The KB9223 is a 1-chip BICMOS integrated circuit to perform the function of RF amp and servo signal processor for
compact disc player applications.It consist of blocks for RF
signal processing ,focus, tracking, sled and spindle
servo.Also this IC has adjustment free function and embedded opamp for audio post filter.
FEATURES
• RF amplifier & RF equalizer
• Focus error amplifier & servo control
• Tracking error amplifier & servo control
• Mirror & defect detector circuit
• Focus OK detector circuit
• APC(Auto Laser Power Control) circuit for constant laser
power
• FE bias & focus servo offset adjustment free
• EF balance & tracking error gain adjustment free
• Embedded audio post filter
• The circuit for Interruption countermeasure
• Double speed play available
• Operating voltage range
KB9223 : 5V
80-QFP-1420C
ORDERING INFORMATION
DevicePackageTempe. Range
KB9223
KB9223-L
APPLICATIONS
• CD Player
• Video-CD
RELATED PRODUCT
• KS9286 Data Processor
• KS9284 Data Processor
• KA9258D/KA9259D Motor Driver
80-QFP-1420C-20°C ~ +70°C
KB9223-L : 3.4V
M/M-97-P006
1997. 10. 17
1
Page 2
KB9223 / KB9223-L
BLOCK DIAGRAM
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
RF-
RFO
PD1
PD2
FEBIAS
EQC
EQO
IRF
ASY
EFM
RFI
DCB
DCC2
FE1
TE1
WDCH
TRCNT
LOCK
ISTAT
59
5422 30 29 31 38 37 36 35 515258 26 28 27
73
RF Amp
74
65
Focus Error Amp
66
FE-BIAS Adjustment
63
67
F
E
EI
68
79
Tracking Error Amp
E/F Balance & Gain
Control
Micom Data
Interface Logic
MICOM TO SERVO CONTROL
MLT
RESET
MDATA
MCK
TZC
ATSC
FE2
FLB
Focus Phase
Compensation
& Offset cancel circuit
Tracking Phase
Compensation Block
& Jump Pulse GEN.
AUTO SEQUENCER
PD
69
LD
70
VR
71
78
76
75
32
33
77
APC Amp
Center Voltage Amp.
RF Level AGC
&
Equalizer
EFM
Comparator
LDON
ADJUSTMENT-FREE CONTROL
TM1~
TM6
BAL1~
BAL5
FS1~
FS4
PS1~
PS4
GA1~
GA5
Sled Servo Amplifier
& Sled Kick GEN.
Spindle Servo LPF
( Double Speed )
Mirror Detection
2
Defect Detection
Circuit
4
Built-in Post Filter Amp ( L&R )
Circuit
FOK Detection
Circuit
FS3
FGD
FRSH
3
FDFCT
60
47
FE-
FEO
48
TDFCT
57
49
TE-
TEO
50
TE2
53
LPFT
55
TG2
62
TGU
61
SLO
43
SL-
44
SL+
42
46
SPDLO
SPDL-
45
SMDP
23
SMON
24
SMEF
25
FSET
6
MIRROR
39
MCP
1
FOK
40
515 16 13 14 19 17 12 11 9 10
RRC
GC1I
DCC1
GC1O
CH1I
CH1O
MUTEI
CH2I
GC2I
CH2O
Figure 1. Block diagram
M/M-97-P006
1997. 10. 17
GC2O
2
Page 3
KB9223 / KB9223-L
PIN CONFIGURATION
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
64 63 62 61 60 59 58 57 56 55 54
TG2
DVEE
65
PD1
66
PD2
67
F
68
E
69
PD
70
LD
71
VR
72
VCC
73
RF-
74
RFO
75
IRF
76
EQO
77
RFI
78
EQC
79
EI
80
GND
FEBIAS
MCP
DCB
FRSH
123 45678 9
FE1
TGU
FDFCT
DCC2
DCC1
FSET
53 52 51 50 49 48 47 46 45 44 43 42 41
TE-
FE2
TDFCT
TE1
TE2
TZC
LPFT
DVDD
TEO
ATSC
FE-
FEO
KB9223
VDDA
VCCP
GC2I
10 11
CH2O
CH1O
CH1I
GC1O
GC1I
RRC
VSSP
GC2O
CH2I
12 13 14 15 16 17 18 19 20 21 22 23 24
MUTEI
SL-
SL+
SLO
SPDL-
SPDLO
ISET
VREG
WDCK
MIRROR
RESET
MDATA
VSSA
ISTAT
TRCNT
LOCK
SMEF
SMDP
SMON
SSTOP
FOK
MLT
MCK
EFM
ASY
FGD
FS3
FLB
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
Figure 2. Pin configuration
M/M-97-P006
1997. 10. 17
3
Page 4
KB9223 / KB9223-L
PIN DESCRIPTION
Table 1. PIN DESCRIPTION
Pin No.SymbolDescription
1MCPCapacitor connection pin for mirror hold
2DCBCapacitor connection pin for defect Bottom hold
3FRSHCapacitor connection pin for time constant to generate focus search waveform
4DCC2The input pin through capacitor of defect bottom hold output
5DCC1The output pin of defect bottom hold
6FSETThe peak frequency setting pin for focus,tracking servo and cut off frequency of CLV
LPF
7VDDAAnalog VCC for servo part
8VCCPVCC for post filter
