Datasheet IRFZ34N Datasheet (International Rectifier)

Page 1
PD - _____
PRELIMINARY
HEXFET® Power MOSFET
Advanced Process Technology Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Fully Avalanche Rated
Description
Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.
The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.
IRFZ34N
V
DSS
R
DS(on)
ID = 26A
= 0.040
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 26 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 18 A I
DM
PD @TC = 25°C Power Dissipation 56 W
V
GS
E
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt 4.6 V/ns T
J
T
STG
Pulsed Drain Current 100
Linear Derating Factor 0.37 W/°C Gate-to-Source Voltage ±20 V Single Pulse Avalanche Energy 110 mJ Avalanche Current 16 A Repetitive Avalanche Energy 5.6 mJ
Operating Junction and -55 to + 175 Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting torque, 6-32 or M3 screw. 10 lbf•in (1.1N•m)
Thermal Resistance
Parameter Min. Typ. Max. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case –––– –––– 2.7 Case-to-Sink, Flat, Greased Surface –––– 0.50 –––– °C/W Junction-to-Ambient –––– –––– 62
8/29/95
Page 2
IRFZ34N
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(ON)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage 55 ––– ––– V VGS = 0V, ID = 250µA
/T
Breakdown Voltage Temp. Coefficient ––– 0.052 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– ––– 0.040 VGS = 10V, ID = 16A Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA Forward Transconductance 6.5 ––– ––– S VDS = 25V, ID = 16A
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V
––– ––– 25 VDS = 55V, VGS = 0V ––– ––– 250 VDS = 44V, VGS = 0V, TJ = 150°C
µA
nA
Total Gate Charge ––– ––– 34 ID = 16A Gate-to-Source Charge ––– ––– 6.8 nC VDS = 44V Gate-to-Drain ("Miller") Charge ––– ––– 14 VGS = 10V, See Fig. 6 and 13 Turn-On Delay Time ––– 7.0 ––– VDD = 28V Rise Time ––– 49 ––– ID = 16A Turn-Off Delay Time ––– 31 ––– RG = 18
ns
Fall Time ––– 40 ––– RD = 1.8Ω, See Fig. 10
Internal Drain Inductance ––– 4.5 –––
Internal Source Inductance ––– 7.5 –––
Between lead, 6mm (0.25in.)
nH
from package
and center of die contact Input Capacitance ––– 700 ––– VGS = 0V Output Capacitance ––– 240 ––– pF VDS = 25V Reverse Transfer Capacitance ––– 100 ––– ƒ = 1.0MHz, See Fig. 5
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
V
DD
RG = 25, I
Continuous Source Current MOSFET symbol (Body Diode) showing the Pulsed Source Current integral reverse (Body Diode) p-n junction diode.
––– ––– 26
––– ––– 100
Diode Forward Voltage ––– ––– 1.6 V TJ = 25°C, IS = 16A, VGS = 0V Reverse Recovery Time ––– 57 86 ns TJ = 25°C, IF = 16A Reverse Recovery Charge ––– 130 200 nC di/dt = 100A/µs Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
I
SD
TJ ≤ 175°C
= 25V, starting TJ = 25°C, L = 610µH
= 16A. (See Figure 12)
AS
Pulse width 300µs; duty cycle 2%.
