Datasheet ISL9N7030BLS3ST, ISL9N7030BLP3 Datasheet (Fairchild Semiconductor)

E
Data Sheet January2002
30V, 0.009 Ohm, 75A, N-Channel Logic Level UltraFET® Trench Power MOSFETs
This devi ce em ploys a new advanced trench MO SFET technology and features low gate charge while maintaining low on-resistance.
Optimized for switching ap plications, this device improves the overa ll effi ci enc y of DC/D C converters and allows operation to higher switching frequencies.
Packaging
ISL9N7030BLS3ST
JEDEC TO-263AB
DRAIN
(FLANGE)
ISL9N7030BLP3
JEDEC TO-220AB
SOURCE
DRAIN
GAT
ISL9N7030BLP3, ISL9N7030BLS3ST
PWM
Optimized
Features
•Fast Switching
•r
•r
•Qg Total 24nC (Typ), VGS = 5V
•Q
•C
Symbol
= 0.0064Ω (Typ), V
DS(ON)
= 0.010Ω (Typ), V
DS(ON)
(Typ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11nC
gd
(Typ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600pF
ISS
GS
GS
= 10V
= 4.5V
D
G
GATE
SOURCE
DRAIN
(FLANGE)
S
Ordering Information
PART NUMBER PACKAGE BRAND
ISL9N7030BLP3 TO-220AB 7030BL ISL9N7030BLS3ST TO-263AB (Tape and Reel) 7030BL
Absolute Maximum Ratings
SYMBOL PARAMETER ISL9N7030BLP3, I SL9N703 0BLS3ST UNITS
V
DSS
V
DGR
V
I
DM
P
, T
T
J
T
T
THERMAL SPECIFICATIONS
R R R
NOTE:
1. T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
Drain to Source Voltage (Note 1) 30 V Drain to Gate Voltage (RGS = 20k) (Note 1) 30 V Gate to Source Voltage ±20 V
GS
Drain Current
I
D
I
D
I
D
D
STG
L
pkg
θJC θJA θJA
= 25oC to 150oC.
J
Continuous (T Continuous (T Continuous (T Pulsed Drain Current
Power Dissipation
Derate Above 25 Operating and Storage Temperature -55 to 175 Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s
Package Body for 10s, See T e chbrief TB334
Thermal Resistance Junction to Case, TO-220, TO-263 1.5 Thermal Resistance Junction to Ambient, TO-220, TO-263 62 Thermal Resistance Junction to Ambient, TO-263, 1in2 copper pad area 43
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html
C C C
TC = 25oC, Unless Otherwise Specified
= 25oC, VGS = 10V) (Figure 2) = 100oC, VGS = 4.5V) (Figure 2) = 25oC, VGS = 10V, R
o
C
For severe environments, see our Automotive products.
= 43oC/W)
θJA
75 48 15
Figure 4
100
0.67
300 260
A A A A
W
W/oC
o
C
o
C
o
C
o
C/W
o
C/W
o
C/W
©2002 Fairchild Semiconductor Corpo ration ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B
ISL9N7030BLP3, ISL9N703 0BLS3ST
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BV Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V Drain to Source On Resistance r
SWITCHING SPECIFICATIONS (V
GS
= 4.5V) Turn-On Time t Turn-On Delay Time t Rise Time t Turn-Off Delay Time t Fall Time t Turn-Off Time t SWITCHING SPECIFICATIONS (V
GS
= 10V) Turn-On Time t Turn-On Delay Time t Rise Time t Turn-Off Delay Time t Fall Time t Turn-Off Time t
GATE CHARGE SPECIFICATIONS
Total Gate Charge at 10V Q Total Gate Charge at 5V Q Threshold Gate Charge Q Gate to Source Gate Charge Q Gate to Drain “Miller” Charge Q
