Datasheet L4970A Datasheet (SGS Thomson Microelectronics)

Page 1
L4970A
10A SWITCHING REGULATOR
10A OUTPUTCURRENT
5.1V TO 40V OUTPUTVOLTAGERANGE 0 TO 90% DUTY CYCLE RANGE INTERNAL FEED-FORWARD LINE REGULA-
TION INTERNALCURRENT LIMITING PRECISE5.1V±2% ON CHIP REFERENCE RESETAND POWER FAIL FUNCTIONS SOFTSTART INPUT/OUTPUT SYNC PIN UNDER VOLTAGE LOCK OUT WITH HYS-
TERETICTURN-ON PWM LATCH FOR SINGLE PULSE PER PE-
RIOD VERYHIGH EFFICIENCY SWITCHINGFREQUENCYUP TO 500KHz THERMALSHUTDOWN CONTINUOUSMODE OPERATION
DESCRIPTION
The L4970A is a stepdown monolithic power switching regulator delivering 10A at a voltage variablefrom5.1 to 40V.
BLOCK DIAGRAM
MULTIPOWER BCD TECHNOLOGY
Multiwatt15V
ORDERING NUMBER:
Realized with BCD mixed technology, the device uses a DMOSoutput transistorto obtain very high efficiency and very fast switching times. Features of the L4970A include reset and power fail for mi­croprocessors, feed forward line regulation, soft start, limiting current and thermal protection. The device is mounted in a 15-lead multiwatt plastic power package and requires few external compo­nents. Efficient operation at switching frequencies up to 500KHz allows reduction in the size and costof externalfiltercomponents.
L4970A
June 2000
This is advancedinformation on a new product now in development or undergoing evaluation.Details are subject to change withoutnotice.
1/21
Page 2
L4970A
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
9
V
9
V
7
I
7
V
6
V
3,V12
V
4
I
4
V
5,V10,V11,V13
I
5
I
10
I
12
P
tot
,T
T
j
stg
Input Voltage 55 V Input Operating Voltage 50 V Output DC Voltage
Output Peak Voltage at t = 0.1µs f = 200KHz
-1
-7 Maximum Output Current Internally Limited Bootstrap Voltage
Bootstrap Operating Voltage
65
V
+15
9
Input Voltage at Pins 3, 12 12 V Reset Output Voltage 50 V Reset Output Sink Current 50 mA Input Voltage at Pin 5, 10, 11, 13 7 V Reset Delay Sink Current 30 mA Error Amplifier Output SinkCurrent 1 A Soft Start Sink Current 30 mA Total Power Dissipation at T
< 120°C30W
case
Junction and Storage Temperature -40 to 150 °C
V V
V V
PIN CONNECTION
(Topview)
THERMAL DATA
Symbol Parameter Value Unit
R
th j-case
R
thj-amb
Thermal Resistance Junction-case max Thermal Resistance Junction-ambient max
1
35
°C/W °C/W
2/21
Page 3
PIN FUNCTIONS
o
N
1 OSCILLATOR R
2 OSCILLATOR C
3 RESET INPUT Input of Power Fail Circuit. The threshold is 5.1V. It may be connected via a
4 RESET OUT Open Collector Reset/power Fail Signal Output. This output is high when the
5 RESET DELAY A C
6 BOOTSTRAP A C
7 OUTPUT Regulator Output. 8 GROUND Common Ground Terminal 9 SUPPLY VOLTAGE Unregulated Input Voltage.
10 FREQUENCY
COMPENSATION
11 FEEDBACK INPUT The Feedback Terminal of the Regulation Loop. The output is connected
12 SOFT START SoftStart Time Constant. A capacitor is connected between thi sterminal and
13 SYNC INPUT Multiple L4970A are synchronizedby connectingpin 13 inputs together or via
14 V 15 V
Name Function
. External resistor connected to ground determines the constant charging
osc
ref start
current of C
. External capacitor connected to ground determines (withR
osc
switching frequency.
divider to the input for power fail function. It mustbe connected to the pin 14 an external 30Kresistor when power fail signal not required.
supply and the output voltages are safe.
capacitor connected between this terminal and ground determines the
d
reset signal delay time.
boot
drive properly the internal D-MOS transistor.