A
16 A, di/dt 420A/µs, V
DD
V
(BR)DSS
,
Page 3
IRFZ34N
A
A
A
A
1000
VGS TOP 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V BOTTOM 4.5V
100
10
D
I , Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH T = 25°C
1
0.1 1 10 100
V , Drain-to-Source Voltage (V)
DS
C
Fig 1. Typical Output Characteristics,
TC = 25oC
100
1000
VGS TOP 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V BOTTO M 4.5V
100
10
4.5V
D
I , Drain-to-Source Current (A)
20µs PULSE WIDTH T = 175°C
1
0.1 1 10 100
V , Drain-to-Source Voltage (V)
DS
C
Fig 2. Typical Output Characteristics,
TC = 175oC
2.4
I = 26A
D
T = 25°C
J
T = 175°C
J
10
D
I , Drain-to-Source Current (A)
1
4 5 6 7 8 9 10
V , Gate-to-Source Voltage (V)
GS
V = 25V
DS
20µs PULSE WIDTH
2.0
1.6
1.2
(Normalized)
0.8
0.4
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature (°C)
J
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance
Vs. Temperature
V = 10V
GS
Page 4
IRFZ34N
A
A
A
A
1200
1000
800
600
400
C, Capacitance (pF)
200
0
1 10 100
V = 0V, f = 1MHz
GS
C = C + C , C SHORTED
iss gs gd ds
C = C
rss gd
C = C + C
C
oss ds gd
iss
C
oss
C
rss
V , Drain-to-Source Voltage (V)
DS
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
20
I = 16A
D
16
12
8
4
GS
V , Gate-to-Source Voltage (V)
V = 44V
DS
V = 28V
DS
FOR TEST CIRCUIT
0
0 10 20 30 40
Q , Total Gate Charge (nC)
G
SEE FIGURE 13
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
OPERATION IN THIS AREA LIMITED BY R
DS(on)
100
T = 175°C
J
T = 25°C
10
SD
I , Reverse Drain Current (A)
1
0.4 0.8 1.2 1.6 2.0
V , Source-to-Drain Voltage (V)
SD
J
V = 0V
Fig 7. Typical Source-Drain Diode
Forward Voltage
GS
100
10
D
I , Drain Current (A)
T = 25°C
C
T = 175°C
J
Single Pulse
1
1 10 100
V , Drain-to-Source Voltage (V)
DS
Fig 8. Maximum Safe Operating Area
10µs
100µs
1ms
10ms
Page 5
IRFZ34N
A
R
D.U.T.
D
V
DD
V
DS
V
30
25
GS
R
G
10 V
20
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
15
10
D
I , Drain Current (Amps)
5
0
25 50 75 100 125 150 175
T , Case Temperature (°C)
C
Fig 9. Maximum Drain Current Vs.
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Case Temperature
10
thJC
D = 0.50
1
0.20
0.10
0.05
0.02
0.1
0.01 SINGLE PULSE
Thermal Response (Z )
0.01
0.00001 0.0001 0.001 0.01 0.1 1
(THERMAL RESPONSE)
N otes :
1. D uty fac tor D = t / t
2. P eak T = P x Z + T
t , Rectangular Pulse Duration (sec)
1
DM
J
1 2
thJC
P
D M
t
1
C
t
2
A
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Page 6
IRFZ34N
A
10 V
Fig 12a. Unclamped Inductive Test Circuit
Fig 12b. Unclamped Inductive Waveforms
250
200
150
100
50
AS
V = 25V
E , Single Pulse Avalanche Energy (mJ)
DD
0
25 50 75 100 125 150 175
Starting T , Junction Temperature ( °C)
J
I TOP 6.5A 11A BOTTOM 16A
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
D
10 V
Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit
Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit Appendix B: Package Outline Mechanical Drawing Appendix C: Part Marking Information
Page 7
Appendix A
IRFZ34N
Peak Diode Recovery dv/dt Test Circuit
D.U.T
R
G
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance Current Transformer
dv/dt controlled by R
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
G
V
DD
*
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
Page 8
IRFZ34N
A
Package Outline
Appendix B
TO-220AB Outline
Dimensions are shown in millimeters (inches)
10.54 (.415)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
1.40 (.055)
3X
1.15 (.045)
2.54 (.100)
NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
2X
10.29 (.405)
4
1 2 3
3X
0.36 (.014) M B A M
6.47 (.255)
6.10 (.240)
1.15 (.045) MIN
4.06 (.160)
3.55 (.140)
0.93 (.037)
0.69 (.027)
3.78 (.149)
3.54 (.139)
- A -
4.69 (.185)
4.20 (.165)
- B -
1.32 (.052)
1.22 (.048)
2.92 (.115)
2.64 (.104)
LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN
0.55 (.022)
3X
0.46 (.018)
Part Marking Information
TO-220AB
EXAMPLE : THIS IS AN IRF1010 WITH ASSEMBLY LOT CODE 9B1M
INTERNATIONAL RECTIFIER LOGO
ASSEMBLY LOT CODE
IRF1010
9246
9B 1M
Appendix C
PART NUMBER
DATE CODE (YYWW) YY = YEAR WW = WEEK
Loading...