Datasheet ISPLSI81080V-90LB492, ISPLSI81080V-90LB272, ISPLSI81080V-60LB492, ISPLSI81080V-60LB272, ISPLSI81080V-125LB492 Datasheet (Lattice Semiconductor Corporation)

...
Page 1
®
ispLSI
81080V
3.3V In-System Programmable SuperBIG™ High Density PLD
Features
• SuperBIG HIGH DENSITY IN-SYSTEM PROGRAMMABLE LOGIC — 3.3V Power Supply — 60,000 PLD Gates/1080 Macrocells — 192-360 I/O Pins Supporting 3.3V/2.5V I/O — 1440 Registers — High-Speed Global and Big Fast Megablock (BFM)
Interconnect
— Wide 20-Macrocell Generic Logic Block (GLB) for
High Performance
— Wide Input Gating (44 Inputs per GLB) for Fast
Counters, State Machines, Address Decoders, Etc.
— PCB-Efficient Ball Grid Array (BGA) Package
Options
2
• HIGH-PERFORMANCE E —
fmax = 125 MHz Maximum Operating Frequency tpd = 8.5 ns Propagation Delay
— — Electrically Erasable and Reprogrammable — Non-Volatile — Programmable Speed/Power Logic Path
Optimization
• IN-SYSTEM PROGRAMMABLE — Increased Manufacturing Yields, Reduced Time-to-
Market and Improved Product Quality
— Reprogram Soldered Devices for Faster Debugging
• 100% IEEE 1149.1 BOUNDARY SCAN TESTABLE AND
3.3V IN-SYSTEM PROGRAMMABLE
• ARCHITECTURE FEATURES — Enhanced Pin-Locking Architecture, Symmetrical
Generic Logic Blocks Connected by Hierarchical Big Fast Megablock and Global Routing Planes
— Product Term Sharing Array Supports up to 28
Product Terms per Macrocell Output
— Macrocells Support Concurrent Combinatorial and
Registered Functions
— Embedded Tristate Bus Can Be Used as an Internal
Tristate Bus or as an Extension of an External Tristate Bus
— Macrocell and I/O Registers Feature Multiple Control
Options, Including Set, Reset and Clock Enable
— I/O Pins Support Programmable Bus Hold, Pull-Up,
Open-Drain and Slew Rate Options
— Separate VCCIO Power Supply to Support 3.3V or
2.5V Input/Output Logic Levels
— I/O Cell Register Programmable as Input Register for
Fast Setup Time or Output Register for Fast Clock to Output Time
CMOS® TECHNOLOGY
• ispDesignEXPERT™ – LOGIC COMPILER AND COM­PLETE ISP DEVICE DESIGN SYSTEMS FROM HDL SYNTHESIS THROUGH IN-SYSTEM PROGRAMMING
— Superior Quality of Results — Tightly Integrated with Leading CAE Vendor Tools — Productivity Enhancing Timing Analyzer, Explore
Tools, Timing Simulator and ispANALYZER™
— PC and UNIX Platforms
Functional Block Diagram
12
I/O
12 I/O
12 I/O
12 I/O
12 I/O
12 I/O
12 I/O
12 I/O
12 I/O
Boundary
Scan
12 I/O
12 I/O
12
12 I/O
I/O
12 I/O12I/O12I/O
Big Fast Megablock 0
Big Fast Megablock 1
Big Fast Megablock 2
Big Fast Megablock 3
Big Fast Megablock 4 Global Routing Plane Big Fast Megablock 5
Big Fast Megablock 6
Big Fast Megablock 7
Big Fast Megablock 8
12
12 I/O
I/O
12 I/O12I/O12I/O
81080v block
12 I/O
12 I/O
12 I/O
12 I/O
12 I/O
12 I/O
12 I/O
12 I/O
12 I/O
ispLSI 8000V Family Description
The ispLSI 8000V Family of Register-Intensive, 3.3V SuperBIG In-System Programmable Logic Devices is based on Big Fast Megablocks of 120 registered macro­cells and a Global Routing Plane (GRP) structure
Copyright © 2000 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
July 2000
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
81080v_03 1
Page 2
Specifications ispLSI 81080V
Functional Block Diagram
Figure 1. ispLSI 81080V Functional Block Diagram (Perspective)
Big Fast Megablock Routing Pool (BRP)
Big Fast Megablock Routing Pool (BRP)
Big Fast Megablock Routing Pool (BRP)
Big Fast Megablock Routing Pool (BRP)
Global Routing Plane (GRP) with Tristate Bus Lines
2
Page 3
ispLSI 8000V Family Description (Continued)
Specifications ispLSI 81080V
interconnecting the Big Fast Megablocks. Each Big Fast Megablock contains 120 registered macrocells arranged in six groups of 20, a group of 20 being referred to as a Generic Logic Block, or GLB. Within the Big Fast Megablock, a Big Fast Megablock Routing Pool (BRP) interconnects the six GLBs to each other and to 24 Big Fast Megablock I/O cells with optional I/O registers. The Global Routing Plane which interconnects the Big Fast Megablocks has additional global I/Os with optional I/O registers. The 192-I/O version contains 72 Big Fast Megablock I/Os and 120 global I/Os, while the 360-I/O version contains 216 Big Fast Megablock I/Os and 144 global I/Os.
Outputs from the GLBs in a Big Fast Megablock can drive both the Big Fast Megablock Routing Pool within the Big Fast Megablock and the Global Routing Plane between the Big Fast Megablocks. Switching resources are pro­vided to allow signals in the Global Routing Plane to drive any or all the Big Fast Megablocks in the device. This mechanism allows fast, efficient connections, both within the Big Fast Megablocks and between them.
Each GLB contains 20 macrocells and a fully populated, programmable AND-array with 82 logic product terms. The GLB has 44 inputs from the Big Fast Megablock Routing Pool which are available in both true and comple­ment form for every product term. Up to 20 of these inputs can be switched to provide local feedback into the GLB for logic functions that require it. The 80 general-purpose product terms can be grouped into 20 sets of four and sent into a Product Term Sharing Array (PTSA) which allows sharing up to a maximum of 28 product terms for a single function. Alternatively, the PTSA can be by­passed for functions of four product terms or less.
The 20 registered macrocells in the GLB are driven by the 20 outputs from the PTSA or the PTSA bypass. Each macrocell contains a programmable XOR gate, a pro­grammable register/latch/toggle flip-flop and the necessary clocks and control logic to allow combinatorial or registered operation. Each macrocell has two outputs, one output can be fed back inside the GLB to the AND­array, while the other output drives both the Big Fast Megablock Routing Pool and the Global Routing Plane. This dual output capability from the macrocell allows efficient use of the hardware resources. One output can be a registered function for example, while the other output can be an unrelated combinatorial function.
Macrocell registers can be clocked from one of several global, local or product term clocks available on the
device. A global, local and product term clock enable is also provided, eliminating the need to gate the clock to the macrocell registers. Reset and preset for the macro­cell register is provided from both global and product term signals. The polarity of all of these control signals is selectable on an individual macrocell basis. The macro­cell register can be programmed to operate as a D-type register, a D-type flow-through latch or a T-type flip flop.
The 20 outputs from the GLB can drive both the Big Fast Megablock Routing Pool within the Big Fast Megablock and the Global Routing Plane between the Big Fast Megablocks. The Big Fast Megablock Routing Pool con­tains general purpose tracks which interconnect the six GLBs within the Big Fast Megablock and dedicated tracks for the signals from the Big Fast Megablock I/O cells. The Global Routing Plane contains general pur­pose tracks that interconnect the Big Fast Megablocks and also carry the signals from the I/Os connected to the Global Routing Plane.
Control signals for the I/O cell registers are generated using an extra product term within each GLB, or using dedicated input pins. Each GLB has two extra product terms beyond the 80 available for the macrocell logic. The first additional product term is used as an optional shared product term clock for all the macrocells within the GLB. The second additional product term is then routed to an I/O Control Bus using a separate routing structure from the Big Fast Megablock Routing Pool and Global Routing Plane. Use of a separate control bus routing structure allows the I/O registers to have many control signals with no impact on the interconnection of the GLBs and Big Fast Megablocks. The I/O Control Bus is split into four quadrants, each servicing the I/O cell control re­quirements for one edge of the device. Signals in the control bus can be independently selected by any or all I/O cells to act as clock, clock enable, output enable, reset or preset.
Each Big Fast Megablock has 24 I/O cells. The Global Routing Pool has 144 I/O cells. Each I/O cell can be configured as a combinatorial input, combinatorial out­put, registered input, registered output or bidirectional I/O. I/O cell registers can be clocked from one of several global, local or product term clocks which are selected from the I/O control bus. A global and product term clock enable is also provided, eliminating the need for the user to gate the clock to the I/O cell registers. Reset and preset for the I/O cell register is provided from both global and product term signals. The polarity of all of these control
3
Page 4
Specifications ispLSI 81080V
ispLSI 8000V Family Description (Continued)
signals is selectable on an individual I/O cell basis. The I/O cell register can be programmed to operate as a D­type register or a D-type latch.
The input thresholds are fixed at levels which comply with both 3.3V and 2.5V interfaces. The output driver can source 4mA and sink 8mA (3.3V output supply). The output drivers have a separate VCCIO power supply which is independent of the main VCC supply for the device. This feature allows the output drivers to run from either 3.3V or 2.5V while the device logic is always powered from 3.3V. The output drivers also provide individually programmable edge rates and open drain capability. A programmable pullup resistor is provided to tie off unused inputs and a programmable bus-hold latch is available to hold tristate outputs in their last valid state until the bus is driven again by another device.
The ispLSI 8000V Family features 3.3V, non-volatile in­system programmability for both the logic and the interconnect structures, providing the means to develop truly reconfigurable systems. Programming is achieved through the industry standard IEEE 1149.1-compliant Boundary Scan interface using the JTAG protocol. Bound­ary Scan test is also supported through the same interface.
An enhanced, multiple cell security scheme is provided that prevents reading of the JEDEC programming file when secured. After the device has been secured using this mechanism, the only way to clear the security is to execute a bulk-erase instruction.
ispLSI 81080V Description
The ispLSI 81080V device has nine Big Fast Megablocks for a total of 9 x 120 = 1080 macrocells.