A series RC network connected between this terminal and ground determines the regulation loop gain characteristics.
directly to this terminal for 5.1V operation; It isconnected viaa divider for higher voltages.
ground to define the soft start time constant.
an external syncr. pulse.
5.1V V Internal Start-up Circuit to Drive the Power Stage.
.
osc
capacitor connected between this terminal and the output allows to
Device ReferenceVoltage.
ref
osc
) the
L4970A
CIRCUIT OPERATION
(refer to the block dia-
gram) The L4970Ais a 10A monolithic stepdownswitching
regulatorworkingin continuousmoderealized in the new BCD Technology.Thi stechnolo gyallowsthein ­tegrationof isolatedvertical DMOS power transistors plusmixedCMOS/Bipolartransistors.
The device can deliver 10A at an output voltage adjustable from 5.1V to 40V, and contains diag­nostic and control functions that make it particu­larly suitable for microprocessorbasedsystems.
BLOCK DIAGRAM
The block diagram shows the DMOS power tran­sistor and the PWM control loop. Integratedfunc­tions include a reference voltage trimmed to 5.1V ± 2%, soft start, undervoltage lockout, oscillator with feedforward control, pulse by pulse current limit, thermal shutdown and finally the reset and power fail circuit. The reset and power fail circuit provides an output signal for a microprocessorin­dicating the statusof the system.
Device turn on is around 11V with a typical 1V hysteresis, this threshold provides a correct volt­age for the driving stage of the DMOS gate and the hysteresispreventsinstabilities.
An external bootstrap capacitor charged to 12V by an internal voltage reference is needed to pro­vide correct gate drive to the power DMOS. The driving circuit is able to sourceand sink peak cur­rents of around 0.5A to the gate of the DMOS transistor. A typical switching time of the current in the DMOS transistor is 50ns. Due to the fast commutation switching frequencies up to 500kHz are possible.
The PWM control loop consistsof a sawtooth os­cillator, error amplifier, comparator, latch and the output stage. An error signal is produced by com­paring the output voltage with the precise 5.1V ± 2% on chip reference. This error signal is then compared with the sawtoothoscillator, in orderto generate a fixed frequencypulsewidth modulated drive for the output stage. A PWM latch is in­cluded to eliminate multiple pulsing within a pe­riod even in noisy environments. The gain and
3/21
Page 4
L4970A
Figure 1:
Figure 2:
FeedforwardWaveform
Soft StartFunction
Figure 3:
4/21
LimitingCurrentFunction
Page 5
L4970A
stability of the loop can be adjusted by an exter­nal RC network connectedto the output of the er­ror amplifier. A voltage feedforward control has been added to the oscillator, this maintains supe­rior line regulation over a wide input voltage range. Closing the loop directly gives an output voltage of 5.1V, higher voltages are obtained by inserting a voltage divider.
At turn on output overcurrents are prevented by the softstart function (fig. 2). The error amplifieris initially clamped by an externalcapacitor Css and allowed to rise linearly under the charge of an in­ternalconstantcurrent source.
Output overload protection is provided by a cur­rent limit circuit (fig. 3). The load current is sensed by an internal metal resistor connected to a com­parator. When the load current exceeds a preset threshold the output of the comparator sets a flip flop which turns off the power DMOS. The next clock pulse, from an internal 40kHz oscillator will reset the flip flop and the power DMOS will again conduct. This current protection method, ensures
Figure 4:
Resetand Power Fail Functions.
a constant current output when the system is overloaded or short circuited and limits the switchingfrequency,in this condition, to 40kHz.
The Reset and Power fail circuitry (fig 4) gener­ates an output signal when the supply voltage ex­ceeds a threshold programmed by an external voltage divider. The reset signal, is generated with a delay time programmed by an external ca­pacitor on the delay pin. Whenthe supply voltage falls below the threshold or the output voltage goes below 5V the reset output goes low immedi­ately. The reset output is an opencollector-drain.
Fig 4A shows the case when the supplyvoltage is higher than the threshold, but the output voltage is not yet 5V.
Fig 4B shows the case when the output is 5.1V but the supply voltage is not yet higher than the fixedthreshold.
The thermal protection disables circuit operation when the junction temperature reaches about 150°C and has an hysterysis to prevent unstable conditions.
