Datasheet IRG4PC40WPBF Specification

Page 1
INSULATED GATE BIPOLAR TRANSISTOR
TO-247AC
Features
• Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications
• Industry-benchmark switching losses improve efficiency of all power supply topologies
• 50% reduction of Eoff parameter
• Low IGBT conduction losses
• Latest-generation IGBT design and constructionoffers tighter parameters distribution, exceptional reliability
• Lead-Free
Benefits
• Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode)
• Of particular benefit to single-ended converters and boost PFC topologies 150W and higher
• Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz)
PD -95183
IRG4PC40WPbF
C
V
= 600V
CES
G
n-channel
V
CE(on) typ.
E
@VGE = 15V, IC = 20A
= 2.05V
Absolute Maximum Ratings
Parameter Max. Units
V
CES
IC @ TC = 25°C Continuous Collector Current 40 IC @ TC = 100°C Continuous Collector Current 20 A I
CM
I
LM
V
GE
E
ARV
PD @ TC = 25°C Maximum Power Dissipation 160 PD @ TC = 100°C Maximum Power Dissipation 65 T
J
T
STG
Collector-to-Emitter Breakdown Voltage 600 V
Pulsed Collector Current Q 160 Clamped Inductive Load Current R 160 Gate-to-Emitter Voltage ± 20 V Reverse Voltage Avalanche Energy S 160 mJ
W
Operating Junction and -55 to + 150 Storage Temperature Range Soldering Temperature, for 10 seconds 300 (0.063 in. (1.6mm) from case ) Mounting torque, 6-32 or M3 screw. 10 lbf•in (1.1N•m)
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
Wt Weight 6 (0.21) ––– g (oz)
Junction-to-Case ––– 0.77 Case-to-Sink, Flat, Greased Surface 0.24 ––– °C/W Junction-to-Ambient, typical socket mount ––– 40
www.irf.com 1
04/23/04
Page 2
IRG4PC40WPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)CES
V
(BR)ECS
V
(BR)CES
V
CE(ON)
V
GE(th)
V
GE(th)
g
fe
I
CES
I
GES
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Q
g
Q
ge
Q
gc
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
t
d(on)
t
r
t
d(off)
t
f
E
ts
L
E
C
ies
C
oes
C
res
Notes:
Collector-to-Emitter Breakdown Voltage 600 V VGE = 0V, IC = 250µA Emitter-to-Collector Breakdown Voltage T 18 V VGE = 0V, IC = 1.0A
/T
Temperature Coeff. of Breakdown Voltage — 0.44 V/°C VGE = 0V, IC = 1.0mA
J
2.05 2.5 I
Collector-to-Emitter Saturation Voltage 2.36 IC = 40A See Fig.2, 5
1.90 IC = 20A , TJ = 150°C
V
= 20A VGE = 15V
C
Gate Threshold Voltage 3.0 6.0 VCE = VGE, IC = 250µA
/TJTemperature Coeff. of Threshold Voltage 13 mV/°C VCE = VGE, IC = 250µA
Forward Transconductance U 18 28 S VCE = 100 V, IC =20A
Zero Gate Voltage Collector Current
250 VGE = 0V, VCE = 600V — 2.0 VGE = 0V, VCE = 10V, TJ = 25°C
µA
2500 VGE = 0V, VCE = 600V, TJ = 150°C
Gate-to-Emitter Leakage Current ±100 n A VGE = ±20V
Parameter Min. Typ. Max. Units Conditions
Total Gate Charge (turn-on) 98 147 IC = 20A Gate - Emitter Charge (turn-on) 12 18 nC VCC = 400V See Fig.8 Gate - Collector Charge (turn-on) 36 54 VGE = 15V Turn-On Delay Time 27 — Rise Time 22 TJ = 25°C Turn-Off Delay Time 100 150 IC = 20A, VCC = 480V
ns
Fall Time 74 110 VGE = 15V, RG = 10 Turn-On Switching Loss 0.11 — Energy losses include "tail" Turn-Off Switching Loss 0.23 — mJ See Fig. 9,10, 14 Total Switching Loss 0.34 0.45 Turn-On Delay Time 25 TJ = 150°C, Rise Time 23 IC = 20A, VCC = 480V Turn-Off Delay Time 170 VGE = 15V, RG = 10
ns
Fall Time 124 Energy losses include "tail" Total Switching Loss 0.85 — mJ See Fig.10,11, 14 Internal Emitter Inductance 13 nH Measured 5mm from package Input Capacitance — 1900 — VGE = 0V Output Capacitance 140 pF VCC = 30V See Fig. 7 Reverse Transfer Capacitance 35 ƒ = 1.0MHz
Q Repetitive rating; V
= 20V, pulse width limited by
GE
max. junction temperature. ( See fig. 13b )
R V
CC
(See fig. 13a)
= 80%(V
CES
), V
= 20V, L = 10µH, RG = 10Ω,
GE
T Pulse width 80µs; duty factor 0.1%.
U Pulse width 5.0µs, single shot.
S Repetitive rating; pulse width limited by maximum
junction temperature.