Each Big Fast Megablock has a total of 24 I/O cells and the Global Routing Plane has a total of 144 I/O cells. This gives (9 x 24) + 144 = 360 I/Os for the full I/O version, while the partial I/O version contains 72 Big Fast Megablock I/Os + 120 global I/Os = 192 I/Os.
Embedded Tristate Bus
There is a 108-line embedded internal tristate bus as part of the Global Routing Plane (GRP), enabling multiple GLBs to drive the same tracks. This bus can be parti­tioned into various bus widths such as twelve 9-line buses, six 18-line buses or three 36-line buses. The GLBs can dynamically share a subset of the Global Routing Plane tracks. This feature eliminates the need to convert tristate buses to wide multiplexers on the pro­grammable device. Up to 18 macrocells per GLB can participate in driving the embedded tristate bus. The remaining two macrocells per GLB are used to generate the internal tristate driver control signals on each data byte (with parity). The embedded tristate bus can also be configured as an extension of an external tristate bus using the bidirectional capability of the I/O cells con­nected to the Global Routing Plane. The Global Routing Plane I/Os 0-8 and 15-23 from each group (I/OGx as defined in the I/O Pin Location Table) can connect to the internal tristate bus as well as the unidirectional/non­tristate global routing channels. I/Os 9-14 connect only to the global routing channel.
The embedded tristate bus has internal bus hold and arbitration features in order to make the function more “user friendly”. The bus hold feature keeps the internal bus at the previously driven logic state when the bus is not driven to eliminate bus float. The bus arbitration is performed on a “first come, first served” priority. In other words, once a logic block drives the bus, other logic blocks cannot drive the bus until the first releases the bus. This arbitration feature prevents internal bus contention when there is an overlap between two bus enable sig­nals. Typically, it takes about 3ns to resolve one bus signal coming off the bus to another bus signal driving the bus. The arbitration feature, combined with the predict­ability of the CPLD, makes the embedded tristate bus the most practical for real world bus implementation.
The total registers in the device is the sum of macrocells plus I/O cells, 1080 + 360 = 1440 registers.
4
Page 5
Figure 2. ispLSI 8000V GLB Overview
I/O Big Fast Megablock Input Tracks
Specifications ispLSI 81080V
PT 0 PT 1 PT 2 PT 3
PT 4 PT 5 PT 6 PT 7
PT 8
PT 9 PT 10 PT 11
AND Array Input
0
Fully Populated
Routing
AND Array
General Purpose Big Fast Megablock Input Tracks
Feedback Inputs
43
Product Term Sharing Array
20
Macrocell 0
From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input
Macrocell 1
From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input
Macrocell 2
From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input
0
1
2
To Interconnect
From Tristate Bus Track
To Interconnect
From Tristate Bus Track
To Interconnect
PT 12 PT 13 PT 14 PT 15
PT 76 PT 77 PT 78 PT 79
PT 80
PT 81
Macrocell 3
From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input
Macrocell 19
From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input
Function Selector (E2 Cell Controlled)Note: Macrocells 9 and 10 do not support Tristate Bus Feedback.
From Tristate Bus Track
To interconnect
3
From Tristate Bus Track
To Interconnect
19
From Tristate Bus Track To Output Control MUX
5
Page 6
Figure 3. ispLSI 8000V Macrocell Overview
Single PT
PTSA
PTSA Bypass
PT Clock
Global Clock Enable
Global Clock 0 Global Clock 1 Global Clock 2
PT Reset
GRST
PT Preset
Specifications ispLSI 81080V
Bus Input From Tristate Bus Track*
Feedback to AND Array
DQ
To Big Fast Megablock or Global Interconnect
Clk En
RP
R/L
From Macrocell
9 or 10
To Specific Global Tristate Bus*
Reset pin
Preset/Reset Input has Global Polarity Control
GRST
To All Macrocells and I/O Cells
From PT80
: Function Selector (E2 Cell Controlled)*Not available for Macrocells 9 and 10.
6
Page 7
Figure 4. ispLSI 8000V I/O Cell
Specifications ispLSI 81080V
TOE
GLOBAL OE0 GLOBAL OE1 GLOBAL OE2 GLOBAL OE3
From Output
Control Bus
Multiplexed Output From
Big Fast Megablock or
Global Track
GLOBAL I/O CLOCK ENABLE
From Output
Control Bus
GLOBAL CLOCK0 GLOBAL CLOCK2
QUADRANT I/O CLOCK
From Output
Control Bus
DQ
CLKEN
R/L
R
P
VCCIO
Slew Rate
VCCIO
Open Drain
VCCIO
Big Fast Megablock I/O Pad or Global I/O Pad
To Specific Big Fast Megablock or Global Tracks
To Specific Global Tristate Bus
From Output
Control Bus
Global I/O Cell
Only
GRST
From Output
Control Bus
: Function Selector (E2 Cell Controlled)
7
Page 8
Specifications ispLSI 81080V
Output Control Organization
The Global OE signals and Test OE signal are driven from the dedicated external control input pins.
In addition to the data input and output to the I/O cells, each I/O cell can have up to six different I/O cell control signals. In addition to the internal OE control, the five control signals for each I/O cell consist of pin OE control, clock enable, clock input, asynchronous preset and asyn­chronous reset. All of the I/O control signals can be driven either from the dedicated external input pins or from the internal control bus.
The output enable of each I/O cell can be driven by 21 different sources – 16 from the output control bus, four from the Global OE pins and one from the Test OE pin.
The 16-bit wide output control buses are organized in four different quadrants as shown in Figure 5. Since each GLB is capable of generating the output control signals, each of the output control bus signals can be driven from a unique GLB. The 54 GLBs can generate a total of 54 unique I/O control signals. Referring to Figure 2, the GLB generates its output control signal from control product term (PT81).
Figure 5 also illustrates how the quadrant clocks are routed to the appropriate quadrant I/O cells.
Figure 5. Output Control Bus and Quadrant Organization
Q
ra
, 1
d
a
t 0
u
n
B
(I/O
id
-B
it W
6
-B
0
O
e
<
8
-1
0
>
1
, Q
tp
u
t C
u
o
K
L
C
IO
s
u
l B
tro
n
)
0
s
u l B
o tr
n
o t C
u tp
u O
e id
it W
-B
6 , 1 t 1
n ra
d
a
u Q
)
1 K
L C
IO , Q
>
3
-2
2
1 <
5
-G
0 G
(I/O
s
u
G
B
L
G
ra
e
n
e
te
d
O
tp
u
t
u
tro
n
o
C
(se
F
e
ig
u
Q
d
a
u
ra
n
(I/O
t 2
6
, 1
B
-B
0
ro
F
m
1
8
P
l
re
2
)
-B
it W
<
8
2
1
T
id
tp
u
O
e
t C
u
o
-2
3
L
, Q
>
C
IO
s
u
l B
tro
n
)
2
K
l B tro
n
o t C
u tp
u O
e id
it W
-B
6 , 1 t 3
n
a
r
d
a
u Q
OE Bus/80180V
)
3 K
L C
IO , Q
>
1
1
-
0 <
5
-G
0 G
(I/O
8
Page 9
Figure 6. Boundary Scan Register Circuit for I/O Pins
SCANIN
(from previous
cell)
BSCAN
Registers
DQ DQ
PROG_MODE
BSCAN Latches
Specifications ispLSI 81080V
HIGHZ
EXTEST
TOE
Normal
Function
EXTEST
PROG_MODE
OE
0 1
DQ
DQ
Shift DR
*Internal power-up reset signal. Not connected to external reset pin.
Clock DR
Update DR
DQ
Reset*
Figure 7. Boundary Scan Register Circuit for Input-Only Pins
Normal
Function
0 1
SCANOUT (to next cell)
I/O Pin
Input Pin
SCANIN
(from previous
cell
Shift DR
Clock DR
DQ
9
SCANOUT (to next cell)
Page 10
Specifications ispLSI 81080V
Figure 8. Boundary Scan Waveforms and Timing Specifications
TMS
TDI
T
btsu
T
btch
TCK
TDO
Data to be
captured
Data to be
driven out
SYMBOL
t
btcp TCK Clock Pulse Width ns
t
btch
t
btcl
t
btsu
t
bth
t
rf TCK, TDI, TMS Rise and Fall Time mV/ns
t
btco
t
btoz TAP Controller, TCK to TDO High-Impedance 25 ns
t
btvo
t
btcpsu
t
btcph
t
btuco
t
btuoz
t
btuov
TCK Pulse Width High TCK Pulse Width Low TDI, TMS Setup Time to TCK TDI, TMS Hold Time from TCK
TAP Controller, TCK to TDO Valid
TAP Controller, TCK to TDO High-Impedance to Valid Output BSCAN Test Capture Register Setup Time BSCAN Test Capture Register Hold Time
BSCAN Test Update Register Clock to Valid Output BSCAN Test Update Register Clock to High-Impedance BSCAN Test Update Register High-Impedance to Valid Output
T
btcl
T
btvo
T
btcpsu
T
btuov
PARAMETER
Data Captured
T
bth
T
btcp
T
btco
Valid Data Valid Data
T
btcph
T
btuco
Valid Data Valid Data
MIN
100
50 50 25 25 50
25 25
— — —
T
btoz
T
btuoz
MAX UNITS
ns — —
25 ns
25
65 65
Table 2-0010/81080V
ns ns ns
ns ns ns
ns ns ns65
10
Page 11
Specifications ispLSI 81080V
Absolute Maximum Ratings
1,2
Supply Voltage Vcc.................................. -0.5 to +5.4V
Input Voltage Applied............................... -0.5 to +5.6V
Tri-Stated Output Voltage Applied........... -0.5 to +5.6V
Storage Temperature................................ -65 to 150°C
Case Temp. with Power Applied .............. -55 to 125°C
Max. Junction Temp. (TJ) with Power Applied ... 150°C
1. Stresses above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. Functional
operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).