A
B
5/21
Page 6
L4970A
ELECTRICALCHARACTERISTICS (Refer to the test circuit, Tj=25°C, Vi=35V, R4= 16K,
= 2.2nF, fSW= 200KHztyp, unless otherwise specified)
C
9
DYNAMICCHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
input VoltageRange (pin9) Vo=V
i
Output Votage Vi= 15V to 50V
Line Regulation Vi= 15V to 50V
o
Load Regulation Vo=V
o
I
o
I
o
I
o
V
V
V
o
V
Io=3Ato6A I
o
V
d
I
7L
η Efficiency I
Dropout Voltage Between Pin 9 and7
Io=5A I
o
Max. Limiting Current Vi= 15 to 50V 11 13 15 A 5
o
V Vo= 12V
I
o
V Vo= 12V
SVR Supply Voltage Ripple
Reject.
V f = 100Hz; V
f Switching Frequency 180 200 220 KHz 5
f
V
T
f
max
V
SECTION(pin 14)
ref
Voltage Stability of Swiching Frequency
i
f
Temperature Stability of Swiching Frequency
j
Maximum Operating Switching Frequency
Vi= 15V to 45V 2 6 % 5
Tj= 0 to 125°C1%5
Vo=V I
o
to 40V
ref
= 10A
= 5A; Vo=Vref
= 5A; Vo=Vref
ref
= 2A to 10A
= 10A
=5A
o=Vref
= 10A
o=Vref
= 2VRMS; Io=5A
i
ref;R4
o=Vref
= 10K
= 10A; C9= 1nF
15 50 V 5
5 5.1 5.2 V 5
12 30 mV 5
10 20
0.55
1.1
80 85
92
75 80
87
30 50
0.8
1.6
mV mV
V V
% %
% %
56 60 dB 5
500 KHz 5
5
5
5
5
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
Reference Voltage 5 5.1 5.2 V 7 Line Regulation Vi= 15V to 50V 10 25 mV 7
14
Load Regulation I14 = 0 to 1mA 20 40 mV 7
14
14
Average Temperature
=0°C to 125°C 0.4 mV/°C7
T
j
Coefficient Reference
V
VV
14
V
T
Voltage
V
START
I
14 short
Short Circuit Current Limit V14= 0 70 mA 7
SECTION(pin 15)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V
15
VV
I
15 short
Reference Voltage 11.4 12 12.6 V 7 Line Regulation Vi= 15 to 50V 0.6 1.4 V 7
15
Load Regulation I15 = 0 to 1mA 50 200 mV 7
15
Short Circuit Current Limit V15=0V 80 mA 7
6/21
Page 7
L4970A
ELECTRICALCHARACTERISTICS
(continued)
DC CHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V
V
9on
9 Hyst
I
9Q
I
9OQ
I
7L
Turn-on Threshold 10 11 12 V 7A Turn-off Hysteresys 1 V 7A Quiescent Current V12=0; S1=D 13 19 mA 7A Operating Supply Current V12= 0; S1 = C; S2 = B 16 23 mA 7A Out Leak Current Vi= 55V; S3 = A; V12=0 2 mA 7A
SOFT START
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
I
12
V
12
Soft Start Source Current V12= 3V; V11= 0V 70 100 130 Output Saturation Voltage I12= 20mA;V9= 10V
I
= 200µA; V9= 10V
12
1
0.7
A7B
µ
V V
ERRORAMPLIFIER
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V
10H
V
10L
I
10H
I
10L
I
11
G
SVR Supply Voltage Rejection 15 < V
V
OS
High Level Out Voltage I10= -100µA; S1 = C
V
= 4.7V
11
Low Level Out Voltage I10= +100µA; S1 = C
V
= 5.3V;
11
Source Output Current V10= 1V;S1 = E
V
= 4.7V
11
Sink Output Current V10 = 6V;S1 =D
V
= 5.3V
11
6V7C
1.2 V 7C
100 150
A7C
µ
100 150 µA7C
Input Bias Current RS= 10K 0.4 3 µA– DC Open Loop Gain V
V
R
R
VCM
=10
S
=10
S
= 4V;
< 50V;
i
60 dB
60 80 dB
Input Offset Voltage RS=50 210mV–
RAMP GENERATOR(pin 2)
7B 7B
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V
2
V
2
I
2
I
2
Ramp Valley S1 = C; S2 = B 1.2 1.5 V 7A Ramp Peak S1 = C; Vi= 15V
S2 = B; V
= 45V
i
