VEE = –15 V RL = 10 k
AV = +1.0
VCC = +15 V VEE = –15 V TA = 25
°
C
AV = 10
AV = 100
VCC = +15 V VEE = –15 V RL = 10 k
TA = 25°C
VCC = +15 V VEE = –15 V RL = 10 k
AV = +1.0 1% THD TA = 25
°
C
VCC = +15 V VEE = –15 V RL = 10 k
CL = 100 pF TA = 25
°
C
V
O
, OUTPUT VOL TAGE SWING (V
p–p
)
Page 6
LF441C LF442C LF444C
6
MOTOROLA ANALOG IC DEVICE DATA
–PSR
Figure 17. Common Mode Rejection
versus Frequency
Figure 18. Power Supply Rejection
versus Frequency
f, FREQUENCY (Hz) f, FREQUENCY (Hz)
CMR, COMMON MODE REJECTION (dB)
PSR, POWER SUPPLY REJECTION (dB)
140
120 100
80 60
40 20
0
100 1.0 k 10 k 100 k 1.0 M
140 120
100
80 60 40 20
0
100 1.0 k 10 k 100 k 1.0 M
+
V
CM
V
O
CMR = 20 Log
V
CM
V
O
x A
DM
()
A
DM
V
CC
V
O
V
EE
+PSR
(∆VCC = ±1.5 V)
(∆VEE=±1.5 V)
– +
A
DM
V
CC
+PSR = 20 Log
VO /A
DM
V
EE
–PSR = 20 Log
VO /A
DM
) )
( (
10 mV
Figure 19. Input Noise Voltage versus Frequency
Figure 20. Open Loop Voltage
Gain versus Supply Voltage
Figure 21. Output Impedance versus Frequency Figure 22. Inverter Settling Time
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
VCC, VEE, SUPPLY VOLTAGE (V)
ts, SETTLING TIME (
µ
s)
e ,
n
A
VOL
, OPEN LOOP VOL TAGE GAIN (V V)
Z
O
, OUTPUT IMPEDANCE (
)
V
O
, OUTPUT VOL TAGE STEP FROM 0 V (V)
70 60 50 40 30 20 10
0
10 100 1.0 k 10 k 100 k
1.0 M
100 k
10 k
0 5.0 10 15 20 25
350 300
250 200 150 100
50
0
100 1.0k 10k 100k 1.0M
10
5.0
0
–5.0
–10
0.1 1.0 10
RL = 10 k
125°C
–55°C
10 mV
1.0 mV
INPUT NOISE VOLTAGE (
nV/
Hz
)
1.0 mV
VCC = +15 V VEE = –15 V VCM = 0 V
VCM = ±1.5 V
TA = 25
°
C
VCC = +15 V VEE = –15 V TA = 25
°
C
VCC = +15 V VEE = –15 V VCM = 0 V TA = 25
°
C
25°C
VCC = +15 V VEE = –15 V TA = 25
°
C
VCC = +15 V VEE = –15 V TA = 25
°
C
AV = 100 AV = 10 AV = 1.0
Page 7
LF441C LF442C LF444C
7
MOTOROLA ANALOG IC DEVICE DATA
0
Figure 23. Inverting Figure 24. Noninverting
Figure 25. Inverting Figure 26. Noninverting
V
O
, OUTPUT VOLTAGE (50 mV/DIV)
V
O
, OUTPUT VOLTAGE (50 mV/DIV)
V
O
, OUTPUT VOLTAGE (5.0 V/DIV)
V
O
, OUTPUT VOLTAGE (5.0 V/DIV)
t, TIME (0.5 µs/DIV)
t, TIME (2.0
µ
s/DIV)
SMALL SIGNAL RESPONSE
LARGE SIGNAL RESPONSE
0
t, TIME (0.5
µ
s/DIV)
0
t, TIME (2.0
µ
s/DIV)
0
VCC = +15 V VEE = –15 V RL = 10 k
CL = 10 pF AV = –1.0 TA = 25
°
C
VCC = +15 V VEE = –15 V RL = 10 k
CL = 10 pF AV = +1.0 TA = 25
°
C
VCC = +15 V VEE = –15 V RL = 10 k
CL = 10 pF AV = –1.0 TA = 25
°
C
VCC = +15 V VEE = –15 V RL = 10 k
CL = 10 pF AV = +1.0 TA = 25
°
C
Page 8
LF441C LF442C LF444C
8
MOTOROLA ANALOG IC DEVICE DATA
OUTLINE DIMENSIONS
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
14
58
F
NOTE 2
–A–
–B–
–T–
SEATING PLANE
H
J
G
D
K
N
C
L
M
M
A
M
0.13 (0.005) B
M
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 9.40 10.16 0.370 0.400 B 6.10 6.60 0.240 0.260 C 3.94 4.45 0.155 0.175 D 0.38 0.51 0.015 0.020 F 1.02 1.78 0.040 0.070 G 2.54 BSC 0.100 BSC H 0.76 1.27 0.030 0.050 J 0.20 0.30 0.008 0.012 K 2.92 3.43 0.115 0.135 L 7.62 BSC 0.300 BSC M ––– 10 ––– 10 N 0.76 1.01 0.030 0.040
__
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
N SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
SEATING PLANE
1
4
58
A0.25MCB
SS
0.25MB
M
h
q
C
X 45
_
L
DIM MIN MAX
MILLIMETERS
A 1.35 1.75
A1 0.10 0.25
B 0.35 0.49 C 0.18 0.25 D 4.80 5.00 E
1.27 BSCe
3.80 4.00
H 5.80 6.20 h
0 7
L 0.40 1.25
q
0.25 0.50
__
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.
D
E
H
A
B
e
B
A1
C
A
0.10
Page 9
LF441C LF442C LF444C
9
MOTOROLA ANALOG IC DEVICE DATA
OUTLINE DIMENSIONS
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
4. ROUNDED CORNERS OPTIONAL.
17
14 8
B
A F
HG D
K
C
N
L
J
M
SEATING PLANE
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.715 0.770 18.16 19.56 B 0.240 0.260 6.10 6.60 C 0.145 0.185 3.69 4.69 D 0.015 0.021 0.38 0.53 F 0.040 0.070 1.02 1.78 G 0.100 BSC 2.54 BSC H 0.052 0.095 1.32 2.41 J 0.008 0.015 0.20 0.38 K 0.115 0.135 2.92 3.43 L 0.300 BSC 7.62 BSC M 0 10 0 10 N 0.015 0.039 0.39 1.01
____
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
–A–
–B–
G
P
7 PL
14 8
71
M
0.25 (0.010) B
M
S
B
M
0.25 (0.010) A
S
T
–T–
F
R
X 45
SEATING PLANE
D 14 PL
K
C
J
M
_
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 8.55 8.75 0.337 0.344 B 3.80 4.00 0.150 0.157 C 1.35 1.75 0.054 0.068 D 0.35 0.49 0.014 0.019
F 0.40 1.25 0.016 0.049
G 1.27 BSC 0.050 BSC
J 0.19 0.25 0.008 0.009 K 0.10 0.25 0.004 0.009 M 0 7 0 7
P 5.80 6.20 0.228 0.244 R 0.25 0.50 0.010 0.019
____
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
N SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
Page 10
LF441C LF442C LF444C
10
MOTOROLA ANALOG IC DEVICE DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, T okyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B T ai Ping Industrial Park, INTERNET: http://Design–NET .com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
LF441C/D
*LF441C/D*
Loading...