2. Compliance with the Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM is a requirement.
DC Recommended Operating Condition
SYMBOL
VCC VCCIO
Supply Voltage Commercial T = 0°C to 70°C3.03.6V I/O Supply Voltage
PARAMETER
MIN. MAX. UNITS
A
2.3 3.6 V
Table 2-0005/81080V
Capacitance (TA=25°C,f=1.0 MHz)
SYMBOL
C
1
C
2
C
3
I/O Capacitance Clock Capacitance Global Input Capacitance
PARAMETER
Erase/Reprogram Specification
PARAMETER MINIMUM MAXIMUM UNITS
Erase/Reprogram Cycles
UNITSTYPICAL TEST CONDITIONS
10 10 10
10000 Cycles
pf V = 3.3V, V = 2.0V pf V = 3.3V, V = 2.0V pf V = 3.3V, V = 2.0V
CC I/O
CC CK CC G
Table 2-0006/81080V
Table 2-0008/81080V
11
Page 12
Switching Test Conditions
R
1
V
CCIO
R
2
C
L
*
Device Output
Test
Point
*
CL includes Test Fixture and Probe Capacitance.
0213A/81080V
Specifications ispLSI 81080V
Input Pulse Levels Input Rise and Fall Time Input Timing Reference Levels Ouput Timing Reference Levels Output Load 3-state levels are measured 0.5V from
steady-state active level.
GND to VCCIO
1.5 ns 10% to 90%
1.5V
1.5V
See Figure 9
min
Table 2-0003/81080V
Output Load Conditions (See Figure 9)
3.3V 2.5V
TEST CONDITION R1 R2
A 316348
Active High
B
Active Low Active High to Z
at V -0.5V
C
D Slow Slew
OH
Active Low to Z at V +0.5V
OL
348
316Ω∞
348
316Ω∞
∞∞
R1 R2
511475
475
511Ω∞
475
511Ω∞
∞∞
Table 2-0004A/81080V
CL
35pF 35pF 35pF
5pF 5pF
35pF
DC Electrical Characteristics for 3.3V Range
Over Recommended Operating Conditions
SYMBOL
VCCIO VIL
VIH VOL
VOH
I/O Supply Voltage 3.0 3.6 V Input Low Voltage -0.3 0.8 V
Input High Voltage Output Low Voltage
Output High Voltage
PARAMETER
= 0°C to + 70°C
T
A
I = 8 mA
OL
I = -4 mA
OH
Figure 9. Test Load
CONDITION MIN. MAX. UNITS
2.0
2.4
5.25
0.4
Table 2-0007/81080V
V V
V
DC Electrical Characteristics for 2.5V Range
SYMBOL
V
V
V
V
V
CCIO IL
IH OL
OH
I/O Supply Voltage 2.3 2.7 V Input Low Voltage
Input High Voltage Output Low Voltage
Output High Voltage
PARAMETER
Over Recommended Operating Conditions
CONDITION MIN. MAX. UNITS
T
= 0°C to + 70°C
A
V V
V V
, VIN=VIH or VIL, IOL= 100µA
CCIO=min
, VIN=VIH or VIL, IOL= 2mA
CCIO=min
, VIN=VIH or VIL, IOH= -100µA
CCIO=min
, VIN=VIH or VIL, IOH= -2mA
CCIO=min
12
-0.3 0.7 V
1.7 5.25 V
0.2 V 0.7 V
2.1 V
1.7 V
Table 2-0007B/81080V
Page 13
DC Electrical Characteristics
Over Recommended Operating Conditions
SYMBOL
IIL
IIH
IPU
IBHL
IBHH
IBHLO
IBHLH
IBHT
ICC
Input or I/O Low Leakage Current 0V V V (Max.) Input or I/O High Leakage Current
4
I/O Active Pullup Current Bus Hold Low Sustaining Current Bus Hold High Sustaining Current Bus Hold Low Overdrive Current Bus Hold High Overdrive Current Bus Hold Trip Points
1,3,5
Operating Power Supply Current
1. Measured at a frequency of 1MHz using 54 20-bit counters.
2. Typical values are at V
3. Maximum I
varies widely with specific device configuration and operating frequency.
CC
4. Pullup is capable of pulling minimum voltage of V
5. Unused inputs held at GND.
PARAMETER
= 3.3V and T
CC
= 25°C.
A
IN IL
(V
-0.2)V VIN V
CCIO
V
VIN 5.25V
CCIO
0V
VIN V
VIN = V
IL(max)
VIN = V
IH(min)
0V ≤ VIN V 0V ≤ VIN V
V = 0.5V, V = 3.0V
IL IH
f = 1 MHz
TOGGLE
under no-load conditions.
OH
Specifications ispLSI 81080V
CONDITION MIN. TYP. MAX. UNITS
CCIO
– –
IL
40
-40
CCIO
CCIO
High Speed Mode Low Power Mode
V
IL
2
-10
– – –
10 50
-250
– – –
550
-550
V 590 250
Table 2-0007C/81080V
– –
IH
µA µA µA µA µA µA µA µA
V
mA
13
Page 14
Specifications ispLSI 81080V
External Switching Characteristics
1
Over Recommended Operating Conditions
PARA-
METER
t
pd1
t
pd2
f
max
t
suq
t
hq
t
coq
t
sug
t
hg
t
cog
t
su1
t
h1
t
co1
t
suceq
t
hceq
t
suceg
t
hceg
t
goe
t
rglb
t
rio
t
rw
t
wh
t
wl
1. Unless noted otherwise, all parameters use PTSA and CLK0.
2. Refer to Timing Model in this data sheet for further details.
3. Standard 20-bit counter with local feedback.
4. Refer to Switching Test Conditions section.
TEST
COND.
A A
— — —
A
— —
A
— —
A
— — — —
B/C
— — — — —
2
4
Prop Delay, BFM Input to Same BFM Output, 4 PT Bypass 10.0 ns
1
Prop Delay, Global Input to Global Output ns
2
Clk Frequency, Local Feedback, Same GLB 90.0
3
I/O Cell Reg, Data Setup Time, Quadrant I/O Clock 8.0 ns
4
I/O Cell Reg, Data Hold Time, Quadrant I/O Clock ns
5
I/O Cell Reg, Quadrant Clock to Output Delay 6.0 ns
6
I/O Cell Reg, Data Setup Time, Global Clock ns
7
I/O Cell Reg, Data Hold Time, Global Clock ns
8
I/O Cell Reg, Global Clock to Output Delay 7.5 ns
9
GLB Reg Setup, BFM Input to Same BFM GLB, 4 PT Bypass ns
10
GLB Reg Hold Time, BFM Input to Same BFM GLB 0.0 ns
11
GLB Reg, Global Clock to Same BFM Output Delay 10.0 ns
12
I/O Cell Reg, CLKEN Setup Time, Quadrant I/O Clock 6.5 ns
13
I/O Cell Reg, CLKEN Hold Time, Quadrant I/O Clock 0.0 ns
14
GLB Reg, CLKEN Setup Time, Global Clock 4.5 ns
15
GLB Reg, CLKEN Hold Time, Global Clock 0.0 ns
16
Global Output Enable/Disable Delay ns
17
Global Reset/Preset Time, GLB Reg 15.0 ns
18
Global Reset/Preset Time, I/O Cell Reg 10.0 ns
19
Global Reset/Preset Pulse Duration 6.5 ns
20
Global or Quadrant Clock Pulse, High Duration 6.0 ns
21
Global or Quadrant Clock Pulse, Low Duration 6.0 ns
22
DESCRIPTION#
-125
MIN. MAX.
8.5
3
125.0
0.0
3.5
0.0
4.5
5.0
4.0
— —
6.0
— —
0.0
8.0
5.5
0.0
3.5
0.0
7.0
— — 14.0 8.5
5.0
4.0
4.0
-90 -60
MIN. MAX.
16.014.5
0.0
6.0
0.0
7.0
— — — —
10.0
UNITS
MAX.
MIN.