2 www.irf.com
Page 3
IRG4PC40WPbF
50
40
30
20
Square wave:
60% of rated v o lta g e
For both:
Duty cycle: 50% T = 125°C
J
T = 90 °C
sink
Gate drive as specified
Power Dissipation = 28W
Triangular wave:
Clamp voltage: 80% of rated
Load Current ( A )
10
0
0.1 1 10 100 1000
Ideal diodes
f, Frequency (kH z)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = I
1000
of fundamental)
RMS
1000
A
°
T = 25 C
J
100
T = 150 C
J
10
C
I , Collector-to-Emitter Current (A)
1
1.0 2.0 3.0 4.0 5.0
V , Collector-to-Emitter Voltage (V)
CE
V = 15V
GE
80µs PULSE WIDTH
Fig. 2 - Typical Output Characteristics
°
100
T = 150 C
10
C
I , Collector-to-Emitter Current (A)
1
5 7 9 11
°
J
°
T = 25 C
J
V = 50V
CC
5µs PULSE WIDTH
V , Gate-to-Emitter Voltage (V)
GE
Fig. 3 - Typical Transfer Characteristics
www.irf.com 3
Page 4
IRG4PC40WPbF
50
40
30
20
10
Maximum DC Collector Current(A)
0
25 50 75 100 125 150
T , Case Temperature ( C)
C
°
Fig. 4 - Maximum Collector Current vs. Case
Temperature
1
3.0
V = 15V
GE
80 us PULSE WIDTH
I = A40
2.5
2.0
1.5
CE
V , Collector-to-Emitter Voltage(V)
1.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature ( C)
J
C
I = A20
C
I = A10
C
°
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
D = 0.50
thJC
0.20
0.1
0.10
P
0.05
Thermal Response (Z )
0.02
0.01
0.01
0.00001 0.0001 0.001 0.01 0.1 1
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t / t
2. Peak T =P x Z + T
t , Rectangular Pulse Duration (sec)
1
J DM thJC C
DM
t
1 2
1
t
2
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4 www.irf.com
Page 5
IRG4PC40WPbF
4000
3000
2000
C, Capacitance (pF)
1000
0
1 10 100
V
=
0V,
GE
C
=
iesgegc , ce
C
=
resgc
C
=
oes cegc
C
ies
C
oes
C
res
V , Collector-to-Emitter Voltage (V)
CE
f = 1MHz
C
+ C C C
C SHORTED
+ C
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
1.0
V = 480V
CC
V = 15V
GE
T = 25 C
0.9
J
I = 20A
C
0.8
0.7
0.6
0.5
Total Switching Losses (mJ)
0.4
°
20
V = 400V
CC
I = 20A
C
16
12
8
4
GE
V , Gate-to-Emitter Voltage (V)
0
0 20 40 60 80 100
Q , Total Gate Charge (nC)
G
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
10
R = 10Ohm
10
G
V = 15V
GE
V = 480V
CC
I = A
C
1
Total Switching Losses (mJ)
I = A
C
I = A
C
40
20
10
0.3 10 20 30 40 50 60
R , Gate Resistance (Ohm)
G
(Ω)
Fig. 9 - Typical Switching Losses vs. Gate
www.irf.com 5
Resistance
0.1
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature ( C )
J
°
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
Page 6
IRG4PC40WPbF
2.0
1.5
1.0
0.5
Total Switching Losses (mJ)
0.0
10
R = 10Ohm
G
T = 150 C
J
V = 480V
CC
V = 15V
GE
5 15 25 35 45
°
I , Collector-to-emitter Current (A)
C
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
1000
V = 20V
GE
T = 125 C
J
100
C
I , Collector-to-Emitter Current (A)
SAFE OPERATING AREA
10
1 10 100 1000
o
V , Collector-to-Emitter Voltage (V)
CE
Fig. 12 - Turn-Off SOA
6 www.irf.com
Page 7
IRG4PC40WPbF
y
p
)
p
ply, p
50V
Q
* Driver same t * Note: Due to the 50V power su w ill increase to obtain rated Id.
e as D.U.T.; Vc = 80% of Vce(max
Fig. 13a - Clamped Inductive
Load Test Circuit
50V
1000V
Q
1000V
L
V *
C
ulse width and inductor
D.U.T.
L
Driver*
R
480V
RL =
X IC@25°C
0 - 480V
480µF 960V
4
R
Fig. 13b - Pulsed Collector
Current Test Circuit
I
C
V
C
S
D.U.T.
Fig. 14a - Switching Loss
Test Circuit
* Driver same type as D.U.T., VC = 480V
Q
R
90%
S
V
C
90%
10%
5%
I
C
t
d(on)
10%
t
r
E
on
t
d(off)
E = (E +E )
ts on off
Fig. 14b - Switching Loss
Waveforms
t
f
E
off
t=5µ s
www.irf.com 7
Page 8
IRG4PC40WPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE:
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
8 www.irf.com
T HIS IS AN IRF PE30 WITH ASSEMBLY LOT CODE 5657
AS S E MBL E D ON WW 35, 2000 IN THE ASSEMBLY LINE "H"
Note: "P" in assembly line position indicates "Lead-Free"
INTE RNATIONAL
RE CTIF IER
LOGO
ASSEMBLY LOT CODE
IRF PE30
035H
56 57
PART NUMBE R
DAT E CODE YE AR 0 = 2000 WEEK 35 LINE H
Data and specifications subject to change without notice.
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/04
Page 9
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Loading...