9GC2IAmplifier negative input pin for gain and low pass filtering of DAC output CH2
RF AMP & SERVO SIGNAL PROCESSOR
PRELIMINARY
10GC2OAmplifier output pin for gain and low pass filtering of DAC output CH2
11CH2IThe input pin for post filter channel2
12CH2OThe output pin for post filter channel2
13CH1OThe output pin for post filter channel1
14CH1IThe input pin for post filter channel1
15GC1OAmplifier output pin for gain and low pass filtering of DAC output CH1
16GC1IAmplifier negative input pin for gain and low pass filtering of DAC output CH1
17RRCThe pin for noise reduction of post filter bias
18VSSPVSS for post filter
19MUTEIThe input pin for post filter muting control
20ISETThe input pin for current setting of focus search,track jump and sled kick voltage
21VREGThe output pin of regulator
22WDCKThe clock input pin for auto sequence
23SMDPThe input pin of CLV control output pin SMDP of DSP
24SMONThe input pin for spindle servo ON through SMON of DSP
25SMEFThe input pin of provide for an external LPF time constant
26FLBCapacitor connection pin to perform rising low bandwidth of focus loop
M/M-97-P006
1997. 10. 17
4
Page 5
KB9223 / KB9223-L
Table 1. PIN DESCRIPTION (Continued)
Pin No.SymbolDescription
27FS3The pin for high frequency gain change of focus loop with internal FS3 switch
28FGDReducing high frequency gain with capacitor between FS3 pin
29LOCKSled runaway prevention pin
30TRCNTTrack count output pin
31ISTATInternal status output pin
32ASYThe input pin for asymmetry control
33EFMEFM comparator output pin
34VSSAAnalog VSS for servo part
35MCKMicom clock input pin
36MDATAMicom data input pin
RF AMP & SERVO SIGNAL PROCESSOR
PRELIMINARY
37MLTMicom data latch input pin
38RESETReset input pin
39MIRRORThe mirror output for test
40FOKThe output pin of focus OK comparator
61TGUThe capacitor connection pin for high frequency tracking gain switch
62TG2The pin for high frequency gain change of tracking servo loop with internal TG2 switch
63FEBIASFocus error bias voltage control pin
64DVEEThe DVEE pin for logic circuit
65PD1The negative input pin of RF I/V amplifier1(A+C signal)
66PD2The negative input pin of RF I/V amplifier2(B+D signal)
67FThe negative input pin of F I/V amplifier (F signal)
68EThe negative input pin of E I/V amplifier(E signal)
69PDThe input pin for APC
70LDThe output pin for APC
71VRThe output pin of (AVEE+AVCC)/2 voltage
72VCCVCC for RF part
73RF-RF summing amplifier inverting input pin
74RFORF summing amplifier output pin
M/M-97-P006
1997. 10. 17
5
Page 6
KB9223 / KB9223-L
Table 1. PIN DESCRIPTION (Continued)
Pin No.SymbolDescription
75IRFThe input pin for AGC
76EQOThe output pin for AGC
77RFITne input pin for EFM comparision
78EQCThe capacitor connection pin for AGC
79EIFeedback input pin of E I/V amplifier for EF Balance control
80GNDGND for RF part
Minimum Output Voltage L
Tracking Error Amp Gain up FTguf$830 SG3 0.3Vp-p,10KHz,sinepin 548.011.014.0dB
Tracking Error Amp Gain up ETgue$830 SG3 0.3Vp-p,10KHz,sinepin 545.38.311.3dB
Tracking Gain NormalFgfnSG3 0.3Vp-p,10KHz,sine,$820pin 542.15.18.1dB
Tracking F Gain 1Fgf1SG3 0.3Vp-p,10KHz,sine,$821pin 540.13.16.1dB
Tracking F Gain 2Fgf2SG3 0.3Vp-p,10KHz,sine,$822pin 54-1.71.34.3dB
Tracking F Gain 3Fgf3SG3 0.3Vp-p,10KHz,sine,$824pin 54-5.0-2.01.0dB
Tracking F Gain 4Fgf4SG3 0.3Vp-p,10KHz,sine,$824pin 54-9.2-6.2-3.2dB
Tracking E Balance NormalTbenSG3 0.3Vp-p,10KHz,sine,$800pin 54-0.272.275.27dB
Tracking E Balance 1Tbe1SG3 0.3Vp-p,10KHz,sine,$801pin 54-0.512.515.51dB
Tracking E Balance 2Tbe2SG3 0.3Vp-p,10KHz,sine,$802pin 54-0.742.745.74dB
Tracking E Balance 3Tbe3SG3 0.3Vp-p,10KHz,sine,$804pin 540.173.176.17dB