Min. Ramp Current S1 = A; I1= 100µA 270 300
2.5
5.5
V V
A7A
µ
Max. Ramp Current S1 = A; I1 = 1mA 2.4 2.7 mA 7A
SYNC FUNCTION(pin 13)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V
13
V
13
I
13L
I
13H
V
13
t
W
Low Input Voltage Vi= 15V to 50V; V12=0;
S1 = C; S2 = B; S4=B
High Input voltage V12=0;
S1 = C; S2 = B; S4=B
Sync Input Current with Low Input Voltage
Input Current with High Input Voltage
V13=V2= 0.9V; S4 = A; S1 = C; S2 = B
V13= 3.5V; S4 = A;
S1 = C; S2 = B Output Amplitude 4 5 V – Output Pulse Width V
= 2.5V 0.3 0.5 0.8 µs–
thr
–0.3 0.9 V 7A
3.5 5.5 V 7A
0.4 mA 7A
2mA7A
7A 7A
7/21
Page 8
L4970A
ELECTRICALCHARACTERISTICS
(continued)
RESET AND POWER FAIL FUNCTIONS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V
11R
V
11F
V
5H
V
5L
–I
5SO
I
5SI
V
4S
I
4
V
3R
V
3H
I
3
Rising Threshold Voltage (pin 11)
Falling Threshold Voltage (pin 11)
Delay High Threshold Voltage
Delay Low Threshold Voltage
Delay Source Current V3= 5.3V; V5=3V 40 60 80 µA7D Delay Sink Current V3= 4.7V; V5=3V 10 mA 7D Out Saturation Voltage I4= 15mA; S1 = B
Output Leak Current V4= 50V; S1 = A
Rising Threshold Voltage V11=V Hysteresys 0.4 0.5 0.6 V 7D Input Bias Current 1 3 µA7D
Vi= 15 to 50V
V
= 5.3V
3
Vi = 15 to 50V
V
= 5.3V
3
Vi= 15 to 50V
V
14=V11
Vi = 15 to 50V
V
14=V11
V
= 4.7V
3
V
= 5.3V
3
14
V3= 5.3V
V3= 5.3V
V
ref
–120
4.77 V
V
ref
–100
ref
–200
V
ref
–80 V
ref
–160
V
mV
V
mV
4.95 5.1 5.25 V 7D
1 1.1 1.2 V 7D
0.4 V 7D
100 µA7D
4.95 5.1 5.25 V 7D
Figure 5: Testand EvaluationBoardCircuit
7D
7D
TYPICAL PERFORMANCES(using evaluationboard): n = 83% (V V
o RIPPLE
Line regulation= 5mV (V Load regulation = 15mV (I
= 35V ; Vo=V
i
REF;Io
= 10A ; fSW= 200KHz)
= 30mV (at 10A) with output filter capacitor ESR 60m
= 15 to 50V)
i
= 2 to 10A)
o
For component values, refer to testcircuit partlist.
8/21
Page 9
L4970A
Figure 6a:
P.C.Board (components side) and ComponentsLayout of Figure5 (1:1 scale).
PARTS LIST
R1= 30K R R R R R R R R R R
= 10K C3,C4,C5,C6= 2.2µF
2
= 15K C7= 390pF Film
3
= 16K C8= 22nF MKT 1817 (ERO)
4
=22Ω0,5W
5
= 4K7 C9= 2.2nF KP1830
6
=10 C10= 220nF MKT
7
= see tab. A C11= 2.2nF MP1830
8
= OPTION **C12,C13,C14= 220µF 40VLEKR
9
= 4K7 C15=1µF Film
10
=10
11
D1 = MBR 1560CT (or16A/60V or equivalent) L1 = 40µH core 58071 MAGNETICS
* 2 capacitors inparallel to increase inputRMS current capability ** 3 capacitors in parallel to reduce total outputESR
C1,C2= 3300µF 63VLEYF (ROE
27 TURNS Ø 1,3mm (AWG 16) COGEMA 949178
Table A
V
12V 15V 18V 24V
0
R
9
4.7k
4.7k
4.7k
4.7k
R
7
6.2kW
9.1k 12k 18k
Table B
SUGGESTEDBOOTSTRAPCAPACITORS
Operating Frequency Bootstrap Cap.c10
f = 20KHz 680nF
f = 50KHz f = 100KHz f = 200KHz 220nF f = 500KHz 100nF
470nF
330nF
9/21
Page 10
L4970A
Figure 6b: P.C. Board (Backside)and ComponentsLayoutof the Circuit of Fig. 5. (1:1 scale)
Figure 7: DC Test Circuits
10/21
Page 11
Figure 7A
L4970A
Figure 7B
11/21
Page 12
L4970A
Figure 7D
Figure 7C
12/21
Page 13
L4970A
Figure 8: QuiescentDrain Current vs. Supply
Voltage(0% duty cycle - see fig. 7A).
