Datasheet ISL9N312AD3ST, ISL9N312AD3 Datasheet (Fairchild Semiconductor)

June 2002
ISL9N312AD3 / ISL9N312AD3ST
N-Channel Logic Level PWM Optimized UltraFET® Trench Power MOSFETs
ISL9N312AD3 / ISL9N312AD3ST
This device employs a new advanced trench MOSFET technology and features low gate charge while maintaining low on-resistance.
Optimized for switching applications, this device improves the overall efficiency of DC/DC converters and allows operation to higher switching frequencies.
Applications
• DC/DC converters
Features
• Fast switching
•r
•r
•Q
•Q
•C
= 0.010Ω (Typ), VGS = 10V
DS(ON)
= 0.017Ω (Typ), VGS = 4.5V
DS(ON)
(Typ) = 13nC, VGS = 5V
g
(Typ) = 4.5nC
gd
(Typ) = 1450pF
ISS
D
D
G
S
D-PAK
TO-252
(TO-252)
MOSFET Maximum Ratings T
Symbol Parameter Ratings Units
V
DSS
V
GS
I
D
P
D
T
, T
J
STG
Drain to Source Voltage 30 V Gate to Source Voltage ±20 V Drain Current Continuous (T Continuous (T Continuous (T Pulsed Figure 4 A Power dissipation
Derate above 25 Operating and Storage Temperature -55 to 175
= 25oC, VGS = 10V)
C
= 100oC, VGS = 4.5V) 32 A
C
= 25oC, VGS = 10V, R
C
o
C
G DS
= 25°C unless otherwise noted
A
= 52oC/W) 11 A
θJA
I-PAK
(TO-251AA)
G
S
50 A
75
0.5
W
W/oC
o
C
Thermal Characteristics
R
θJC
R
θJA
R
θJA
Thermal Resistance Junction to Case TO-251, TO-252 2 Thermal Resistance Junction to Ambient TO-251, TO-252 100 Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area 52
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
N312AD ISL9N312AD3ST TO-252AA 330mm 16mm 2500 units N312AD ISL9N312AD3 TO-251AA Tube NA 50 units
©2002 Fairchild Semiconductor Corporation
ISL9N312AD3 / ISL9N312AD3ST Rev C
o
C/W
o
C/W
o
C/W
ISL9N312AD3 / ISL9N312AD3ST
Electrical Characteristics T
= 25°C unless otherwise noted
C
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
B I
DSS
I
GSS
VDSS
Drain to Source Breakdown Voltage ID = 250µA, VGS = 0V 30 - - V
V
= 25V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150
V
GS
o
- - 250
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA1-3V
I
= 50A, VGS = 10V - 0.010 0.012
Drain to Source On Resistance
D
= 32A, VGS = 4.5V - 0.017 0.020
I
D
Dynamic Characteristics
C C C Q Q Q Q Q
ISS OSS RSS
g(TOT) g(5) g(TH) gs gd
Input Capacitance Output Capacitance - 300 - pF Reverse Transfer Capacitance - 120 - pF Total Gate Charge at 10V VGS = 0V to 10V Total Gate Charge at 5V VGS = 0V to 5V - 13 20 nC Threshold Gate Charge VGS = 0V to 1V - 1.5 2.3 nC Gate to Source Gate Charge - 4.3 - nC Gate to Drain “Miller” Charge - 4.5 - nC
Switching Characteristics
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time Turn-On Delay Time - 15 - ns Rise Time - 60 - ns Turn-Off Delay Time - 25 - ns Fall Ti me - 30 - ns Turn-Off Time - - 83 ns
(VGS = 4.5V)
= 15V, VGS = 0V,
V
DS
f = 1MHz
V
= 15V, ID = 11A
DD
V
= 4.5V, RGS = 11
GS
V
DD
I
= 32A
D
= 1.0mA
I
g
= 15V
- 1450 - pF
-2538nC
- - 115 ns
µA
Switching Characteristics (V
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time Turn-On Delay Time - 8 - ns Rise Time - 30 - ns Turn-Off Delay Time - 45 - ns Fall Ti me - 30 - ns Turn-Off Time - - 115 ns
GS
= 10V)