FOK Output Voltage HVfokhSG4 DC 1.5Vpin 404.3--V
FOK Output Voltage LVfoklSG4 DC 2.5Vpin 40--0.7V
Defect Output Voltage HVdfcth$863,SG3 2.520V+0.04Vp-p,
CharacteristicSymbolTest ConditionsOutputMinTypMaxUnit
Defect Maximum Input VoltageVdfct2SG32.535V+0.070Vp-p,
EFM Duty Voltage 1Defm1SG4 2.5V+0.75Vp-p,
EFM Duty Voltage 2Defm2SG42.75V+0.75Vp-p,
EFM Minimum input VoltageVefm1SG4 2.5V+0.12Vp-p,
EFM Maximum input VoltageVefm2SG4 2.5V+1.8Vp-p,750KHz,sinepin 331.8--V
EFM Maximum Operating
Frequency
FZC Threshold VoltageVfzcDC 2.5V+38mV,100mVpin 313969100mV
ATSC Threshold Voltage 1Vatsc1$10,SG2 DC 2.5V-6mV,-45mVpin 31-67-32-7mV
ATSC Threshold Voltage 2Vatsc2SG2 DC 2.5V+6mV,+45mVpin 3373267mV
TZC Threshold VoltageVtzc$20,SG2 DC 2.5V-20mV,+20mVpin 31-30030mV
SSTOP Threshold VoltageVsstop$30,SG2 DC 2.5V-71mV,-30mVpin 31-100-50-30mV
Tracking gain window voltage
Tracking gain window range
Tracking balance window voltage
FefmSG4 2.5V+0.75Vp-p,4MHzpin 334--MHz
VtGW$840+$830 SG2 2.5V 2.9V 5mV
VTGW2$848+$830 SG2 2.5V 5mV DC
VTBW$844+$810 SG2 2.555V ~
1KHz,sine
750KHz,sine
750KHz,sine
750KHz,sine
DC
sweep
2.475V 5mV DC sweep
pin 411.8--V
pin 32-50050mV
pin 32050100mV
pin 33--0.12V
pin 30200250300mV
pin 30100150200mV
pin 31-251555mV
Tracking balance window range
Vreg Threshold VoltageVreg-pin 213.23.43.6V
Center VoltageVCVO2.5V Referencepin 71-1000100mV
VREF Current Drive Voltage 1VCVO12.5V Referencepin 71-1000100mV
VREF Current Drive Voltage 2VCVO22.5V Referencepin 71-1000100mV
Post CH1 Freq. CharacteristicFpos1SG1 2.5V+1Vp-p,40KHz,sinepin 13-4.5-3.0-1.5dB
Post CH2 Freq. CharacteristicFpos2SG1 2.5V+1Vp-p,40KHz,sinepin 12-4.5-3.0-1.5dB
Post CH1 MuteMute1Mute=5V
Post CH2 MuteMute2Mute=5V
Focus Loop DC GainGf$08,SG2 DC 2.6V,2.4V averagepin 4819.021.524.0dB
Focus Off OffsetVosf1$00pin 48-1000100mV
Focus On OffsetVofs2$08,DC 2.5Vpn 480250500mV
Focus Auto OffsetVaof$842,WDCK,after100mspin 48-65065mV
CharacteristicSymbolTest ConditionsOutputMinTypMaxUnit
Focus Output Voltage HVfoh1$08,DC 3.0Vpin 484.40--V
Focus Output Voltage LVfol1$08,DC 2.0Vpin 48--0.60V
Focus Output Drive Voltage HVfoh2$08,DC 3.0Vpin 483.68--V
Focus Output Drive Voltage LVfol2$08,DC 2.0Vpin 48--1.32V
Focus Oscillation VoltageVosc$08,DC2.5Vpin 480100200mV
Focus Feed ThroughGffGain Difference at Servo on
and off
Focus AC Gain 1Gfa1$08,
SG2 2.5V+0.1Vp-p,1.2KHz,sine
Focus AC Phase 1Pfa1$08,
SG2 2.5V+0.1Vp-p,1.2KHz,sine
Focus AC Gain 2Gfa2$08,
SG2 2.5V+0.1Vp-p,2.7KHz,sine
Focus AC Phase 2Pfa2$08,
SG2 2.5V+0.1Vp-p,2.7KHz,sine
Focus Search Voltage1Vfs1$30+$02pin 48-0.64-0.50-0.36V
Focus Search Voltage2Vfs2$30+$03pin 480.360.500.64V
Focus Loop Total GainGftgFocus PD gain + Focus loop DC
gain
Tracking DC GainGto$25
SG2 DC 2.3V,2.7V average gain
Tracking Off OffsetVost1$20pin 50-1000100mV
Tracking On OffsetVost2SG2 DC 2.5V,$25pin 50-1000120mV
Tracking Oscillation VoltageVosa1$25,SG2 DC2.5Vpin 500100200mV
Tracking gain boost for ATSCGatsc2.5V+0.1Vp-p,1KHz,sinepin 5017.520.523.5dB
pin 48---35dB
pin 4819.023.027.0dB
pin 48406590deg
pin 4814.018.523.0dB
pin 48406590deg
pin 4849.551.553.5dB
pin 5013.515.517.5dB
Tracking gain boost on LOCK (L)Glock2.5V+0.1Vp-p,1KHz,sinepin 5017.520.523.5dB
Tracking Output Voltage HVth1$25,SG2 DC 1.0Vpin 504.48--V
Tracking Output Voltage LVtl1$25SG2 ,DC 4.0Vpin 50--0.52V
Tracking Output Drive Voltage HVth2$25,SG2 DC2.0Vpin 503.68--V
Tracking Output Drive Voltage LVtl2$25, SG2 DC3.0Vpin 50--1.32V
Tracking Jump Voltage 1Vtj1$2Cpin 50-0.64-0.5-0.36V
Tracking Jump Voltage 2Vtj2$28pin 500.360.50.64V
Tracking Feed ThroughGtfGain Difference at Tracking servo
on and off
Tracking AC Gain 1Gta1$10,$25,SG2 2.5V+0.1Vp-p,