Figure 10: QuiescentDrain Currentvs. Duty
Cycle
Figure9: QuiescentDrain Current vs. Junction
Temperature(0% duty cycle).
Figure11:
ReferenceVoltage (pin14) vs. V
(see
i
fig. 7)
Figure 12: ReferenceVoltage (pin 14) vs.
Junction Temperature(see fig. 7)
Figure13: Reference Voltage(pin15) vs. V
fig. 7)
(see
i
13/21
Page 14
L4970A
Figure 14: ReferenceVoltage (pin 15) vs.
Junction Temperature(see fig. 7)
Figure 16: SwitchingFrequency vs. Input
Voltage(see fig. 5)
Figure15: ReferenceVoltage5.1V (pin 14)
SupplyVoltage Ripple Rejectionvs. Frequency
Figure17: SwitchingFrequencyvs. Junction
Temperature(see fig 5)
Figure 18: SwitchingFrequencyvs.R4(seefig.5)
14/21
Figure19:
Max.DutyCycle vs. Frequency
Page 15
L4970A
Figure 20: SupplyVoltageRipple Rejection vs.
Frequency(see fig. 5)
Figure 22: LoadTransientResponse(see fig.5)
Figure21: Line Transient Response(see fig. 5)
Figure23:
DropoutVoltage Between Pin 9 and
Pin 7 vs.Current at Pin 7
Figure 24: DropoutVoltage Between Pin9 and
Pin 7 vs. Junction Temperature
Figure25: Power Dissipation(deviceonly) vs.
Input Voltage
15/21
Page 16
L4970A
Figure 26: PowerDissipation (device only) vs.
OutputVoltage
Figure 28: Efficiencyvs. Output Current
Figure27: Heatsink Usedto Derivethe Device’s
PowerDissipation
- Heatsink =
R
th
case
amb
P
d
T
T
Figure29: Efficiencyvs. Output Voltage
Figure 30:
16/21
Efficiencyvs. Output Voltage
Figure31: Open Loop Frequencyand Phase
Responseof ErrorAmplifier (see fig.7C)
Page 17
L4970A
Figure 32:
PowerDissipation DeratingCurve
Figure 33: A5.1V/12VMultiple Supply. Note the Synchronizationbetween the L4970A and the L4974A
17/21
Page 18
L4970A
Figure 34: 5.1V/ 10A LowCost Application
Figure 35: 10ASwitchingRegulator,Adjustablefrom 0V to 25V.
18/21
Page 19
Figure 36: L4970A’sSync. Example
L4970A
19/21
Page 20
L4970A
DIM.
Dia1 3.65 3.85 0.144 0.152
MIN. TYP. MAX. MIN. TYP. MAX.
A5 B 2.65 0.104 C 1.6 0.063 D 1 0.039 E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030
G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.710 H1 19.6 0.772 H2 20.2 0.795
L 21.9 22.2 22.5 0.862 0.874 0.886 L1 21.7 22.1 22.5 0.854 0.870 0.88 L2 17.65 18.1 0.695 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.114
M 4.25 4.55 4.85 0.167 0.179 0.191
M1 4.63 5.08 5.53 0.182 0.200 0.218
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
mm inch
0.197
0.713
OUTLINE AND
MECHANICAL DATA
6
Multiwatt15 V
20/21
Page 21
L4970A
Information furnished is believed to be accurate and reliable. However,STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specificationmentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in lifesupport devices or systems without express written approval of STMicroelectronics.
The ST logois a registered trademark of STMicroelectronics
2000 STMicroelectronics – Printed in Italy – AllRightsReserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan- Malaysia - Malta- Morocco -
Singapore - Spain - Sweden - Switzerland -United Kingdom - U.S.A.
http://www.st.com
21/21
Loading...