15.0
24.0
60.0 MHz
12.0
0.0
9.0
9.0
0.0
10.0
11.0
— —
0.0
15.0
9.5
0.0
6.5
0.0
15.0
— — 22.0 15.0
9.5
9.0
9.0
Table 2-0030/81080V
14
Page 15
Internal Timing Parameters
Over Recommended Operating Conditions
Specifications ispLSI 81080V
PARA­METER #
I/O Cell Delay
2
DESCRIPTION
-125 -90 -60
MIN MAX MIN MAX MIN MAX UNITS
tidcom 23 Input Pad and Input Buffer, Combinatorial Input 0.3 0.4 0.6 ns tidreg 24 Input Pad and Input Buffer, Registered Input 6.4 7.6 11.2 ns tobp 25 Output Register/Latch Bypass to Output Buffer 0.0 0.0 0.0 ns tibp 26 Input Register/Latch Bypass to BFM Routing or GRP 0.4 0.5 0.8 ns tiolat 27 I/O Cell Latch, Transparent Mode 2.0 2.4 3.6 ns tioco 28 I/O Cell Register/Latch, Clk/Gate to Output 0.5 1.2 1.6 ns tiosu 29 I/O Cell Register/Latch, Setup Time 0.5 2.4 3.9 ns tioh 30 I/O Cell Register/Latch, Hold Time 2.5 3.2 4.7 ns tiorst 31 I/O Cell Register/Latch, Reset or Set Time 1.5 1.7 2.5 ns tiosuce 32 I/O C e l l R e g i ster/Latch, Setup Time for Clk Enable 0.9 1.0 1.2 ns tiohce 33 I / O c e l l R e g i ster/Latch, Hold Time for Clk Enable 4.6 4.6 6.9 ns todreg 34 I/O Cell Output Buffer Delay, Registered Output 1.6 1.9 2.9 ns todcom 35 I / O C e l l O utput Buffer Delay, Combinatorial Output 1.6 1.9 2.9 ns todz 36 Output Driver Disable Time 1.4 1.7 2.6 ns tslf 37 Slew Rate Adder, Fast Slew Rate 0.0 0.0 0.0 ns tsls 38 Slew Rate Adder, Slow Slew Rate 6.2 7.3 10.9 ns
GLB / Macrocell Delay
tandhs 39 AND Array, High Speed Mode 2.6 2.9 4.2 ns tandlp 40 AND Array, Low Power Mode 6.5 7.7 11.5 ns t1pt 41 Single Product Term Bypass 1.9 2.2 3.4 ns t4ptcom 42 Four Product Term Bypass, Combinatorial Macrocell 0.5 0.6 0.9 ns t4ptreg 43 Four Product Term Bypass, Registered Macrocell 1.4 1.7 2.2 ns tptsa 44 Product Term Sharing Array 2.4 2.7 4.1 ns tmbp 45 Macrocell Register/Latch Bypass 0.0 0.0 0.0 ns tmlat 46 Macrocell Latch, Transparent Mode 4.6 5.5 8.2 ns tmco 47 Macrocell Register/Latch, Clk/Gate to Output 0.2 0.8 0.9 ns tmsu 48 Macrocell Register/Latch, Setup Time 2.7 4.5 6.9 ns tmh 49 Macrocell Register/Latch, Hold Time 1.0 1.2 1.1 ns tmrst 50 Macrocell Register/Latch, Reset or Set Time 1.4 1.5 1.6 ns tmsuce 51 Macrocell Register/Latch, Setup Time for Clk Enable 1.0 1.3 1.7 ns tmhce 52 Macrocell Register/Latch, Hold Time for Clk Enable 2.3 2.6 3.9 ns tfloc 54 Local Feedback to AND Array 0.1 0.1 0.6 ns tpck 55 Single Product Term, Clk 1.3 1.3 1.6 1.6 2.5 2.5 ns tpcken 56 Single Product Term, Clk Enable 1.7 2.0 3.1 ns tsck 57 Shared Product Term, Clk 1.7 1.9 2.0 2.3 3.1 3.5 ns tscken 58 Shared Product Term, Clk Enable 1.7 1.9 2.0 2.3 3.1 3.5 ns tprst 59 Single Product Term, Reset or Set Delay 1.5 1.7 2.6 ns trdir 60 Macrocell Register, Direct Input from GRP 7.2 8.4 12.7 ns
15
Page 16
Specifications ispLSI 81080V
Internal Timing Parameters
Over Recommended Operating Conditions
PARA­METER #
BFM / Global Routing Pool Delay
2
DESCRIPTION
tbfmi 61 BFM Routing Delay, Signal from I/O Cell 0.4 1.0 0.6 1.3 0.8 1.9 ns tgrpi 62 GRP Delay, Signal from I/O Cell 1.8 1.9 2.8 ns tgrpiz 63 Internal Tristate Bus Enable/Disable, I/O Cell Buffer 4.3 4.9 7.3 ns tbfmm 64 BFM Routing Delay, Signal from Macrocell 0.6 0.7 1.1 ns tgrpm 65 GRP Delay, Signal from Macrocell 2.6 3.0 4.5 ns tgrpmz 66
Internal Tristate Bus Enable/Disable, Macrocell Buffer
tbfmg 67 BFM Routing Delay, Signal from GRP 3.3 3.3 4.9 ns tgrpb 68 GRP Delay, Signal from BFM Routing 1.3 1.5 2.3 ns tbcom 69 BFM Routing to I/O Cell, Combinatorial Path 1.5 1.7 2.6 ns tbreg 70 BFM Routing to I/O Cell, Registered Path 2.3 2.6 4.0 ns tgcom 71 GRP to I/O Cell, Combinatorial Path 0.8 0.8 1.2 ns tgreg 72 GRP to I/O Cell, Registered Path 1.6 1.7 2.6 ns
I/O Control Bus Delay
tpiock 73 Product Term as I/O Cell Register Clock 4.1 4.7 7.2 ns tpiocken 74 Product Term as I/O Cell Register Clock Enable 4.6 5.3 8.1 ns tpoe 75 Product Term as Output Buffer Enable/Disable 5.6 6.5 9.9 ns tpiorst 76
Product Term as I/O Cell Register Reset or Set Delay
tpioz 77 Internal Tristate Bus Control Signal for I/O Cell Buffer 3.3 3.8 5.8 ns
Global Control Delay
tgck 78 Global Macrocell Register Clk 3.9 4.1 4.3 4.9 6.6 7.5 ns tgcken 79 Global Macrocell Register Clk Enable 6.4 6.4 7.5 7.5 11.4 11.4 ns tgiock 80 Global I/O Register Clk 3.4 3.9 4.0 4.4 6.1 6.5 ns tgiocken 81 Global I/O Register Clk Enable 6.5 6.5 7.5 7.5 11.4 11.4 ns tqck 82 Quadrant I/O Register Clk 1.9 1.9 2.0 2.9 3.1 4.5 ns tgoe 83 Global Output Enable 5.6 8.3 12.4 ns ttoe 84 Test Output Enable 8.5 10.1 15.2 ns tgmrst 85 Global GLB Register Reset 7.6 7.8 11.8 ns tgiorst 86 Global I/O Cell Register Reset 5.4 6.4 9.6 ns
1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to Timing Model in this data sheet for further details.
-125 -90 -60
MIN MAX MIN MAX MIN MAX UNITS
3.6 4.3 6.5 ns
4.3 5.0 7.6 ns
16
Page 17
ispLSI 81080V Timing Model
Input Buffer and I/O Cell Register
I/O register delays
t
I/O
pad
Input
pad
Input buffer
delays
t#23,
idcom
t#24,
idreg
Global control
delay
#78,
t
gck
#79,
t
gcken
t
#80,
giock
#81,
t
giocken
t
#82,
qck
#83,
t
goe
t#84,
toe
#85,
t
gmrst
#86,
t
giorst
#25, #26, #27, #28, #29, #30,
#32, #33,
obp
t
ibp
t
iolat
t
ioco
t
iosu
t
ioh
t#31,
iorst
t
iosuce
t
iohce
Output path
Input path
BFM Routing Pool
GLB/ Macrocell
AND array
#39, t
andhs
#40, t
andlp
t#61,
bfmi
t#64,
bfmm
Local feedback
t#54,
floc
PTSA
#41,
t
1pt
t
#42,
4ptcom
t
#43,
4ptreg
t
#44,
ptsa
PT Mcell controls
t
#55,
pck
#56,
t
pcken
#57,
t
sck
t
#58,
scken
t
#59,
prst
PT I/O control bus
t
#73,
piock
t
#74,
piocken
t
#75,
poe
#76,
t
piorst
t
#77,
pioz
Specifications ispLSI 81080V
t
t#67,
bfmg
Macrocell
Register
t
#45, #46,
t
#47,
t t
#48,
t
#49, #50,
t t
#51,
t
#52,
mbp mlat mco msu mh mrst msuce mbce
#69, #70, #71, #72,
bcom
t
breg
t
gcom
t
greg
Bus direct
Output routing
t#60,
rdir
z
Global
Routing
Plane
#62, #63, #65, #66, #68,
t
grpi
t
grpiz
t
grpm
t
grpmz
t
grpb
8840V_Model.eps
Output delays
#34, #35, #36,
buffer
t
odreg
t
odcom
t
odz
slew rate
#37, #38,
Output adders
I/O
pad
t
slf
t
sls
17
Page 18
Specifications ispLSI 81080V
Example Timing Calculations
tpd1 = (BFM Input Path Delay) + (GLB Delay) + (Output Path Delay)
= (
tidcom + tibp + tbfmi max) + (tandhs + t4ptcom + tmbp) + (tbfmm + tbcom + tobp + todcom + tslf)
= (#23 + #26 + #61) + (#39 + #42 + #45) + (#64 + #69 + #25 + #35 + #37) = (0.3 + 0.4 + 1.0) + (2.6 + 0.5 + 0.0) + (0.6 + 1.5 + 0.0 + 1.6 + 0.0) = 8.5 ns
tpd (within BFM)
= (BFM Delay) + (GLB Delay) = (
tbfmm) + (tandhs + t4ptcom + tmbp)
= (#64) + (#39 + #42 + #45) = (0.6) + (2.6 + 0.5 + 0.0) = 3.7 ns
tpd (between BFMs)
= (GRP Delay) + (BFM Delay) + (GLB Delay) = (
tgrpm) + (tbfmg) + (tandhs + t4ptcom + tmbp)
= (#65) + (#67) + (#39 + #42 + #45) = (2.6) + (3.3) + (2.6 + 0.5 + 0.0) = 9.0 ns
BFM I/O to internal tri-state Enable/Disable
= (BFM Input Path Delay) + (GLB Delay, 1PT) + (Tri-state Control Delay) = (
tidcom + tibp + tbfmi max) + (tandhs + t1pt + tmbp) + (tgrpmz)
= (#23 + #26 + #61) + (#39 + #41 + #45) + (#66) = (0.3 + 0.4 + 1.0) + (2.6 + 1.9 + 0.0) + (3.6) = 9.8 ns
tsu1 = (BFM Input Path Delay) + (GLB Setup Time) - (Min. Global Clock Delay)
= (
tidcom + tibp + tbfmi max) + (tandhs + t4ptreg + tmsu) – (tgck min)
= (#23 + #26 + #61) + (#39 + #43 + #48) – (#78) = (0.3 + 0.4 + 1.0) + (2.6 + 1.4 + 2.7) – (3.9) = 4.5 ns
1/
Fmax = (Global Clk to MC Output) + (Local Feedback) + (GLB Setup Time)
= (
tmco) + (tfloc) + (tandhs + tptsa + tmsu)
= (#47) + (#54) + (#39 + #44 + #48) = (0.2) + (0.1) + (2.6 + 2.4 + 2.7) = 8.0 ns
Fmax = 125 MHz
Note: Calculations are based upon timing specifications for the ispLSI 81080V-125L
18
Page 19
Power Consumption
Specifications ispLSI 81080V
Power consumption in the ispLSI 81080V device de­pends on two primary factors: the speed at which the device is operating and the number of product terms used. The product terms have a fuse-selectable speed/ power tradeoff setting. Each group of four product terms has a single speed/power tradeoff control fuse that acts on the complete group of four. The fast high-speed
Figure 10. Typical Device Power Consumption vs fmax
1300 1200
1100 1000
900 800 700
CC (mA)
I
600 500 400
setting operates product terms at their normal full power consumption. For portions of the logic that can tolerate longer propagation delays, selecting the slower low­power setting will significantly reduce the power dissipation for these product terms. Figure 10 shows the relationship between power and operating speed.
ispLSI 81080V
Turbo Non-Turbo
300 200
0 102030405060708090100
f
max (MHz)
Notes: Configuration of 54 20-bit counters
Typical current at 3.3V, 25¡ C
ICC can be estimated for the ispLSI 81080V using the following equation: ICC = 45.0 + (# of Turbo PTs * 0.25) + (# of Non-Turbo PTs * 0.11) + (# of Macrocells Used * Fmax * AF * .043)
# of Turbo PTs = Number of Turbo Product Terms Used in Design # of Non-Turbo PTs = Number of Non-Turbo Product Terms Used in Design fmax = Maximum Operating Frequency
AF (Activity Factor) =
Note: An Activity Factor of 1.0 means all macrocell registers toggle at fmax. An Activity Factor of 0.5 means the average macrocell register toggles at half of fmax.
