l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
–––41–––
Reverse Recovery Current–––3.2–––A
Forward Turn-On TimeIntrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VGS = 0V, ID = 250µA
Reference to 25°C, I
VGS = 10V, ID = 195A
mΩ
VDS = VGS, ID = 250µA
V
= 40V, VGS = 0V
DS
V
= 40V, VGS = 0V, TJ = 125°C
DS
V
= 20V
GS
= -20V
V
GS
VDS = 10V, ID = 195A
= 180A
I
D
=20V
V
DS
= 10V
g
V
GS
I
= 180A, VDS =0V, VGS = 10V
D
VDD = 26V
I
= 240A
D
R
= 2.7Ω
G
VGS = 10V
g
VGS = 0V
= 25V
V
DS
ƒ = 1.0 MHz, See Fig. 5
= 0V, VDS = 0V to 32V i, See Fig. 11
V
GS
V
= 0V, VDS = 0V to 32V
GS
A
MOSFET symbol
showing the
integral reverse
p-n junction diode.
= 25°C, IS = 195A, VGS = 0V
T
J
= 25°CVR = 34V,
T
J
= 125°CIF = 240A
T
J
= 25°C
T
J
= 125°C
T
J
= 25°C
T
J
Conditions
= 5mA
D
g
Conditions
h
Conditions
di/dt = 100A/µs
d
D
G
S
g
g
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 240A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
RG = 25Ω, I
above this value .
, starting TJ = 25°C, L = 0.01mH
Jmax
= 240A, VGS =10V. Part not recommended for use
AS
I
≤ 240A, di/dt ≤ 740A/µs, V
SD
DD
≤ V
(BR)DSS
, TJ ≤ 175°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
C
eff. (TR) is a fixed capacitance that gives the same charging time
oss
as C
C
C
while V
oss
eff. (ER) is a fixed capacitance that gives the same energy as
oss
while V
oss
is rising from 0 to 80% V
DS
is rising from 0 to 80% V
DS
DSS
DSS
.
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
R
is measured at TJ approximately 90°C.
θ
R
value shown is at time zero.
θJC
2www.irf.com
Page 3
IRFS3004-7PPbF
1000
TOP 15V
)
A
(
100
t
n
e
r
r
u
C
e
c
r
10
u
o
S
o
t
n
i
a
r
1
D
,
D
I
4.5V
0.1
BOTTOM4.5V
60µs PULSE WIDTH
≤
Tj = 25°C
0.11101001000
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
)
A
(
t
100
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
10
1
TJ = 175°C
TJ = 25°C
V
= 25V
DS
≤60µs PULSE WIDTH
0.1
345678
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
1000
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
I
100
D
4.5V
TOP 15V
BOTTOM4.5V
60µs PULSE WIDTH
≤
Tj = 175°C
10
0.11101001000
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
2.0
e
c
n
a
t
s
i
s
e
R
n
O
e
c
r
u
o
S
o
t
n
i
a
r
D
,
)
n
o
(
S
D
R
)
d
e
z
i
l
a
m
r
o
N
(
1.5
1.0
ID = 195A
V
= 10V
GS
0.5
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
Fig 4. Normalized On-Resistance vs. Temperature
100000
)
F
10000
p
(
e
c
n
a
t
i
c
a
p
a
C
1000
,
C
100
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
+ Cgd, C
gs
gd
+ C
ds
iss
C
rss
C
oss
C
iss
C
oss
C
rss
SHORTED
ds
gd
110100
VDS, Drain-to-Source Voltage (V)
14.0
ID= 180A
12.0
)
V
(
e
g
10.0
a
t
l
o
V
e
8.0
c
r
u
o
S
-
6.0
o
t
e
t
a
4.0
G
,
S
G
V
2.0
VDS= 32V
VDS= 20V
0.0
050100150200250
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com3
Page 4
IRFS3004-7PPbF
)
A
(
t
n
e
r
r
u
C
n
i
a
r
D
e
s
r
e
v
e
R
,
I
1000
TJ = 175°C
100
10
1
D
S
0.1
0.00.51.01.52.0
VSD, Source-to-Drain Voltage (V)
TJ = 25°C
Fig 7. Typical Source-Drain Diode
Forward Voltage
420
360
)
300
A
(
t
n
e
r
240
r
u
C
n
i
180
a
r
D
,
D
120
I
60
0
255075100125150175
TC , Case Temperature (°C)
Limited By Package
Fig 9. Maximum Drain Current vs.
V
GS
= 0V
10000
OPERATION IN THIS AREA
)
A
(
t
1000
n
e
r
r
u
C
e
c
r
u
100
o
S
o
t
n
i
a
r
D
10
,
D
I
Tc = 25°C
Tj = 175°C
Single Pulse
1
0110100
LIMITED BY RDS(on)
100µsec
1msec
10msec
DC
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
)
V
(
50
e
g
a
t
l
o
V
n
w
o
d
k
a
e
r
B
e
c
r
u
o
S
o
t
n
i
a
r
D
,
S
S
D
)
R
B
(
V
Id = 5mA
48
46
44
42
40
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Temperature ( °C )
Fig 10. Drain-to-Source Breakdown Voltage
Case Temperature
3.5
3.0
2.5
)
J
2.0
µ
(
y
g
r
e
1.5
n
E
1.0
0.5
0.0
-50510 15 20 25 30 35 40 45
V
Drain-to-Source Voltage (V)
DS,
Fig 11. Typical C
Stored Energy
OSS
1200
)
J
m
(
y
1000
g
r
e
n
E
e
800
h
c
n
a
l
a
v
600
A
e
s
l
u
P
400
e
l
g
n
i
S
,
200
S
A
E
0
255075100125150175
Starting TJ , Junction Temperature (°C)
TOP 44A
BOTTOM 240A
I
D
80A
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
4www.irf.com
Page 5
IRFS3004-7PPbF
τ
1
W
/
C
°
)
C
J
h
t
Z
(
e
s
n
o
p
s
e
0.01
R
l
a
m
r
e
h
T
0.001
1000
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τ
J
τ
J
τ
1
τ
1
Ci= τi/Ri
R
R
R
R
1
2
R
1
τ
2
τ
3
R
R
2
3
τ
3
τ
2
3
Ri (°C/W) τi (sec)
4
R
4
0.00757 0.000006
τ
C
τ
0.06508 0.000064
4
τ
4
0.18313 0.001511
0.14378 0.009800
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-0061E-0050.00010.0010.010.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case