Unclamped Inductive Switching
t
AV
Avalanche Time ID = 2.9A, L = 3.0mH 195 - - µs
Drain-Source Diode Characteristics
V
SD
t
rr
Q
RR
Source to Drain Diode Voltage Reverse Recovery Time ISD = 32A, dISD/dt = 100A/µs- - 20 ns
Reverse Recovered Charge ISD = 32A, dISD/dt = 100A/µs- - 7 nC
- - 57 ns
= 15V, ID = 11A
V
DD
= 10V, RGS = 11
V
GS
I
= 32A - - 1.25 V
SD
= 15A - - 1.0 V
I
SD
ISL9N312AD3 / ISL9N312AD3ST Rev C©2002 Fairchild Semiconductor Corporation
ISL9N312AD3 / ISL9N312AD3ST
Typical Characteristic T
= 25°C unless otherwise noted
C
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
125
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
-4
10
SINGLE PULSE
10
60
40
20
, DRAIN CURRENT (A)
D
I
0
150
25 50 75 100 125 150 175
Figure 2. Maximum Contin uous Drain Current vs
-3
t, RECTANGULAR PULSE DURATION (s)
-2
10
VGS = 10V
VGS = 4.5V
TC, CASE TEMPERATURE (oC)
Case Temperature
P
NOTES: DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-1
10
θJC
10
DM
1/t2
0
x R
θJC
t
+ T
1
t
2
C
1
10
, PEAK CURRENT (A) I
DM
1000
100
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
30
-5
10
Figure 3. Normalized Maximum Transient Thermal Impedance
VGS = 10V
VGS = 5V
-4
10
-3
10
-2
10
10
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
TC = 25oC FOR TEMPERATURES
o
ABOVE 25 CURRENT AS FOLLOWS:
-1
I = I
25
C DERATE PEAK
175 - T
150
0
10
ISL9N312AD3 / ISL9N312AD3ST Rev C©2002 Fairchild Semiconductor Corporation
C
1
10
ISL9N312AD3 / ISL9N312AD3ST
Typical Characteristic (Continued) T
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
= 15V
V
DD
75
50
, DRAIN CURRENT (A)
25
D
I
0
123456
VGS, GATE TO SOURCE VOLTAGE (V)
Figure 5. Transfer Ch aracteri stics Figure 6. Saturation Character istics
25
ID = 14A
20
15
ID = 32A ID = 50A
TJ = -55oC
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
TJ = 175oC
TJ = 25oC
= 25°C unless otherwise noted
C
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
= 25oC
T
C
75
50
, DRAIN CURRENT (A)
25
D
I
0
0 0.5 1.0 1.5 2.0
2.0
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
1.5
V
= 10V
GS
= 4.5V
V
GS
= 4V
V
GS
VGS = 3V
VDS, DRAIN TO SOURCE VOLTAGE (V)
, DRAIN TO SOURCE
10
ON RESISTANCE (mΩ)
DS(ON)
r
5
246810
, GATE TO SOURCE VOLTAGE (V)
V
GS
Figure 7. Drain to Source On Resis tanc e vs Ga te
Voltage and Drain Current
1.2
1.0
0.8
NORMALIZED GATE
0.6
THRESHOLD VOLTAGE
0.4
-80 0 40 80 120 160 200-40
TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
Figure 9. Normalized Gate Thres hold Volta ge v s
Junction Temperature
1.0
ON RESISTANCE
NORMALIZED DRAIN TO SOURCE
0.5
-80
-40
-40
TJ, JUNCTION TEMPERATURE (oC)
0
40 80
VGS = 10V, ID = 50A
120 160 200
Figure 8. Normalized Drain to Source On
Resistance vs Junction Temperature
1.2 ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200
T
, JUNCTION TEMPERATURE (oC)
J
Figure 10. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
ISL9N312AD3 / ISL9N312AD3ST Rev C©2002 Fairchild Semiconductor Corporation
ISL9N312AD3 / ISL9N312AD3ST
Typical Characteristic (Continued) T
2000
C
= CGS + C
ISS
1000
C
C
OSS
C
= C
RSS
C, CAPACITANCE (pF)
V
= 0V, f = 1MHz