The I on average exists. These values are for estimates only. Since the value of I and the program in the device, the actual I
estimate is based on typical conditions (VCC = 3.3V, room temperature) and an assumption of two GLB loads
CC
Average Macrocell Toggle Frequency
Fmax
should be verified.
CC
is sensitive to operating conditions
CC
110 120 130
0127/81080V
19
Page 20
Specifications ispLSI 81080V
Signal Descriptions
Signal Name Description
CLK0, CLK1, Dedicated clock input for the GLB registers only. These clock inputs are connected to one of the clock CLK2 inputs of all GLB registers in the device.
CLKEN Dedicated clock enable input for the GLB registers only. This input is available as a clock enable for
each GLB register in the device. Use of the clock enable input eliminates the need for the user to gate
the clock to the register. GND Ground (GND) GOE0, GOE1, Global Output Enable inputs.
GOE2, GOE3 SET/RESET Dedicated reset/preset pin connected to ALL registers in the device, GLB registers and I/O registers.
Each register can independently choose to be reset or preset when this signal goes active. The active
polarity is user-selectable. IOCLKEN Dedicated clock enable input for the I/O registers only. This input is available as a clock enable input for
all I/O registers in the device. Use of the clock enable input eliminates the need for the user to tie the
clock to the I/O register. I/O Input/Output – These are the general purpose I/O used by the logic array. EPEN Embedded Port Enable Pin – When this pin is high, the port is enabled. When this pin is low, the
state machine is held at reset asynchronously and TCK, TMS and TDI are ignored. TMS Input – This signal is the Test Mode Select input signal. QIOCLK0, Dedicated clock inputs for the I/O registers only. These clock inputs are connected to the I/O registers
QIOCLK1, on the same side of the device only, they are not connected to all of the I/O registers. Use of these QIOCLK2, quadrant I/O clocks gives the fastest tco from the device. QIOCLK3
TCK Input – This signal is the Test Clock input signal. TDI Input – This signal is the Test Data input signal. TDO Output – This signal is the Test Data Out Output Signal. TOE Test Output Enable. Tristates all I/O pins when a logic low is driven. VCC Vcc VCCIO Power supply for the output drivers. The internal logic of the device is connected to VCC which is
always 3.3V. The output drivers are connected to VCCIO which can be equal to VCC or 2.5V. This
allows the output drivers to be powered from 2.5V, for example, to interface directly with another 2.5V
device.
1
NC
1. NC pins are not to be connected to any active signals, VCC or GND.
No connect.
20
Page 21
Signal Locations
Specifications ispLSI 81080V
Signal Name
QIOCLK0, QIOCLK1, QIOCLK2, QIOCLK3
CLK0, CLK1, CLK2 CLKEN IOCLKEN EPEN TCK TDI TDO TMS GOE0, GOE1,
GOE2, GOE3 TOE SET/RESET VCC
VCCIO
GND
1
NC
1. NC pins are not to be connected to any active signals, VCC or GND.
Y8, M20, C8, N2
Y9, P18, D8 V9 B9 C17 A4 U5 C4 W4 Y10, M19, C9, N1
L3 P3 D9, D10, D11, D12, J4, J17, K4, K17, L4, L17,
M4, M17, U9, U10, U11, U12
A7, A8, A20, B16, C5, C12, E4, G20, H4, M1, N17, U2, U20, V2, V6, W7, W8, W16, W19, Y13
D4, D16, D17, J9, J10, J11, J12, K9, K10, K11, K12, L9, L10, L11, L12, M9, M10, M11, M12, U4, U17
A9, V17, W9
272-Ball BGA
492-Ball BGA
AE14, P22, A15, N3
AC15, R24, B15 AB17 E16 B26 A2 AF1 B3 AC4 AF15, P23, D16, N5
L5 P2 E9, E12, E15, E18, F5, F10, F17, F22, G5, G22,
K5, K22, L22, M5, N22, P5, R22, T5, U5, U22, Y5, Y22, AA5, AA10, AA17, AA22, AB9, AB12, AB15, AB18
E8, E13, E19, E20, F7, F8, F20, J6, J21, K3, L24, N1, P24, T3, U25, V6, Y23, AA7, AA8, AA20, AB8, AB14, AB19, AB20
E5, E11, E14, E22, F6, F21, L11, L12, L13, L14, L15, L16, M11, M12, M13, M14, M15, M16, N11, N12, N13, N14, N15, N16, P11, P12, P13, P14, P15, P16, R11, R12, R13, R14, R15, R16, T11, T12, T13, T14, T15, T16, AA6, AA21, AB5, AB13, AB16, AB22
A16, C2, E17, G21, Y21, AA9, AB4, AB10, AD15, AF25
21
Page 22
I/O Pin Locations (272-Ball BGA Package)
Specifications ispLSI 81080V
Signal BGA
I/O G0 <0> V4 I/O G0 <1> Y3 I/O G0 <2> Y2 I/O G0 <3> W3 I/O G0 <4> Y1 I/O G0 <5> W2 I/O G0 <6> W1 I/O G0 <7> V3 I/O G0 <8> V1 I/O G0 <9> U3 I/O G0 <10> R4 I/O G0 <11> T4 I/O G0 <12> U19 I/O G0 <13> R17 I/O G0 <14> V20 I/O G0 <15> V19 I/O G0 <16> U18 I/O G0 <17> V18 I/O G0 <18> T17 I/O G0 <19> W20 I/O G0 <20> Y20 I/O G0 <21> Y19 I/O G0 <22> W18 I/O G0 <23> Y18 I/O G2 <0> U1 I/O G2 <1> T3 I/O G2 <2> T2 I/O G2 <3> T1 I/O G2 <4> R3 I/O G2 <5> R2 I/O G2 <6> R1 I/O G2 <7> P4 I/O G2 <8> P2 I/O G2 <9> N4 I/O G2 <10> N3 I/O G2 <11> P1 I/O G2 <12> N18 I/O G2 <13> N19 I/O G2 <14> N20
Signal BGA
I/O G2 <15> P19 I/O G2 <16> P17 I/O G2 <17> P20 I/O G2 <18> R20 I/O G2 <19> R19 I/O G2 <20> R18 I/O G2 <21> T20 I/O G2 <22> T19 I/O G2 <23> T18 I/O G3 <0> H2 I/O G3 <1> H1 I/O G3 <2> J3 I/O G3 <3> J2 I/O G3 <4> J1 I/O G3 <5> K3 I/O G3 <6> K2 I/O G3 <7> K1 I/O G3 <8> L2 I/O G3 <9> L1 I/O G3 <10> M2 I/O G3 <11> M3 I/O G3 <12> M18 I/O G3 <13> L20 I/O G3 <14> L19 I/O G3 <15> L18 I/O G3 <16> K20 I/O G3 <17> K19 I/O G3 <18> K18 I/O G3 <19> J20 I/O G3 <20> H20 I/O G3 <21> J19 I/O G3 <22> H19 I/O G3 <23> J18 I/O G4 <0> G2 I/O G4 <1> G1 I/O G4 <2> H3 I/O G4 <3> G3 I/O G4 <4> G4 I/O G4 <5> F3
Signal BGA Signal BGA
I/O G4 <6> F1 I/O G4 <7> F2 I/O G4 <8> F4 I/O G4 <9> E1 I/O G4 <10> E2 I/O G4 <11> E3 I/O G4 <12> D20 I/O G4 <13> F17 I/O G4 <14> E19 I/O G4 <15> G17 I/O G4 <16> G18 I/O G4 <17> F18 I/O G4 <18> E20 I/O G4 <19> F19 I/O G4 <20> H17 I/O G4 <21> F20 I/O G4 <22> H18 I/O G4 <23> G19 I/O G5 <0> A3 I/O G5 <1> B2 I/O G5 <2> B3 I/O G5 <3> A2 I/O G5 <4> A1 I/O G5 <5> B1 I/O G5 <6> D3 I/O G5 <7> D2 I/O G5 <8> C3 I/O G5 <9> C2 I/O G5 <10> D1 I/O G5 <11> C1 I/O G5 <12> D19 I/O G5 <13> E18 I/O G5 <14> C20 I/O G5 <15> B20 I/O G5 <16> A19 I/O G5 <17> C19 I/O G5 <18> D18 I/O G5 <19> B19 I/O G5 <20> C18
I/O G5 <21> E17 I/O G5 <22> B18 I/O G5 <23> A18 I/O B1 <0> Y4 I/O B1 <1> V5 I/O B1 <2> W5 I/O B1 <3> Y5 I/O B1 <4> U6 I/O B1 <5> U7 I/O B1 <6> W6 I/O B1 <7> V7 I/O B1 <8> Y6 I/O B1 <9> Y7 I/O B1 <10> U8 I/O B1 <11> V8 I/O B1 <12> B8 I/O B1 <13> C7 I/O B1 <14> D7 I/O B1 <15> B7 I/O B1 <16> B6 I/O B1 <17> C6 I/O B1 <18> A6 I/O B1 <19> D6 I/O B1 <20> B5 I/O B1 <21> A5 I/O B1 <22> D5 I/O B1 <23> B4 I/O B5 <0> V10 I/O B5 <1> W10 I/O B5 <2> Y11 I/O B5 <3> W11 I/O B5 <4> V11 I/O B5 <5> Y12 I/O B5 <6> W12 I/O B5 <7> V12 I/O B5 <8> W13 I/O B5 <9> U13 I/O B5 <10> V13 I/O B5 <11> Y14