CharacteristicSymbolTest ConditionsOutputMinTypMaxUnit
Tracking AC Phase 1Pta1$10,$25,SG2 2.5V+0.1Vp-p,
1.2KHz,sine
pin 50-140-115-90deg
Tracking AC Gain 2Gta2$10,$25,SG2 2.5V+0.1Vp-p,
2.7KHz,sine
Tracking AC Phase 2Pta2$10,$25,SG2 2.5V+0.1Vp-p,
2.7KHz,sine
Tracking Loop GainGtrttracking Amp F gain+ servo DC
gain
Sled DC GainGslSG2 DC 2.6V,2.4Vpin 4320.522.524.5dB
Sled Feed ThroughGslfGain Difference at sled servo
on and off
SG2 2.5V+0.1Vp-p,1.2KHz,sine
Sled Output Voltage HVslh1$25,SG2 DC 2.9Vpin 434.48--V
Sled Output Voltage LVsll1$25,SG2 DC 2.1Vpin 43--0.52V
Sled Output Drive Voltage HVslh2$25,SG2 DC 2.9Vpin 433.68--V
Sled Output Drive Voltage LVsll2$25,SG2 DC 2.1Vpin 43--1.32V
Sled Forward Kick VoltageVsk1$22pin 430.380.600.75V
Sled Reverse Kick VoltageVsk2$23pin 43-0.75-0.6-0.38V
Spindle Normal Speed GainGsp$F0
SG1 DC 2.6V,2.4V, average gain
Spindle Double Speed GainGsp2$F3
SG1 DC 2.6V,2.4V, average gain
Spindle Output Voltage HGsph1$F0, SG1 DC 3.5Vpin 464.48--V
pin 5017.521.525.5dB
pin 50-195-150-100deg
-18.520.522.5dB
pin 43---34dB
pin 4614.016.519.0dB
pin 4619.023.027.0dB
Spindle Output Voltage LGspl1$F0, SG1 DC 1.5Vpin 46--0.52V
Spindle Output Drive Voltage HGsph2$F0,SG1 DC 3.5Vpin 463.68--V
Spindle Output Drive Voltage LGspl2$F0,SG1 DC 1.5Vpin 46--1.32V
Spindle AC GainGspa$F0,SG1 2.5V+0.2Vp-p,
2KHz,sine
Spindle AC PhasePspa$F0,SG1 2.5V+0.2Vp-p,
CharacteristicSymbolTest ConditionsOutputMinTypMaxUnit
Post Filter Output Voltage max. 2Vpom2SG1 2.5V+3.2Vp-p,1KHz,
within THD 1%
Total Harmonic Distoration 1THD11SG1 f=100Hz,0dBmpin 13-0.010.05%
Total Harmonic Distoration 1THD12SG1 f=1KHz,0dBmpin 13-0.010.05%
Total Harmonic Distoration 1THD13SG1 f=10KHz,0dBmpin 13-0.050.1%
Total Harmonic Distoration 1THD14SG1 f=16KHz,0dBmpin 13-0.10.2%
Total Harmonic Distoration 1THD15SG1 f=20KHz,0dBmpin 13-0.10.2%
Total Harmonic Distoration 2THD21SG1 f=100Hz,0dBmPin 12-0.010.05%
Total Harmonic Distoration 2THD22SG1 f=1KHz,0dBmPin 12-0.010.05%
Total Harmonic Distoration 2THD23SG1 f=10KHz,0dBmPin 12-0.050.1%
Total Harmonic Distoration 2THD24SG1 f=16KHz,0dBmPin 12-0.10.2%
Total Harmonic Distoration 2THD25SG1 f=20KHz,0dBmPin 12-0.10.2%
pin 121.11.3-Vrms
Frequency Characteristics 1fv11SG1 f=100Hz,0dBmpin 13-0.100.1dB
Frequency Characteristics 1fv12SG1 f=1KHz,0dBmpin 13-0.250+0.25dB
Frequency Characteristics 1fv13SG1 f=10KHz,0dBmpin 13-0.500.5dB
Frequency Characteristics 1fv14SG1 f=16KHz,0dBmpin 13-1.001.0dB
Frequency Characteristics 1fv15SG1 f=20KHz,0dBmpin 13-1.501.5dB
Frequency Characteristics 2fv21SG1 f=100Hz,0dBmPin 12-0.100.1dB
Frequency Characteristics 2fv22SG1 f=1KHz,0dBmPin 12-0.250+0.25dB
Frequency Characteristics 2fv23SG1 f=10KHz,0dBmPin 12-0.500.5dB
Frequency Characteristics 2fv24SG1 f=16KHz,0dBmPin 12-1.001.0dB
Frequency Characteristics 2fv25SG1 f=20KHz,0dBmPin 12-1.501.5dB
Crosstalk 1CT11SG1 100Hz,0dBm,ratio on Ch2pin 137080-dB
Crosstalk 1CT12SG1 1KHz,0dBm,ratio on Ch2pin 136575-dB
Crosstalk 1CT13SG1 10KHz,0dBm,ratio on Ch2pin 136065-dB
Crosstalk 2CT21SG1 100Hz,0dBm,ratio on Ch1pin 127080-dB
Crosstalk 2CT22SG1 1KHz,0dBm,ratio on Ch1pin 126575-dB
Crosstalk 2CT23SG1 10KHz,0dBm,ratio on Ch1pin 126065-dB
CharacteristicSymbolTest ConditionsOutputMinTypMaxUnit
Signal to Noise Ratio 1S/N 1DC 2.5V 0dbm,ratio on Noisepin 137380-dB
Signal to Noise Ratio 2S/N 2DC 2.5V 0dbm,ratio on Noisepin 127380-dB
Channel BalanceCBGain Difference Ch1 and Ch2--0.10+0.1dB
CharacteristicSymbolTest ConditionsOutputMinTypMaxUnit
Post filter output voltage mix.1LVpom1L
Post filter output voltage mix. 2LVpom2Lpin 120.50.55-Vrms
Total harmonic distortion 1LTHD11Lpin 13-0.010.05%