GS
100
0.1 1 10
Figure 11. Capacitance vs Drain to Source
200
VGS = 4.5V, VDD = 15V, ID = 11A
150
GD
+ C
DS
GD
GD
VDS, DRAIN TO SOURCE VOLTAGE (V)
Voltage
= 25°C unless otherwise noted
C
10
V
= 15V
DD
8
6
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
30
0
0102030
Figure 12. Gate Charge Waveforms for Constant
200
VGS = 10V, VDD = 15V, ID = 11A
t
r
150
WAVEFORMS IN DESCENDING ORDER:
Qg, GATE CHARGE (nC)
Gate Currents
I
= 32A
D
ID = 14A
t
d(OFF)
100
t
f
t
50
SWITCHING TIME (ns)
0
0
10 20 30 40 50
d(OFF)
t
d(ON)
RGS, GATE TO SOURCE RESISTANCE (Ω)
100
50
SWITCHING TIME (ns)
0
0 1020304050
t
f
RGS, GATE TO SOURCE RESISTANCE (Ω)
Figure 13. Switching Time vs Gate Resistance Figure 14. Switching Time vs Gate Resistance
Test Circuits and Waveforms
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
t
0V
P
V
DS
L
I
AS
R
AS
G
+
V
DD
-
DUT
I
AS
0
0.01
BV
DSS
t
P
t
AV
V
DS
t
d(ON)
V
t
r
DD
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms
ISL9N312AD3 / ISL9N312AD3ST Rev C©2002 Fairchild Semiconductor Corporation
Test Circuits and Waveforms (Continued)
V
DS
R
L
V
GS
+
V
DD
-
DUT
I
g(REF)
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
V
DD
V
0
I
g(REF)
0
GS
V
GS
= 1V
Q
g(TOT)
V
DS
Q
g(5)
Q
g(TH)
Q
gs
Q
gd
VGS = 5V
ISL9N312AD3 / ISL9N312AD3ST
V
= 10V
GS
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
50%
10%
t
r
PULSE WIDTH
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
ISL9N312AD3 / ISL9N312AD3ST Rev C©2002 Fairchild Semiconductor Corporation
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P application. Therefore the applications ambient temperature, T must be reviewed to ensure that T Equation 1 mathematically represents the relationship and
(oC), and thermal resistance R
A
is never exceeded.
JM
DM
θJA
, in an
(oC/W)
serves as the basis for establishing the rating of the part.
P
DM
TJMTA–()
------------------- ----------=
Z
θJA
(EQ. 1)
C/W)
o
(
θJA
R
125
100
ISL9N312AD3 / ISL9N312AD3ST
R
= 33.32 + 23.84/(0.268+Area)
θJA
75
50
In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the parts current and maximum power dissipation ratings. Precise determination of P complex and influenced by many factors:
DM
is
1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.
Fairchild provides thermal information to assist the designers preliminary application evaluation. Figure 21 defines the R copper (component side) area. This is for a horizontally
for the device as a function of the top
θJA
positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.
25
0.01 0.1 1 10 AREA, TOP COPPER AREA (in2)
Figure 21. Thermal Resistance vs Mounting
Pad Area
Displayed on the curve are R Electrical Specifications table. The points were chosen to
values listed in the
θJA
depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, P
.
DM
Thermal resistances corresponding to other copper area s can be obtained from Figure 21 or by calculation using Equation 2. R times a coefficient added to a constant. The area, in square
is defined as the natural log of the area
θJA
inches is the top copper area including the gate and source pads.