Signal BGA
I/O B5 <12> B14 I/O B5 <13> D13 I/O B5 <14> B13 I/O B5 <15> A13 I/O B5 <16> A12 I/O B5 <17> B12 I/O B5 <18> B11 I/O B5 <19> A11 I/O B5 <20> C11 I/O B5 <21> B10 I/O B5 <22> A10 I/O B5 <23> C10 I/O B7 <0> W14 I/O B7 <1> V14 I/O B7 <2> U14 I/O B7 <3> Y15 I/O B7 <4> W15 I/O B7 <5> V15 I/O B7 <6> U15 I/O B7 <7> Y16 I/O B7 <8> V16 I/O B7 <9> U16 I/O B7 <10> W17 I/O B7 <11> Y17 I/O B7 <12> B17 I/O B7 <13> A17 I/O B7 <14> C16 I/O B7 <15> D15 I/O B7 <16> C15 I/O B7 <17> A16 I/O B7 <18> B15 I/O B7 <19> D14 I/O B7 <20> C14 I/O B7 <21> A15 I/O B7 <22> A14 I/O B7 <23> C13
22
Page 23
Specifications ispLSI 81080V
I/O Pin Locations (492-Ball BGA Package)
Signal BGA Signal BGA Signal BGA Signal BGA Signal BGA
I/O G0 <0> AA4 I/O G0 <1> AA3 I/O G0 <2> AA2 I/O G0 <3> AA1 I/O G0 <4> Y4 I/O G0 <5> Y3 I/O G0 <6> Y2 I/O G0 <7> Y1 I/O G0 <8> W4 I/O G0 <9> W3 I/O G0 <10> W2 I/O G0 <11> U6 I/O G0 <12> U21 I/O G0 <13> Y26 I/O G0 <14> Y25 I/O G0 <15> Y24 I/O G0 <16> V21 I/O G0 <17> AA26 I/O G0 <18> AA25 I/O G0 <19> AA24 I/O G0 <20> AA23 I/O G0 <21> AB26 I/O G0 <22> AB25 I/O G0 <23> AB24 I/O G1 <0> T2 I/O G1 <1> W5 I/O G1 <2> U1 I/O G1 <3> U2 I/O G1 <4> U3 I/O G1 <5> U4 I/O G1 <6> V1 I/O G1 <7> V5 I/O G1 <8> V2 I/O G1 <9> V3 I/O G1 <10> V4 I/O G1 <11> W1 I/O G1 <12> W23 I/O G1 <13> W24 I/O G1 <14> W25 I/O G1 <15> W26 I/O G1 <16> V22 I/O G1 <17> V23 I/O G1 <18> V24 I/O G1 <19> V25 I/O G1 <20> V26 I/O G1 <21> W22 I/O G1 <22> U23 I/O G1 <23> U24 I/O G2 <0> T4 I/O G2 <1> T1 I/O G2 <2> W6 I/O G2 <3> R2 I/O G2 <4> R1 I/O G2 <5> R3 I/O G2 <6> R4 I/O G2 <7> R5 I/O G2 <8> P1 I/O G2 <9> P3 I/O G2 <10> P4 I/O G2 <11> N4 I/O G2 <12> P26 I/O G2 <13> P25 I/O G2 <14> R23 I/O G2 <15> T22 I/O G2 <16> R26 I/O G2 <17> R25 I/O G2 <18> T26 I/O G2 <19> T23 I/O G2 <20> W21 I/O G2 <21> T24 I/O G2 <22> T25 I/O G2 <23> U26
I/O G3 <0> K2 I/O G3 <1> K1 I/O G3 <2> L2 I/O G3 <3> H6 I/O G3 <4> L3 I/O G3 <5> L4 I/O G3 <6> L1 I/O G3 <7> M2 I/O G3 <8> M1 I/O G3 <9> M3 I/O G3 <10> M4 I/O G3 <11> N2 I/O G3 <12> N23 I/O G3 <13> N24 I/O G3 <14> N26 I/O G3 <15> N25 I/O G3 <16> M22 I/O G3 <17> M23 I/O G3 <18> M24 I/O G3 <19> M26 I/O G3 <20> H21 I/O G3 <21> M25 I/O G3 <22> L26 I/O G3 <23> L23 I/O G4 <0> K4 I/O G4 <1> H5 I/O G4 <2> J1 I/O G4 <3> J2 I/O G4 <4> J3 I/O G4 <5> J4 I/O G4 <6> H1 I/O G4 <7> J5 I/O G4 <8> H2 I/O G4 <9> H3 I/O G4 <10> H4 I/O G4 <11> K6 I/O G4 <12> H26 I/O G4 <13> J23 I/O G4 <14> J24 I/O G4 <15> J25 I/O G4 <16> J22 I/O G4 <17> J26 I/O G4 <18> K23 I/O G4 <19> K24 I/O G4 <20> K25 I/O G4 <21> H22 I/O G4 <22> K26 I/O G4 <23> L25 I/O G5 <0> E4 I/O G5 <1> E3 I/O G5 <2> E2 I/O G5 <3> E1 I/O G5 <4> F4 I/O G5 <5> F3 I/O G5 <6> F2 I/O G5 <7> F1 I/O G5 <8> G4 I/O G5 <9> G3 I/O G5 <10> G2 I/O G5 <11> G1 I/O G5 <12> K21 I/O G5 <13> H25 I/O G5 <14> H24 I/O G5 <15> H23 I/O G5 <16> G26 I/O G5 <17> G25 I/O G5 <18> G24 I/O G5 <19> G23 I/O G5 <20> F26 I/O G5 <21> F25 I/O G5 <22> F24 I/O G5 <23> F23
I/O B0 <0> Y6 I/O B0 <1> AB1 I/O B0 <2> AB2 I/O B0 <3> AB3 I/O B0 <4> AC1 I/O B0 <5> AC2 I/O B0 <6> AC3 I/O B0 <7> AD1 I/O B0 <8> AD2 I/O B0 <9> AD3 I/O B0 <10> AE1 I/O B0 <11> AB6 I/O B0 <12> E6 I/O B0 <13> A1 I/O B0 <14> C3 I/O B0 <15> D4 I/O B0 <16> G6 I/O B0 <17> F9 I/O B0 <18> B2 I/O B0 <19> B1 I/O B0 <20> D3 I/O B0 <21> C1 I/O B0 <22> D2 I/O B0 <23> D1 I/O B1 <0> AE2 I/O B1 <1> AF2 I/O B1 <2> AE3 I/O B1 <3> AF3 I/O B1 <4> AD4 I/O B1 <5> AE4 I/O B1 <6> AF4 I/O B1 <7> AC5 I/O B1 <8> AD5 I/O B1 <9> AE5 I/O B1 <10> AB7 I/O B1 <11> AF5 I/O B1 <12> B6 I/O B1 <13> E7 I/O B1 <14> C6 I/O B1 <15> D6 I/O B1 <16> A5 I/O B1 <17> B5 I/O B1 <18> C5 I/O B1 <19> D5 I/O B1 <20> A4 I/O B1 <21> B4 I/O B1 <22> C4 I/O B1 <23> A3 I/O B2 <0> AC6 I/O B2 <1> AD6 I/O B2 <2> AE6 I/O B2 <3> AF6 I/O B2 <4> AC7 I/O B2 <5> AD7 I/O B2 <6> AE7 I/O B2 <7> AF7 I/O B2 <8> AC8 I/O B2 <9> AD8 I/O B2 <10> AE8 I/O B2 <11> AF8 I/O B2 <12> B9 I/O B2 <13> C9 I/O B2 <14> D9 I/O B2 <15> A8 I/O B2 <16> B8 I/O B2 <17> C8 I/O B2 <18> D8 I/O B2 <19> A7 I/O B2 <20> B7 I/O B2 <21> C7 I/O B2 <22> D7 I/O B2 <23> A6
I/O B3 <0> AC9 I/O B3 <1> AD9 I/O B3 <2> AE9 I/O B3 <3> AF9 I/O B3 <4> AC10 I/O B3 <5> AD10 I/O B3 <6> AE10 I/O B3 <7> AF10 I/O B3 <8> AE11 I/O B3 <9> AD11 I/O B3 <10> AB11 I/O B3 <11> AC11 I/O B3 <12> A12 I/O B3 <13> E10 I/O B3 <14> B12 I/O B3 <15> A11 I/O B3 <16> D11 I/O B3 <17> C11 I/O B3 <18> B11 I/O B3 <19> A10 I/O B3 <20> B10 I/O B3 <21> C10 I/O B3 <22> D10 I/O B3 <23> A9 I/O B4 <0> AF11 I/O B4 <1> AE12 I/O B4 <2> AF12 I/O B4 <3> AD12 I/O B4 <4> AC12 I/O B4 <5> AE13 I/O B4 <6> AF13 I/O B4 <7> AD13 I/O B4 <8> AC13 I/O B4 <9> AC14 I/O B4 <10> AD14 I/O B4 <11> AF14 I/O B4 <12> C15 I/O B4 <13> D15 I/O B4 <14> B14 I/O B4 <15> A14 I/O B4 <16> C14 I/O B4 <17> D14 I/O B4 <18> D13 I/O B4 <19> C13 I/O B4 <20> A13 I/O B4 <21> B13 I/O B4 <22> D12 I/O B4 <23> C12 I/O B5 <0> AE15 I/O B5 <1> AF16 I/O B5 <2> AC16 I/O B5 <3> AD16 I/O B5 <4> AE16 I/O B5 <5> AF17 I/O B5 <6> AE17 I/O B5 <7> AD17 I/O B5 <8> AC17 I/O B5 <9> AF18 I/O B5 <10> AE18 I/O B5 <11> AD18 I/O B5 <12> B19 I/O B5 <13> A19 I/O B5 <14> D18 I/O B5 <15> C18 I/O B5 <16> B18 I/O B5 <17> A18 I/O B5 <18> D17 I/O B5 <19> C17 I/O B5 <20> B17 I/O B5 <21> A17 I/O B5 <22> B16 I/O B5 <23> C16
I/O B6 <0> AC18 I/O B6 <1> AF19 I/O B6 <2> AE19 I/O B6 <3> AA19 I/O B6 <4> AD19 I/O B6 <5> AC19 I/O B6 <6> AF20 I/O B6 <7> AE20 I/O B6 <8> AD20 I/O B6 <9> AC20 I/O B6 <10> AF21 I/O B6 <11> AE21 I/O B6 <12> A22 I/O B6 <13> D21 I/O B6 <14> C21 I/O B6 <15> B21 I/O B6 <16> A21 I/O B6 <17> D20 I/O B6 <18> C20 I/O B6 <19> B20 I/O B6 <20> A20 I/O B6 <21> F19 I/O B6 <22> D19 I/O B6 <23> C19 I/O B7 <0> AD21 I/O B7 <1> AC21 I/O B7 <2> AF22 I/O B7 <3> AE22 I/O B7 <4> AD22 I/O B7 <5> AC22 I/O B7 <6> AF23 I/O B7 <7> AE23 I/O B7 <8> AD23 I/O B7 <9> AF24 I/O B7 <10> AE24 I/O B7 <11> AD24 I/O B7 <12> A26 I/O B7 <13> D23 I/O B7 <14> B25 I/O B7 <15> A25 I/O B7 <16> B24 I/O B7 <17> A24 I/O B7 <18> C23 I/O B7 <19> B23 I/O B7 <20> A23 I/O B7 <21> D22 I/O B7 <22> C22 I/O B7 <23> B22 I/O B8 <0> AB21 I/O B8 <1> AF26 I/O B8 <2> AE25 I/O B8 <3> AC23 I/O B8 <4> AE26 I/O B8 <5> AD25 I/O B8 <6> AC24 I/O B8 <7> AD26 I/O B8 <8> AB23 I/O B8 <9> AC25 I/O B8 <10> AC26 I/O B8 <11> AA18 I/O B8 <12> E26 I/O B8 <13> E25 I/O B8 <14> E24 I/O B8 <15> E23 I/O B8 <16> D26 I/O B8 <17> D25 I/O B8 <18> D24 I/O B8 <19> C26 I/O B8 <20> C25 I/O B8 <21> C24 I/O B8 <22> E21 I/O B8 <23> F18