CAPACITANCE SPECIFICATIONS
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C
DSSID
DSS
VDS = 25V, VGS = 0V - - 1 µA V
GSS
GS(TH)VGS
DS(ON)ID
ON
VGS = ±20V - - ±100 nA
I
D
VDD = 15V, ID = 15A V
d(ON)
d(OFF)
OFF
ON
d(ON)
d(OFF)
OFF
g(TOT)VGS
g(5)
g(TH)
ISS OSS RSS
(Figures 13, 17, 18)
r
f
VDD = 15V, ID = 15A, V (Figures 14, 17, 18)
r
f
VGS = 0V to 5V - 24 37 nC VGS = 0V to 1V - 2.6 4.0 nC
gs
gd
VDS = 15V, VGS = 0V, f = 1MHz (Figure 11)
= 250µA, VGS = 0V (Figure 10) 30 - - V
= 25V, VGS = 0V, TC = 150oC - - 250 µA
DS
= VDS, ID = 250µA (Figure 9 1 - 3 V = 75A, VGS = 10V (Figures 7, 8) - 0.007 0.009 = 48A, VGS = 4.5V (Figure 7) - 0.010 0.012
- - 122 ns
= 4.5V, RGS = 6.2
GS
-15-ns
-67-ns
-35-ns
-32-ns
- - 100 ns
- - 71 ns
= 10V, R
GS
GS
= 6.2Ω,
-8-ns
-40-ns
-64-ns
-31-ns
- - 142 ns
= 0V to 10V VDD = 15V,
I
= 48A,
D
= 1.0mA
I
g(REF)
(Figures 12, 15, 16)
-4568nC
-7-nC
-8-nC
- 2600 - pF
- 520 - pF
- 225 - pF
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
I
Source to Drain Diode Voltage V
Reverse Recovery Time t Reverse Recovered Charge Q
©2002 Fairchild Semiconductor Corpo ration ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B
SD
rr
RR
= 48A - - 1.25 V
SD
= 20A - - 1.0 V
I
SD
ISD = 48A, dISD/dt = 100A/µs--26ns ISD = 48A, dISD/dt = 100A/µs--14nC
Typical Performance Curves
5
ISL9N7030BLP3, ISL9N703 0BLS3ST
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
125
150
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATI ON vs CASE
TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
80
60
40
, DRAIN CURRENT (A)
20
D
I
0
25 50 75 100 125 150 17
VGS = 4.5V
VGS = 10V
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
, NORMALIZED Z
0.1
+ T
P
DM
t
1
t
C
0
10
2
1
10
θJC
THERMAL IMPEDANCE
0.01
SINGLE PULSE
-5
10
-4
10
-3
10
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-2
10
1/t2
x R
θJC
θJC
-1
10
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
, PEAK CURRENT (A) I
DM
1000
100
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
50
-5
10
VGS = 10V
VGS = 5V
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC
FOR TEMPERATURES ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
0
10
150
C
1
10
FIGURE 4. PEAK CURRENT CAPABILITY
©2002 Fairchild Semiconductor Corpo ration ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B
5
0
0
0
0
0
ISL9N7030BLP3, ISL9N703 0BLS3ST
Typical Performance Curves
150
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
125
100
75
50
, DRAIN CURRENT (A)
D
I
25
= 15V
V
DD
TJ = 175oC
TJ = 25oC
0
1234
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 5. TRANSFER CHARACTERISTICS FIGURE 6. SATURATION CHARACTERISTICS
25
ID = 50A
20
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
T
= 25oC
C
(Continued)
TJ = -55oC
150
T
= 25oC
C
125
100
75
50
, DRAIN CURRENT (A)
D
I
25
0
0 0.5 1.0 1.5 2.