R
θJA
=
33.32
23.84
-------------------------------------+
0.268 Area+()
(EQ. 2)
ISL9N312AD3 / ISL9N312AD3ST Rev C©2002 Fairchild Semiconductor Corporation
PSPICE Electrical Model
.SUBCKT ISL9N312AD3ST 2 1 3 ; rev May 2001
CA 12 8 9e-10 CB 15 14 9e-10 CIN 6 8 1.35e-9
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 31.6 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
IT 8 17 1 LDRAIN 2 5 1e-9
LGATE 1 9 5.61e-9 LSOURCE 3 7 1.98e-9
MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTRO M OD MWEAK 16 21 8 8 MWEA KM O D
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2e-3 RGATE 9 20 1.76 RLDRAIN 2 5 10 RLGATE 1 9 56.1 RLSOURCE 3 7 19.8 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 6.8e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
GATE
1
LGATE
RLGATE
RGATE
9
CA
-
ESG
+
EVTEMP
+
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
6 8
13
10
RSLC2
6
14 13
+
+
6 8
-
-
DPLCAP
EVTHRES +
19
S2A
S2B
ISL9N312AD3 / ISL9N312AD3ST
+
17 18
-
RLDRAIN
DBODY
LSOURCE
7
RLSOURCE
RVTEMP 19
­VBAT
+
22
LDRAIN
5
RSLC1
51
+
5
ESLC
51
­50
RDRAIN
16
21
-
8
MSTRO
CIN
15
CB
14
+
5 8
-
8
MMED
DBREAK
11
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
DRAIN
2
SOURCE
3
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*160),5))} .MODEL DBODYMOD D (IS = 1.1e-11 N = 1.075 RS = 7.2e-3 TRS1 = 5e-4 TRS2 = 1e-6 CJO = 6.9e-10 TT = 8e-11 M = 0.49)
.MODEL DBREAKMOD D (RS = 0.95 TRS1 = 1e-3 TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 5e-10 IS = 1e-30 N = 10 M = 0.46) .MODEL MMEDMOD NMOS (VTO = 1.99 KP = 6 IS=1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.76) .MODEL MSTROMOD NMOS (VTO = 2.35 KP = 55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.62 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 17.6 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.1e-3 TC2 = -2e-6) .MODEL RDRAINMOD RES (TC1 = 1.6e-2 TC2 = 1e-5) .MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 2.5e-5) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -2.1e-3 TC2 = -1e-5) .MODEL RVTEMPMOD RES (TC1 = -1.8e-3 TC2 = 1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3 VOFF= -1) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1 VOFF= -3) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.3 VOFF= 0.2) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.2 VOFF= -0.3)
.ENDS NOTE: For further discussi on of the PSPI CE model, cons ult A New PSPICE Sub-Circuit f or the Po wer MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 199 1, written by William J. Hepp and C. Frank Wheatley.
ISL9N312AD3 / ISL9N312AD3ST Rev C©2002 Fairchild Semiconductor Corporation
SABER Electrical Model
REV May 2001 template ISL9N312AD3ST n2,n1,n3
electrical n2,n1, n3 { var i iscl dp..model dbodym od = (isl = 1.1e-11, nl = 1.075, rs = 7.2e-3, trs1 = 5e-4, trs2 = 1e-6, cjo = 6.9e-10 , m=0.49, tt = 8e-11) dp..model dbreak mod = (rs = 0.95, trs1 = 1e-3, trs2 = -8.9e-6) dp..model dplcapmod = (cjo = 5e-10, isl=10e-30, nl=10, m=0.46) m..model mmedmod = (type=_n, vto = 1.99, kp=6, is=1e-30, tox=1) m..model mstrongmod = (type=_n, vto = 2.35, kp = 55, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.62, kp = 0.05, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -3, voff = -1) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1, voff = -3) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.3, voff = 0.2) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.3)