23
Page 24
Specifications ispLSI 81080V
Signal Configuration
ispLSI 81080V 272-Ball BGA Signal Diagram
2019181716151413121110987654321
I/O G5
I/O G5
I/O B7
I/O B7
I/O B7
I/O B7
I/O B5
I/O B5
I/O B5
VCCIO
A B B C C D E F
G
H J K L L
M M
N P P R R T U U V
W W
Y
<16>
<23>
<13>
<17>
<21>
<22>
<15>
<16>
I/O B5
I/O B5
I/O B5
VCCIO
I/O B7
<14>
GNDGND
I/O B7
<9>
I/O B7
<8>
I/O B7
<7>
I/O B7
<18>
I/O B7
<16>
I/O B7
<15>
I/O B7
<6>
I/O B7
<5>
I/O B7
<4>
I/O B7
<3>
<17>
<14>
<12>
I/O B7
I/O B7
<20>
I/O B7
<19>
VCCIO VCCIO
<23>
I/O B5
<13>
ispLSI 81080V
Bottom View
GND GND GND GND
GND GND GND GND
GND GND GND GND
GND GND GND GND
I/O B7
I/O B5
<2>
<9>
I/O B7
I/O B5
<10>
I/O B5
<8>
VCCIO
I/O B5
<7>
I/O B5
<6>
I/O B5
<5>
<1>
I/O B7
<0>
I/O B5
<11>
I/O G5
<19>
<15>
I/O G5
I/O G5
<14>
<17>
I/O G5
I/O G4
<12>
<12>
I/O G4
I/O G4
<18>
<14>
I/O G4
I/O G4
<21>
<19>
I/O G4
VCCIO
<23>
I/O G3
I/O G3
<20>
<22>
I/O G3
I/O G3
<19>
<21>
I/O G3
I/O G3
<16>
<17>
I/O G3
I/O G3
<13>
<14>
GOE
QIOCLK
1
1
I/O G2
I/O G2
<14>
<13>
I/O G2
I/O G2
<17>
<15>
I/O G2
I/O G2
<18>
<19>
I/O G2
I/O G2
<21>
<22>
I/O G0
VCCIO VCCIO
<12>
I/O G0
I/O G0
<14>
<15>
I/O G0
<19>
I/O G0
I/O G0
<20>
<21>
<22>
I/O G5
<20>
I/O G5
<18>
I/O G5
<13>
I/O G4
<17>
I/O G4
<16>
I/O G4
<22>
I/O G3
<23>
I/O G3
<18>
I/O G3
<15>
I/O G3
<12>
I/O G2
<12>
CLK 1
I/O G2
<20>
I/O G2
<23>
I/O G0
<16>
I/O G0
<17>
I/O G0
<22>
I/O G0
<23>
<12>
EPEN
I/O G5
<21>
I/O G4
<13>
I/O G4
<15>
I/O G4
<20>
VCC
VCC
VCC
VCC
VCCIO
I/O G2
<16>
I/O G0
<13>
I/O G0
<18>
GND
NC
I/O B7
<10>
I/O B7
<11>
1
I/O B7
I/O G5
I/O G5
<19>
I/O B5
<18>
I/O B5
<20>
I/O B5
<4>
I/O B5
<3>
I/O B5
<2>
I/O B5
<22>
I/O B5
<21>
I/O B5
<23>
I/O B5
<0>
I/O B5
<1>
GOE
1
NC
VCCIO
I/O B1
IOCLKEN
<12>
GOE
QIOCLK
2
2
CLK 2
VCCVCCVCCVCC
I/O B1
<10>
I/O B1
<11>
1
VCCIOVCCIO VCCIO VCCIO
NC
QIOCLK
CLK 0
0
0
VCCIO
I/O B1
<15>
I/O B1
<13>
I/O B1
<14>
I/O B1
<5>
I/O B1
<7>
I/O B1
<9>
I/O B1
<18>
I/O B1
<16>
I/O B1
<17>
I/O B1
<19>
I/O B1
<4>
I/O B1
<6>
I/O B1
<8>
I/O B1
<21>
I/O B1
<20>
I/O B1
<22>
TDI
I/O B1
<1>
I/O B1
<2>
I/O B1
<3>
I/O G5
TCK
I/O G5
I/O B1
<23>
I/O G5
TDO
I/O G5
GND
I/O G4
VCCIO
<11>
I/O G4
I/O G4
<8>
I/O G4
I/O G4
<4>
I/O G4
VCCIO
I/O G3
VCC
I/O G3
VCC
VCC TOE
I/O G3
VCC
<11>
I/O G2
I/O G2
<9>
<10>
SET/
I/O G2
RESET
<7>
I/O G2
I/O G0
<10>
I/O G2
I/O G0
<11>
I/O G0
GNDVCC VCC VCC VCC
I/O G0
I/O G0
<0>
I/O G0
TMS
I/O G0
I/O B1
<0>
<0>
<2>
<8>
<6>
<5>
<3>
<2>
<2>
<5>
<4>
<1>
<9>
<7>
<3>
<1>
I/O G5
<3>
I/O G5
<1>
I/O G5
<9>
I/O G5
<7>
I/O G4
<10>
I/O G4
<7>
I/O G4
<0>
I/O G3
<0>
I/O G3
<3>
I/O G3
<6>
I/O G3
<8>
I/O G3
<10>
QIOCLK
3
I/O G2
<8>
I/O G2
<5>
I/O G2
<2>
VCCIOCLKEN VCCIO
I/O G0
<5>
I/O G0
<2>
I/O G5
<4>
I/O G5
<5>
I/O G5
<11>
I/O G5
<10>
I/O G4
<9>
I/O G4
<6>
I/O G4
<1>
I/O G3
<1>
I/O G3
<4>
I/O G3
<7>
I/O G3
<9>
VCCIO
GOE
3
I/O G2
<11>
I/O G2
<6>
I/O G2
<3>
I/O G2
<0>
I/O G0
<8>
I/O G0
<6>
I/O G0
<4>
A
D E F
G
H J K
N
T
V
Y
2019181716151413121110987654321
1. NCs are not to be connected to any active signals, Vcc or GND. Note: Ball A1 indicator dot on top side of package.
24
272 BGA/81080v.eps
Page 25
Signal Configuration
ispLSI 81080V 492-Ball BGA Signal Diagram
I/O B7
I/O B7
I/O B7
I/O B7
I/O B6
I/O B6
I/O B6
I/O B5
I/O B5
A B C D E F
G
H
J K L
M
N P R T U V
W
Y
AA AB
AC AD AE
AF
<12>
<15>
<17>
I/O B7
I/O B7
<16>
<14>
I/O B8
I/O B8
<19>
I/O B8
<16>
I/O B8
<12>
I/O G5
<20>
I/O G5
<16>
I/O G4
<12>
I/O G4
<17>
I/O G4
<22>
I/O G3
<22>
I/O G3
<19>
I/O G3
<14>
I/O G2
<12>
I/O G2
<16>
I/O G2
<18>
I/O G2
<23>
I/O G1
<20>
I/O G1
<15>
I/O G0
<13>
I/O G0
<17>
I/O G0
<21>
I/O B8
<10>
I/O B8
<7>
I/O B8
<4>
I/O B8
<1>
I/O B8
<20>
<21>
I/O B8
I/O B8
<17>
<18>
I/O B8
I/O B8
<13>
<14>
I/O G5
I/O G5
<21>
<22>
I/O G5
I/O G5
<17>
<18>
I/O G5
I/O G5
<13>
<14>
I/O G4
I/O G4
<15>
<14>
I/O G4
I/O G4
<20>
<19>
I/O G4
VCCIO
<23>
I/O G3
I/O G3
<21>
<18>
I/O G3
I/O G3
<15>
<13>
I/O G2
VCCIO GOE 1
<13>
I/O G2
<17>
I/O G2
I/O G2
<22>
<21>
I/O G1
VCCIO VCC
<23>
I/O G1
I/O G1
<19>
<18>
I/O G1
I/O G1
<14>
<13>
I/O G0
I/O G0
<14>
<15>
I/O G0
I/O G0
<18>
<19>
I/O G0
I/O G0
<22>
<23>
I/O B8
I/O B8
<9>
<6>
I/O B7
I/O B8
<11>
<5>
I/O B7
I/O B8
<10>
<2>
I/O B7
1
NC
<9>
<20>
<12>
<16>
<20>
<13>
I/O B5
I/O B6
I/O B6
I/O B7
I/O B7
<19>
I/O B7
<18>
I/O B7
<13>
I/O B8
<15>
I/O G5
<23>
I/O G5
<19>
I/O G5
<15>
I/O G4
<13>
I/O G4
<18>
I/O G3
<23>
I/O G3
<17>
I/O G3
<12>
I/O G2
<14>
I/O G2
<19>
I/O G1
<22>
I/O G1
<17>
I/O G1
<12>
VCCIO VCC NC
I/O G0
<20>
I/O G8
<8>
I/O B8
<3>
I/O B7
<8>
I/O B7
<7>
I/O B7
<6>
<15>
<23>
I/O B6
I/O B7
<14>
<22>