Total harmonic distortion 1LTHD12Lpin 13-0.010.05%
Total harmonic distortion 1LTHD13Lpin 13-0.050.1%
Total harmonic distortion 1LTHD14Lpin 13-0.10.2%
Total harmonic distortion 1LTHD15Lpin 13-0.10.2%
Total harmonic distortion 2LTHD21Lpin 12-0.010.05%
Total harmonic distortion 2LTHD22Lpin 12-0.010.05%
Total harmonic distortion 2LTHD23Lpin 12-0.050.1%
Total harmonic distortion 2LTHD24Lpin 12-0.10.2%
Total harmonic distortion 2LTHD25Lpin 12-0.10.2%
Frequency Characteristics 1Lfv11Lpin 13-0.100.1dB
pin 130.50.55-Vrms
Frequency Characteristics 1Lfv12Lpin 13-0.250+0.25dB
Frequency Characteristics 1Lfv13Lpin 13-0.500.5dB
Frequency Characteristics 1Lfv14Lpin 13-1.001.0dB
Frequency Characteristics 1Lfv15Lpin 13-1.501.5dB
Frequency Characteristics 2Lfv21Lpin 12-0.100.1dB
Frequency Characteristics 2Lfv22Lpin 12-0.250+0.25dB
Frequency Characteristics 2Lfv23Lpin 12-0.500.5dB
Frequency Characteristics 2Lfv24Lpin 12-1.001.0dB
Frequency Characteristics 2Lfv25Lpin 12-1.501.5dB
Cross talk 1LCT11Lpin 136780-dB
Cross talk 1LCT12Lpin 136275-dB
Cross talk 1LCT13Lpin 135765-dB
Cross talk 2LCT21Lpin 126780-dB
Cross talk 2LCT22Lpin 126275-dB
Cross talk 2LCT23Lpin 125765-dB
Signal to noise ratio 1LS/N1Lpin 136780-dB
Signal to noise ratio 2LS/N2Lpin 126780-dB
Channel balance LCBL--0.10+0.1dB
VDD, DVDD, VCC
VCCP= +3.4V
Low voltage test for post filter.
The test method is the same as
5V test except for input signal
: SG1 1.7V + 1.55Vp-p
Note1) The notation $ means hexa decimal of micom command
Note2) Low voltage test items only refer to KB9223-L
M/M-97-P006
1997. 10. 17
15
Page 16
KB9223 / KB9223-L
TEST CIRCUIT
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
SWP1
SG1
SWP2
SG-D1
3K
SW35
69
MDATA
36
SW34
686766
MLT
373839
VECTOR_ TEST_IN
SG3
DC
AC
390K
390K
10K
10K
SW30
SW31
SW32
SW33
65
PD1
64 63 62 61 60 59 58 57 56 55 54
DVEE
FEBIAS
96K
SW29
TG2
TGU
FDFCT
TDFCT
FE1
FE2
SW28
SW27
VERTOR_TEST_IN
SW26
SW25
0.01UF
0.01UF
+
ACDCSG2
+
DVDD
LPFT
TE1
TE2
TZC
ATSC
TEO
TE-
FEO
FE-
SPDLO
SPDL-
SL-
SLO
MIRROR
FOK
SSTOP
SL+
RESET
40
VECTOR_ TEST_IN
VECTOR_ TEST_IN
VECTOR_ TEST_IN
VECTOR_ TEST_IN
53 52 51 50 49 48 47 46 45 44 43 42 41
SW24
SW23
VERTOR_TEST_IN
VERTOR_TEST_IN
SW22
SW21
100K
200K
100K
SW18SW20
200K
100K
5K
60K
SW14
SW13
VECTOR_TEST_IN
SG-_D11
SG-_D10
13K
0.25K
13K
0.25K
13K
0.25K
13K
0.25K
1 2
SW17SW19
1 2
SW16
1 2
1 2
SW15
SG_D12
DC
SG4
AC
+
1uF
SW42
SW41
80
787776
79
GND
EQC
EI
3300PF
SW4
0.01PF
510K
27K
4.7UF
+
SW1
5.6K
0.001UF
5.6K
3.3UF
++
10K
3.3UF
5.6K
10K
5.6K
AC
DC
SW2
4.7UF
27K
+
4.7UF
1000PF
3300PF
5.6K
5.6K
+
4.7UF
10PF
10PF
1 2 3 4 5 6 7 8 9
MCP
DCB
+
FRSH
DCC2
DCC1
FSET
VDDA
VCCP
GC2I
27K
10 11
GC2O
CH2I
330PF330PF
12 13 14 15 16 17 18 19 20 21 22 23 24
CH2O
CH1O
CH1I
GC1O
27K
GC1I
RRC
0.01UF
SW39
SW40
75
RFI
EQO
IRF
SW-VC
+
33UF
0.5K
2PF
22K
74
RFO
0.5K
3K
SW37
SW38
SW36
73
72
71
70
RF-
VCC
VR
LDPDEFPD2
KB9223
VSSP
0.1UF
+
SW5
VECTOR_TEST_IN
SW6
SW7
SW3
240K
MUTEI
ISET
VREG
WDCK
SMDP
SMON
TRCNT
SMEF
25
1000PF
FLB
26
FGD
FS3
272829
SW9
SW8
VECTOR_ TEST_IN
ISTAT
LOCK
30
313233
VECTOR_TEST_OUT
VECTOR_T EST_OUT
SW10
VSSA
MCK
EFM
ASY
34
35
VECTOR_ TEST_IN
SW11
11K
0.01UF
+
VCC(5V)
VC(2.5V)
GND(0V)
SG-D2
Figure 3. Test Circuit
M/M-97-P006
1997. 10. 17
SG-D3
SG-D4
SG-D5
SG-D6
SG-D7
SG-D8
16
Page 17
KB9223 / KB9223-L
FUNCTION DESCRIPTION
1.RF Amp Block
1.1 RF Amplifier
The optical currents inputted through pins PD1(A+C) and PD2(B+D) are converted into voltages through
I-V amp, and they are added to RF summing amp. The voltage, converted from the photo diode
(A+B+C+D) signal, is outputted through RFO(pin74) and the eye pattern can be checked at this pin.