c.ca n12 n8 = 9e-10
10
c.cb n15 n14 = 9e-10 c.cin n6 n8 = 1.35e-9
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 5.61e-9 l.lsource n3 n7 = 1.98e-9
GATE
1
LGATE
RLGATE
RGATE
9
ESG
EVTEMP
+
18 22
20
­6
8
+
-
m.mmed n16 n6 n8 n8 = model=mmedm od, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model= mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1 = 1.1e-3, tc2 = -2e-6 res.rdrain n50 n16 = 2e-3, tc1 = 1.6e-2, tc2 = 1e-5 res.rgate n9 n20 = 1.7 6 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 56.1 res.rlsource n3 n7 = 19.8 res.rslc1 n5 n51 = 1e - 6, tc 1 = 1e -3 , tc 2 = 2.5e-5 res.rslc2 n5 n50 = 1e3
12
CA
S1A
13
8
S1B
13
+
+
EGS EDS
res.rsource n8 n7 = 6. 8e-3, tc1 = 1e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.8e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -2.1e-3, tc2 = -1e-5
spe.ebreak n11 n7 n17 n18 = 31.6 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
RSLC2
6
S2A
14 13
S2B
6 8
-
-
DPLCAP
EVTHRES
+
19
8
CIN
15
CB
-
+
5 8
-
5
RSLC1
51
50 RDRAIN
21
MSTRO
14
ISCL
16
8
MMED
DBREAK
MWEAK
EBREAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
11
+
17 18
-
RLDRAIN
7
RLSOURCE
RVTEMP 19
-
+
22
LDRAIN
DBODY
LSOURCE
VBAT
DRAIN
2
SOURCE
3
ISL9N312AD3 / ISL9N312AD3ST
equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n 5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/160))** 5)) } }
ISL9N312AD3 / ISL9N312AD3ST Rev C©2002 Fairchild Semiconductor Corporation
ISL9N312AD3 / ISL9N312AD3ST
SPICE Thermal Model
REV 23 May 2001
ISL9N312T
CTHERM1 th 6 1e-3 CTHERM2 6 5 1.5e-3 CTHERM3 5 4 1.9e-3 CTHERM4 4 3 3e-3 CTHERM5 3 2 8.5e-3 CTHERM6 2 tl 3.5e-2
RTHERM1 th 2.2e-3 RTHERM2 6 3e-3 RTHERM3 5 4 5e-2 RTHERM4 4 3 4.8e-1 RTHERM5 3 2 5e-1 RTHERM6 2 tl 6e-1
SABER Thermal Model
SABER thermal model ISL9N3 12T template thermal_model th tl
thermal_c th, tl { ctherm.ctherm1 th 6 = 1e-3 ctherm.ctherm2 6 5 = 1.5e-3 ctherm.ctherm3 5 4 = 1.9e-3 ctherm.ctherm4 4 3 = 3e-3 ctherm.ctherm5 3 2 = 8.5e-3 ctherm.ctherm6 2 tl = 3.5e-2
rtherm.rtherm1 th 6 = 2.2e-3 rtherm.rtherm2 6 5 = 3e-3 rtherm.rtherm3 5 4 = 5e-2 rtherm.rtherm4 4 3 = 4.8e-1 rtherm.rtherm5 3 2 = 5e-1 rtherm.rtherm6 2 tl = 6e-1 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
ISL9N312AD3 / ISL9N312AD3ST Rev C©2002 Fairchild Semiconductor Corporation
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx Bottomless CoolFET CROSSVOLT DOME EcoSPARK
2
E
CMOS EnSigna FACT FACT Quiet Series
®
FAST FASTr
FRFET GlobalOptoisolator GTO HiSeC
2
I
C ISOPLANAR LittleFET MicroFET MicroPak MICROWIRE OPTOLOGIC
®
OPTOPLANAR
PACMAN POP Power247 PowerTrench
®
QFET QS QT Optoelectronics Quiet Series SILENT SWITCHER SMART START SPM Stealth
SuperSOT-3 SuperSOT-6 SuperSOT-8 SyncFET TinyLogic TruTranslation UHC UltraFET
®
VCX
®
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into th e body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Formative or In
Design
Preliminary First Production This datasheet contains preliminary data, and
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Obsolete Not In Production This datasheet contains specifications on a product
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Semiconductor reserves the right to make changes at any time without notice in order to improve design.
that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. H7
Loading...