VDS, DRAIN TO SOURCE VOLTAGE (V)
2.0
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
1.5
VGS = 10V
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
VGS = 4.5V
VGS = 3.5V
VGS = 3V
15
, DRAIN TO SOURCE
DS(ON)
r
ID = 14A
ON RESIST ANCE (mΩ)
10
5
24681
ID = 75A
VGS, G ATE TO SOURCE VOLTAGE (V)
FIGURE 7. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
1.2
1.0
0.8
NORMALIZED GATE
0.6
THRESHOLD VOLTAGE
0.4
-80 -40 0 40 80 120 160 20
TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
1.0
ON RESISTANCE
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 20
TJ, JUNCTION TEMPERATURE (oC)
VGS = 10V, ID = 75A
FIGURE 8. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 20 TJ, JUNCTION TEMPERATURE (oC)
ID = 250µA
FIGURE 9. NORMALIZED GATE THRESHOLD VOL TAGE vs
JUNCTION TEMPERATURE
©2002 Fairchild Semiconductor Corpo ration ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
0 0
0
V
I
ISL9N7030BLP3, ISL9N703 0BLS3ST
Typical Performance Curves
(Continued)
4000
1000
C
RSS
= C
C
ISS
GD
= C
GS
+ C
GD
C
OSS
C
DS
+ C
GD
C, CAPACITANCE (pF)
V
= 0V, f = 1MHz
GS
100
0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
250
VGS = 4.5V, VDD = 15V, ID = 15A
200
150
100
SWITCHING TIME (ns)
50
t
d(OFF)
t
r
t
f
t
d(ON)
10
V
= 15V
DD
8
6
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
3
0
0 1020304050
WAVEFORMS IN DESCENDING ORDER:
= 48A
I
D
ID = 14A
Qg, GATE CHARGE (nC)
NOTE: Refer to Fairchild Application Not e s AN7254 and AN7260.
FIGURE 12. GA TE CHARGE W A VEFORMS FOR CONSTANT
GATE CURRENT
350
VGS = 10V, VDD = 15V, ID = 15A
300
250
200
150
100
SWITCHING TIME (ns)
50
t
d(OFF)
t
f
t
r
t
d(ON)
0
0 102030405
RGS, GATE TO SOURCE RESISTANCE (Ω)
0
0 102030405
RGS, G ATE TO SOURCE RESISTANCE (Ω)
FIGURE 13. SWITCHING TIME vs GATE RESISTANCE FIGURE 14. SWITCHING TIME vs GA TE RESISTANCE
Test Circuits and Waveforms
V
DS
R
L
V
GS
+
V
DD
-
DUT
I
g(REF)
FIGURE 15. GATE CHARGE TEST CIRCUIT FIGURE 16. GATE CHARGE WAVEFORMS
V
DD
V
GS
0
g(REF)
0
V
= 1V
GS
Q
g(TOT)
V
DS
Q
g(5)
VGS = 5V
Q
g(TH)
Q
gs
Q
gd
V
= 10
GS
©2002 Fairchild Semiconductor Corpo ration ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B
1)
)
R
F
A
ISL9N7030BLP3, ISL9N703 0BLS3ST
Test Circuits and Waveforms
V
GS
R
GS
V
GS
(Continued)
V
DS
R
DUT
L
+
V
DD
-
FIGURE 17. SWITCHING TIME TEST CIRCUIT FIGURE 18. SWITCHING TIME WAVEFORM
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable d evice power dissipation, P application. Therefore the application’s ambient temperature, T
(oC), and thermal resistance R
A
to ensure that T
is never exceeded. Equation 1
JM
(oC/W) must be review ed
θJA
mathematically represents the relationship and serves as the basis for establishing the rating of the part.
TJMT
()
P
DM
A
------------------ ------------ -=
Z
θJA
In using surf ace m oun t devices such as the TO-263 package, the environment in which it is applied will have a significant influen ce on the part’s current and m axi m um power dissipation ratings. Precise determination of P complex an d influenced by many factors:
DM
, in an
DM
(EQ.
is
t
ON
t
d(ON)
t
V
DS
90%
0
V
GS
10%
0
r
10%
50%
PULSE WIDTH
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impeda nc e curve.
Displayed on the curve are R
values listed in the Electrical
θJA
Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, P
DM
.
Thermal resistances corresponding to other copper areas can be obtained from Figure 19 or by calculation using Equation 2. R
is defined as the natural log of the area times a coefficient
θJA
added to a constant. The area, in square inches is the top copper area including the gate and source pads.
θJA
26.51
19.84
----------------------------------------+=
0.262 A rea
+()
(EQ. 2
1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
80
R
= 26.51+ 19.84/(0.262+Area)
θJA
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks .
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applica tions , the pulse width, the
60
C/W)
o
(
θJA
R
40
duty cycle and the transient thermal response of the part, the board and the environment they are in.
Fairchild provides thermal information to assist the designer’s preliminary application ev al uati on. Figure 19 defines the R
for the device as a function of the top
θJA
copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 s econds
20
0.1 AREA, TOP COPPER AREA (in2)
110
IGURE 19. THERMAL RESISTANCE vs MOUNTING PAD ARE
of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temper ature or pow er dissipation. Pu lse application s
©2002 Fairchild Semiconductor Corpo ration ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B
ISL9N7030BLP3, ISL9N703 0BLS3ST
PSPICE Electrical Model
.SUBCKT ISL9N7030BL 2 1 3 ; rev Dec2000
CA 12 8 1.5e-9 CB 15 14 1.75e-9 CIN 6 8 2.35e-9
DBODY 7 5 DBODYMOD DBREAK 5 11 D B REAK MOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 32.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
IT 8 17 1 LDRAIN 2 5 1e-9
LGATE 1 9 4.58e-9 LSOURCE 3 7 1.47e-9
GATE
1
MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.5e-3 RGATE 9 20 3.4 RLDRAIN 2 5 10 RLGATE 1 9 45.8 RLSOURCE 3 7 14.7 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 2.55e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTE MPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
LGATE
RLGATE
RGATE
9
CA
-
ESG
+
EVTEMP +
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
6 8
13
10
RSLC2
6
14 13
+
+
6 8
-
-
DPLCAP
EVTHRES
+
19
8
S2A
S2B
15
CB
CIN
-
+
-
5
51
5
51
21
MSTRO
14
5 8
RSLC1
+
ESLC
-
50 RDRAIN
16
8
MMED
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
LDRAIN
RLDRAIN
11
+
17 18
DBODY
DRAIN
2
-
LSOURCE
7
RLSOURCE
RVTEMP 19
SOURCE
3
-
VBAT
+
22
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),5))} .MODEL DBODYMOD D (IS = 1.9e-11 N=1.075 RS = 4.2e-3 TRS1 = 9e-4 TRS2 = 1e-6 XTI=2.2 CJO = 1.1e-9 TT = 8e-11 M = 0.49)
.MODEL DBREAKMOD D (RS = 1.7e- 1TRS1 = 1e- 3TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 8.2e-1 0IS = 1e-3 0N = 10 M = 0.45) .MODEL MMEDMOD NMOS (VTO = 1.9 KP = 3 IS=1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.4) .MODEL MSTR OM OD NMOS (VTO = 2.35KP = 90 I S = 1e-3 0 N= 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKM OD NMOS (VTO = 1 .6 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 34 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1e- 3TC2 = -7e-7) .MODEL RDRAINMOD RES (TC1 = 7e-3 TC2 = 1e-5) .MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -2.7e-3 TC2 = -1e-5) .MODEL RVTEMPMOD RES (TC1 = -1.8e- 3TC2 = 1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.0 VOFF= -0.8) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.8 VOFF= -4.0) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.3 VOFF= 0.2) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.2 VOFF= -0.3)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Special ist Conference Records, 1991, writ ten by William J. Hepp and C. Frank Wheatley.