PD1
PD2
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
58K
65
66
VC
VC
-
+
58K
-
+
VA
I-V amp(1)
VB
I-V amp(2)
10K
10K
-
+
VC
RFO
74
RF summing amp
RF-
73
Figure 4. RF amp circuit
1.2 Focus Error Amp
The output of the focus error amp is the difference between I-V amp(1) output VA and
RF I-V amp(2) output VB. The focus error bias voltage applied to the (+) of focus error amp can be
changed by output voltage of D/A converter as shown in diagram, so that the offset of focus error amp
can be adjusted automatically by controlling 5 bits counter switches. Focus error bias can be adjusted
from the range of +100mV ~ -100mV by connecting the resistor on pin 63 (FEBIAS).
164K
32K
32K
3K
-
+
160K
4K
-
+
-
fcmpo
+
fe-stopb
fe-stopb
vcFEBIAS
FE1
59
FEBIAS
sev-stopb
63
sev-stop
<5 Bit Counter>
X1 X2 X4 X8 X16
VB >
VA >
SW1
Figure 5. Focus error amp circuit
note1> VA and VB refer to output signal of PD1 and PD2 I/V amp.
note2> sev-stopb,sev-stop,fe-stopb and fcmpo are internal signals
M/M-97-P006
1997. 10. 17
17
Page 18
KB9223 / KB9223-L
1.3 Tracking Error Amp
The optical currents detected from the side photo diode (E and F) pf pick-up are inputted to the E and F
pin and converted into voltage signals by E I-V and F I-V amp. The output of tracking error amp
generates the difference between E I-V AMP and F I-V AMP voltage output.
The E-F balance can be adjusted by modifying the gain of E I-V AMP, and the tracking gain
can be adjusted automatically by controlling the peak voltage at pin TE2 by micom program.
RF AMP & SERVO SIGNAL PROCESSOR
TE2
TE1LPFT
54
55
53
PRELIMINARY
F
67
68
E
EI
79
I-V AMP
I-V AMP
75K
220K
BAL < 4 : 0 >
110K
27K
56K
GAIN_UP/DOWN
-
+
13K
13K
GAIN < 3 : 0 >
-
16K
3.3K
7.5K
1.5K
Balance
Window Comp
Gain
Window Comp
To ISTAT
To ISTAT
To TRCNT
Figure 6. Tracking error amp circuit
1.4 Focus OK Circuit
The FOK is the output. The focus OK circuit generates a timing window to enable focus servo operation
from focus search status. When the difference of the RFO (pin74)signal and DC coupled signal
IRF(pin75) are above the predefined voltage the Focus OK circuit output (pin40) becomes active(High
output). The predefined voltage is -0.39V
RFO
IRF
40K
40K
74
75
40K
-
+
57K
90K
VC+0.625V
-
+
FOK
40
Figure 7. Focus OK circuit
M/M-97-P006
18
1997. 10. 17
Page 19
KB9223 / KB9223-L
1.5 Mirror Circuit
IRF signal is amplified by the mirror amp, and the peak and bottom component of amplified signal are
detected by peak and bottom hold circuit. The peak hold circuit covers traverse signal of up to 100KHz
component and bottom hold circuit capable of covering the envelope frequency of disc rotation. The time
constant for the mirror hold must be sufficiently larger than that of the traverse signal.
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
IRF
38K
17K
75
19K
-
+
Peak and
Bottom
Hold
-
+
2.5K
96K
+
17K
+
-
1.5K
1
39
MCP
MIRROR
-
Figure 8. Mirror Circuit
1.6 EFM Comparator
The EFM comparator converts a RF signal into a binary signal.
Beacuse the asymmetry generated due to variations in disc manufacturing can not be eliminated by the
AC coupling alone, this circuit uses to control reference voltage of EFM comparator for eliminating
asymmetry.
RFI
40K
77
+
-
100K
100K
+
20K
-
19K
Figure 9. EFM Comparator & asymmetry circuit
M/M-97-P006
1997. 10. 17
85K
1
EFM
+
39
ASY
-
19
Page 20
KB9223 / KB9223-L
1.7 Defect Circuit
The RFO signal bottom, after being inverted, is held with two time constants of long and short.
The short time-constant bottom hold is done for a disc mirror defect more than 0.1msec, the long timeconstant bottom hold is done with the mirror level prior to the defect. By differentiating this with a
capacitor coupling and shifting the level, both signals are compared to generate the mirror defect
detection signal.
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
75K
37.5K
75
RFO
VC+0.6254V43K
28K
75K
-
+
BOTTOM
HOLD
2
DCB
DCC1
5
BOTTOM
HOLD
DCC2
4
-
DFCT
+
SSTOP/DFCT
41
Figure 10. Defect Circuit
1.8 APC (Auto Power Control) Circuit
The laser diode has large negative temperature characteristic in its optical output when driven with a
constant current on laser diode. Therefore, the output on processing monitor photo diode, must be a
controlled current for getting regular output power, thus the APC (Auto Power Control) circuit is
composed.