I/O B7
I/O B6
<21>
<13>
I/O B8
GND VCCVCCVCC
<22>
VCC
VCC NC
I/O G4
I/O G3
<21>
<20>
I/O G4
VCCIO
<16>
I/O G5
VCC
<12>
VCC
I/O G3
<16>
VCC
QIOCLK
1
VCCCLK 1
I/O G2
<15>
I/O G0
<12>
I/O G1
I/O G0
<16>
<16>
I/O G1
I/O G2
<21>
<20>
VCC VCCIO VCCGND
I/O B8
GND GNDGND
<0>
I/O B7
I/O B7
<5>
<1>
I/O B7
I/O B7
<0>
<4>
I/O B7
I/O B6
<3>
<11>
I/O B6
I/O B7
<10>
<2>
<12>
<19>
I/O B6
I/O B6
<23>
<18>
I/O B6
I/O B6
<17>
<22>
I/O B6
<21>
1
1
I/O B6
<3>
I/O B6
I/O B6
<9>
<5>
I/O B6
I/O B6
<4>
<8>
I/O B6
I/O B6
<7>
<2>
I/O B6
I/O B6
<1>
<6>
I/O B5
<17>
<21>
I/O B5
I/O B5
<20>
<16>
I/O B5
I/O B5
<19>
<15>
I/O B5
I/O B5
<14>
I/O B8
<23>
GOE 2
<18>
1
NC
IOCLKEN
VCC VCC VCCIO
ispLSI 81080V
I/O B8
<11>
CLKEN
I/O B6
I/O B5
<0>
<8>
I/O B5
I/O B5
<7>
<11>
I/O B5
I/O B5
<10>
<6>
I/O B5
I/O B5
<5>
<9>
Specifications ispLSI 81080V
I/O B4
I/O B4
I/O B3
1
QIOCLK
NC
2
<15>
<20>
I/O B4
CLK2EPEN
I/O B4
<12>
I/O B4
<13>
I/O B4
<14>
I/O B4
<16>
I/O B4
<17>
<21>
I/O B4
<19>
I/O B4
<18>
I/O B5
<22>
I/O B5
<23>
GND GND GND GND GND GND
GND GND GND GND GND GND
GND GND GND GND GND GND
GND GND GND GND GND GND
GND GND GND GND GND GND
GND GND GND GND GND GND
Bottom View
I/O B5
<2>
I/O B5
<3>
I/O B5
<4>
I/O B5
<1>
CLK 0
NC
I/O B5
<0>
GOE 0
1
I/O B4
<9>
I/O B4
<10>
QIOCLK
0
I/O B4
<11>
I/O B4
<8>
I/O B4
<7>
I/O B4
<5>
I/O B4
<6>
<12>
I/O B3
<14>
I/O B4
<23>
I/O B4
<22>
VCCVCCVCC VCCIOVCCIOVCCIO
I/O B4
<4>
I/O B4
<3>
I/O B4
<1>
I/O B4
<2>
I/O B3
<15>
I/O B3
<18>
I/O B3
<17>
I/O B3
<16>
I/O B3
<10>
I/O B3
<11>
I/O B3
I/O B3
I/O B4
<9>
<8>
<0>
I/O B3
<19>
I/O B3
<20>
I/O B3
<21>
I/O B3
<22>
I/O B3
<13>
I/O B3
<4>
I/O B3
<5>
I/O B3
<6>
I/O B3
<7>
1
234567891011121314151617181920212223242526
I/O B3
I/O B2
I/O B2
I/O B2
I/O B1
I/O B1
<23>
<15>
<19>
<23>
<16>
I/O B1
I/O B1
I/O B2
I/O B2
I/O B2
<12>
I/O B2
<13>
I/O B2
<14>
I/O R0
<17>
1
I/O B3
<0>
I/O B3
<1>
I/O B3
<2>
I/O B3
<3>
<20>
<16>
I/O B2
I/O B2
<21>
<17>
I/O B2
I/O B2
<18>
<22>
I/O B1
<13>
VCCIO VCCGNDGND VCCIO
1
I/O B1
<10>
I/O B2
I/O B2
<8>
<4>
I/O B2
I/O B2
<5>
<9>
I/O B2
I/O B2
<10>
<6>
I/O B2
I/O B2
<7>
<11>
<12>
I/O B1
<14>
I/O B1
<15>
I/O B0
<12>
I/O B0
<16>
I/O G3
<3>
VCCIO
I/O G4
<11>
I/O G0
<11>
VCCIO
I/O G2
<2>
I/O B0
<0>
GND
I/O B0
<11>
I/O B2
<0>
I/O B2
<1>
I/O B2
<2>
I/O B2
<3>
<17>
I/O B1
<18>
I/O B1
<19>
GNDVCCIOVCCIOVCCIOVCCIO VCCGNDGND
VCC
I/O G4
<1>
I/O G4
<7>
VCC
TOE
VCC
GOE 3
VCC
I/O G2
<7>
VCC
VCC
I/O G1
<7>
I/O G1
<1>
VCC
VCCVCCIOVCCIOVCC NC
GNDVCCIOVCCNC
I/O B1
<7>
I/O B1
<8>
I/O B1
<9>
I/O B1
<11>
<20>
I/O B1
<21>
I/O B1
<22>
I/O B0
<15>
I/O G5
<0>
I/O G5
<4>
I/O G5
<8>
I/O G4
<10>
I/O G4
<5>
I/O G4
<0>
I/O G3
<5>
I/O G3
<10>
I/O G2
<11>
I/O G2
<10>
I/O G2
<6>
I/O G2
<0>
I/O G1
<5>
I/O G1
<10>
I/O G0
<8>
I/O G0
<4>
I/O G0
<0>
NC
TMS
I/O B1
<4>
I/O B1
<5>
I/O B1
<6>
1
I/O B1
<23>
TDO
I/O B0
<14>
I/O B0
<20>
I/O G5
<1>
I/O G5
<5>
I/O G5
<9>
I/O G4
<9>
I/O G4
<4>
VCCIO
I/O G3
<4>
I/O G3
<9>
QIOCLK
I/O G2
<9>
I/O G2
<5>
VCCIO
I/O G1
<4>
I/O G1
<9>
I/O G0
<9>
I/O G0
<5>
I/O G0
<1>
I/O B0
<3>
I/O B0
<6>
I/O B0
<9>
I/O B1
<2>
I/O B1
<3>
I/O B0
TCK
I/O B0
<18>
1
NC
I/O B0
<22>
I/O G5
<2>
I/O G5
<6>
I/O G5
<10>
I/O G4
<8>
I/O G4
<3>
I/O G3
<0>
I/O G3
<2>
I/O G3
<7>
I/O G3
3
<11>
SET/
RESET
I/O G2
<3>
I/O G1
<0>
I/O G1
<3>
I/O G1
<8>
I/O G0
<10>
I/O G0
<6>
I/O G0
<2>
I/O B0
<2>
I/O B0
<5>
I/O B0
<8>
I/O B1
<0>
I/O B1
<1>
<13>
I/O B0
<19>
I/O B0
<21>
I/O B0
<23>
I/O G5
<3>
I/O G5
<7>
I/O G5
<11>
I/O G4
<6>
I/O G4
<2>
I/O G3
<1>
I/O G3
<6>
I/O G3
<8>
VCCIO
I/O G2
<8>
I/O G2
<4>
I/O G2
<1>
I/O G1
<2>
I/O G1
<6>
I/O G1
<11>
I/O G0
<7>
I/O G0
<3>
I/O B0
<1>
I/O B0
<4>
I/O B0
<7>
I/O B0
<10>
TDI
A B C D E F G H
J K L M N P R
T U V
W
Y
AA AB
AC AD AE
AF
1234567891011121314151617181920212223242526
1. NC pins are not to be connected to any active signals, VCC or GND. Note: Ball A1 indicator dot on top side of package.
25
Page 26
Part Number Description
Specifications ispLSI 81080V
Device Family Device Number
Speed
125 = 125 MHz fmax 90 = 90 MHz fmax 60 = 60 MHz fmax

Ordering Information

FAMILY fmax (MHz)
125 125 492-Ball BGA8.5 ispLSI 81080V-125LB492
ispLSI
90 272-Ball BGA10 ispLSI 81080V-90LB272 90 492-Ball BGA10 ispLSI 81080V-90LB492 60 272-Ball BGA15 ispLSI 81080V-60LB272 60 492-Ball BGA15 ispLSI 81080V-60LB492
ispLSI
81080V
tpd (ns)
8.5
- XXX X XXXX X
COMMERCIAL
ORDERING NUMBER PACKAGE
ispLSI 81080V-125LB272
Grade
Blank = Commercial
Package
B272 = 272-Ball BGA (Thermally Enhanced)
B492 = 492-Ball BGA
Power
L = Low
0212/81080V
272-Ball BGA
Table 2-0041/81080V
26
Loading...