©2002 Fairchild Semiconductor Corpo ration ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B
ISL9N7030BLP3, ISL9N703 0BLS3ST
SABER Electrical Model
REV Dec 2000 template ISL 9N7030BL n2, n1,n3
electrical n2,n1,n3 { var i iscl dp..model dbodymod = (i sl = 1.9e-11, nl=1.075 , rs = 4.2e-3, trs1 = 9e-4, trs2 = 1e- 6, xti=2.2, cjo = 1.1e-9, tt = 8e-11, m = 0.49,) dp..model dbreakmod = (rs =0.17, trs1 = 1e-3, trs2 = - 8.9e-6) dp..model dplcapmod = (cjo = 8.2e-10, isl=10e-30, nl=10, m=0.45) m..model mmedmod = (type=_n, vto = 1.9, kp=3, is=1e-30, tox=1) m..model mstrongmod = (type=_n, vto = 2.35, kp = 90, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.6, kp = 0.05, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.0, voff = -0.8) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -0.8, voff = -4.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.3, voff = 0.2) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.3)
c.ca n12 n8 = 1.5e-9 c.cb n15 n14 = 1.75e-9 c.cin n6 n8 = 2.35e-9
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 4.58e-9 l.lsource n3 n7 = 1.47e-9
GATE
LGATE
1
RLGATE
RGATE
9
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n1 7 n1 8 = 1, tc1 = 1e-3, tc2 = -7e-7 res.rdrain n50 n16 = 2.5e-3, tc1 = 7e-3, t c2 = 1e-5
12
res.rgate n9 n20 = 3.4 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 45.8 res.rlsource n3 n7 = 14.7 res.rslc1 n5 n51= 1e-6, tc1 = 1e-3, tc2 =1e-6
CA
res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2.55e-3, tc1 = 1e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.8e-3, tc2 = -1e-6 res.rvthres n22 n8 = 1, tc1 = -2.7e-3, tc2 = -1e-5
spe.ebreak n11 n7 n17 n18 = 32.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = mod e l=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc =1
ESG
EVTEMP +
18 22
20
S1A
13
S1B
EGS EDS
DPLCAP
10
RSLC2
-
6 8
EVTHRES
+
+
6
-
S2A
14 13
8
S2B
13
+
+
6 8
-
-
5
RSLC1
51
ISCL
MMED
DBREAK
MWEAK
EBREAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
11
+
17 18
-
50
RDRAIN
16
21
-
19
8
MSTRO
CIN
15
CB
8
14
+
5 8
-
LSOURCE
7
RLSOURCE
RVTEMP 19
-
VBAT
+
22
LDRAIN
RLDRAIN
DBODY
DRAIN
2
SOURCE
3
equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e-6/200))** 5)) } }
©2002 Fairchild Semiconductor Corpo ration ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B
SPICE Thermal Model
REV 23 Sept 2000
ISL9N7030BL
CTHERM1 th 6 2.0e-4 CTHERM2 6 5 3.0e-3 CTHERM3 5 4 3.4e-3 CTHERM4 4 3 4.0e-3 CTHERM5 3 2 1.0e-2 CTHERM6 2 tl 5.0e-2
RTHERM1 th 6 1.5e-3 RTHERM2 6 5 5.5e-3 RTHERM3 5 4 5.2e-2 RTHERM4 4 3 3.5e-1 RTHERM5 3 2 3.8e-1 RTHERM6 2 tl 4.1e-1
ISL9N7030BLP3, ISL9N703 0BLS3ST
RTHERM1
RTHERM2
JUNCTION
th
CTHERM1
6
CTHERM2
5
SABER Thermal Model
SABER thermal model ISL9N7030BL template thermal_model th tl
thermal_c th, tl { ctherm.ctherm1 th 6 = 2.0e-4 ctherm.ctherm2 6 5 = 3.0e-3 ctherm.ctherm3 5 4 = 3.4e-3 ctherm.ctherm4 4 3 = 4.0e-3 ctherm.ctherm5 3 2 = 1.0e-2 ctherm.ctherm6 2 tl = 5.0e-2
rtherm.rtherm1 th 6 = 1.5e-3 rtherm.rtherm2 6 5 = 5.5e-3 rtherm.rtherm3 5 4 = 5.2e-2 rtherm.rtherm4 4 3 = 3.5e-1 rtherm.rtherm5 3 2 = 3.8e-1 rtherm.rtherm6 2 tl = 4.1e-1 }
RTHERM3
RTHERM4
RTHERM5
RTHERM6
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
tl
CASE
©2002 Fairchild Semiconductor Corpo ration ISL9N7030BLP3, ISL9N7030BLS3ST Rev. B
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOS EnSigna
TM
TM
FACT™ FACT Quiet Series™
STAR*POWER is used under license
FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™
OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench
QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER
SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™
UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or In Design
First Production
Full Production
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. H4
Loading...