PD
69
1.25V
43.5K
+
-
150K
5.5K
(From micom command)
LDON
Figure 11. APC Circuit
M/M-97-P006
1997. 10. 17
PN (From micom command)
150K
+
-
150K
300K
0.75K
LD
70
20
Page 21
KB9223 / KB9223-L
1.9 AGC Stability Circuit
The AGC block is the function used to maintain the constant level of RF peak to peak voltage. After the
operation of RF envelop detection and comparing with reference voltage, RFO level is kept stable in 1Vpp, and inputted to EFM Slice.
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
IRF
75
VCAEQUALIZE
78
EQC
76
EQO
Figure 12. AGC block
1.10 Post Filter
The adjustment of audio output gain and the integration of possible de-emphasis output are executed by
this circuit. This block has amps of 2 channel for gain and filter setting and mute pin for audio signal
muting.
25K
25K
VCC
CH2I
GC2I
-
+
GC1I
CH1I
-
+
-
+
+
12
CH2O
GC2O
10
GC1O
15
-
+
-
CH1O
13
Figure 13. Post Filter circuit
1.11 Center Voltage Generation Circuit
The center voltage is generated by voltage
divide using resistor .
Figure 14.
Center Voltage
Generation Circuit
19
MUTEI
M/M-97-P006
1997. 10. 17
VCC
30K
30K
-
+
71
VR
21
Page 22
KB9223 / KB9223-L
2.Servo Block
2.1 Focus Servo Block
When defect is "H"(the defect signal is detected), the focus servo loop is muting in case of focus phase
compensation. At this time, the focus error signal is outputted through the low pass filter formed by
connecting a capacitor(0.1uF) and a built-in 470KΩ resistor to the FDFCT pin(pin 60). Accordingly, the
focus error output is held at the error value just before defect error during defect occurring. The peak
frequency of focus loop phase compensation is at about 1.2KHz when the resistor connected to FSET
pin(pin 6) is 510KΩ, and it is inversely proportional to the resistor connected to the FSET pin. While the
focus search is operating, the FS4 switch is on and then the focus error signal is isolated, accordingly the
focus search signal is outputted by FEO pin(pin 48). When the FS2 switch is on(focus on), the focus
servo loop is on and the focus error signal from FE2 pin(pin 58) is outputted through the focus servo loop.
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
FE2
FDFCT
FGD
FS3
3.6K
60K
-
FZCI
+
X3
X2
20K
FS4B
FS3
48K
470K
Focus Phase
Compensation
130K
40K
26
FLBFRCH
58
60
28
27
470K
46K
DFCTI
580K
92K
FS2B
6
X4
40K
10K
50K
FSET
X1
-
+
-
+
3
3.6K
FS1
VC
FSCMPO
-
+
-
+
PS
4 3
X1
0 0
X2
0 1
X3
1 0
X4
1 1
FEO
48
FE-
47
Figure 15. Focus servo block
M/M-97-P006
1997. 10. 17
22
Page 23
KB9223 / KB9223-L
2.2 Tracking Servo Block
During detection of defect, the tracking error signal is outputted through the tracking servo loop after
passing the low pass filter formed by connecting a capacitor(0.1uF) and a built-in 470KΩ resistor to the
TDFCT pin(pin57) in case of tracking phase compensation. The value of tracking gain up/down can be
controlled by TGU and TG2 pin. The peak frequency of tracking loop phase compensation, the dynamic
range and offset of opamp can be adjusted by changing the value of resistor connected to FSET pin
same as focus loop. In case of unstable status of actuator after jumping, the ON/OFF of tracking loop is
controlled by TM7 switch of break circuit.
After 10-track jumping, servo circuit gets out of the liner range and actuator's tracking becomes
occasionally unstable. Hence unnecessary jumping with many tracking error should be prevented.
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
TE2
TDFCT
TGU
TG2
TM4
53
470K
57
61
62
470K
DFCTI
20K
TG2
680K
TG1
TM1
110K
82K
10K
TG1
TRACKING
PHASE
COMPENSATION
680K
TM3
66PF
10K
90K
TM7
6
FSET
-
+
TE-
49
TEO
50
Figure 16. Tracking servo block
M/M-97-P006
1997. 10. 17
23
Page 24
KB9223 / KB9223-L
2.3 Sled Servo Block
The moving of pick-up is controlled by tracking servo output through a low pass filter.
The sled kick voltage is outputted for track jump operation.
TM6
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
SLO
43
X 1
X 2
X 3
X 4
TM7
PS
4 3
0 0
0 1
1 0
1 1
-
+
TM2
SL-
44
SL+
42
Figure 17. Sled servo block
2.4 Spindle Servo Block
The 20KΩ resistor and 0.33uF capacitor form the 200Hz low pass filter, and the carrier component of
spindle servo error signals is eliminated. In CLV-S mode, SMEF becomes "L" and pin 25 low pass filter fc
lowers, strengthening the filter further. The characteristics of high frequency phase compensation in
focus tracking servo and the characteristics of cut off frequency in CLV low pass filter are tested by FSET
pin.
SMON
SMDP
24
23
15K220K
15K
20K
22K
22K
220K
220K
220K
25
SMEF
-
+
100K
6
FSET
Figure 18. Spindle servo block
M/M-97-P006
1997. 10. 17
50K
Double
speed
+
-
SPDLO
46
45
SPDL-
24
Page 25
KB9223 / KB9223-L
3.Digital Block
3.1 Description
Digital block is transferred serial data by micom and 8-bit serial data is converted to parallel data by
serial to parallel register. This data is decoded by latch signal. The status output of focus servo,tracking servo,and sled servo system,etc is determined by each data. The auto-sequence function process
2~4 micom command by one auto-sequence command.
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
MDATA
MCK
MLT
D0D1D2
twck
twck
D3
D4
tsu
D5
D6D7
tsn
td
twl
Figure 19. CPU serial interface timing chart
Table 4. CPU serial interface timing characteristics
Auto Adj.$8XX1000Offset,Balance,Gain,APC Control -
Speed$FX1111$F0:Normal Speed, $F3:Double Speed-
M/M-97-P006
1997. 10. 17
26
Page 27
KB9223 / KB9223-L
3.2.1 Focus Control($0X)
This command consists of 8 bits data and expressed by two hexa $0X.
D7D6D5D4D3D2D1D0ISTAT
0000FS4FS3FS2FS1FZC
-Focus Search Operation(FS2,FS1)
$02:FS2 switch become off and the value of servo output pin is as below.
(10uA-5uA)*50k*(feedback Resistor/50k)
$03:If FS1 switch is 1, the current supply is cut off and the discharge is performed.
The waveform is as below and the time constant is determined by internal resistor 50K
and external capacitor.
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
FS4,FS3,FS2,FS1:internal switch for focus control
0V
Figure 20. Waveform at pin 3 when FS1 is switched from 0 to 1
The waveform of servo output pin according to FS1 and FS2 switches is as below.
$00 02030203020300
Figure 21. Focus search waveform at pin 48 by $02 and $03
FS4 is switch for on/off control of focus servo loop
$00:Focus servo off
$08:Focus servo on
M/M-97-P006
1997. 10. 17
27
Page 28
KB9223 / KB9223-L
3.2.2 Tracking Control($1X)
This command is used for tracking loop gain control, break circuit and anti-shock on/off control.
D7D6D5D4D3D2D1D0ISTAT
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
0001Anti
shock
on/off
TG2 and TG1 are internal switch for tracking gain set.
3.2.3 Tracking mode($2X)
This command is used for tracking and sled servo on/off and jump for searching track.
D7D6D5D4D3D2D1D0ISTA
0010Tracking controlSled controlTZC
<Tracking control & Sled control>
D3D2Tracking modeD1D0Sled mode
00Tracking servo off00Sled servo off
01servo on01servo on
10Forward jump10Forward kick
11Reverse jump11Reverse kick
Break
circuit
on/off
TG2TG1Anti
shock
T
3.2.4 Peak value set($3X)
This command is used for the peak value setting of focus search and sled kick .
D0,D1:Sled kick
D2,D3:Focus search peak value
3.2.5 Auto Sequencer command($4X)
This command is used for reducing control time and replacing several command by one auto- sequence
command.
•Auto sequencer mode is performed from the first falling edge of WDCK clock after the falling of
the latch pulse.
•Auto sequencer does not carry out tracking gain up,brake,anti-shock and focus gain down.
•Micom checks ISTAT pin(/BUSY) and sends to $40 command to reset preceding auto
sequencer status
M/M-97-P006
1997. 10. 17
28
Page 29
KB9223 / KB9223-L
Table 6. Auto sequence command
Cancel$400000Reset
Auto focus$470111-
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
HexaAS3AS2AS1AS0Remark
1 Track jump$48
$49
10 Track
jump
2N track jump$4C
M track move$4E
3.2.6 RAM Set($5X~$7X)
The value of RAM set is somewhat different to the actual count and the initial value is like below
Table 7. RAM set table
ItemInitial valueactual count value
Blind$55Set value +4~5 WDCK clock
overflow, BrakeSet value +3 WDCK clock
Kick$67Set value +5 WDCK clock
2N ,M Track jump$7ESet value +3 WDCK clock
$4A
$4B
$4D
$4F
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
4.Auto Adjustment Command
This command is used for auto control of offset,balance,gain adjustment and reference voltage setting. .
This command is also in control of on/off and sub type of laser diode and test or set mode.
4.5 APC circuit operation and Interruption on/off setting condition($85X)
This command is used for setting of laser diode on/off ,sub type(P_sub or N_sub) of laser diode and
interruption countermeasure circuit on/off.
ItemHexaD3D2D1D0initial value
APC &
Interruption on/off
condition
$85X
LD on/off
0 : On
1 : Off
Sub-type
0:N_sub
1:P_sub
Interruption ON/OFF
and time setting
$858
M/M-97-P006
1997. 10. 17
30
Page 31
KB9223 / KB9223-L
4.5.1 Time setting for Interruption countermeasure circuit on/off
D1D0Meaning
00Countermeasure circuit on for all mirror signal
01Countermeasure circuit on up to 20KHz mirror signal
10Countermeasure circuit off
11Countermeasure circuit on up to 10KHz mirror signal
4.6 Focus servo offset reset command and set mode command (86X)
This command is used for set and release before focus servo loop offset adjustment and
mode change.
ItemHexaD3D2D1D0
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
Set mode
&
focus servo offset
reset command
(note1) The set mode command is sent by micom right after tracking gain is tuned.
(note2) The ISTAT pin is outputted the internal status of $00 ~ $7X command.
4.7 Direct command(DIRC) and focus bias reset command($87X)
This command is used for direct 1 track jump on/off setting and focus bias adjustment set and