Datasheet IRFS3004TRL7PP Datasheet

Page 1
Applications
)
l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free
PD - 97378A
IRFS3004-7PPbF
HEXFET® Power MOSFET
D
V
DSS
R
DS(on
typ.
max.
G
I
D
(Silicon Limited)
I
S
D
(Package Limited)
D
40V
0.90m
1.25m 400A
240A
Ω Ω
c
S
S
S
S
S
G
D2Pak 7 Pin
GDS
Gate Drain Source
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
@ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
I
D
@ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
I
D
I
DM
PD @TC = 25°C
V
GS
dv/dt T
J
T
STG
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
d
f
Max.
c
400
c
280
240
1610
380
2.5
± 20
2.0
-55 to + 175
300
Avalanche Characteristics
d
e
290
See Fig. 14, 15, 22a, 22b
E
AS (Thermally limited)
I
AR
E
AR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
d
Thermal Resistance
Symbol Parameter Typ. Max. Units
R
θ
JC
R
θ
JA
Junction-to-Case
Junction-to-Ambient (PCB Mount)
kl
j
–––
––– 40
0.40 °C/W
A
W
W/°C
V
V/ns
°C
mJ
A
mJ
www.irf.com 1
04/22/2010
Page 2
IRFS3004-7PPbF
/
g
g
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
R
G
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
fs Forward Transconductance 1300 ––– ––– S
Q
g
Q
gs
Q
gd
Q
sync
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
eff. (ER)
oss
C
eff. (TR)
oss
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
I
S
I
SM
V
SD
t
rr
Q
rr
I
RRM
t
on
Drain-to-Source Breakdown Voltage 40 ––– ––– V
T
Breakdown Voltage Temp. Coefficient ––– 0.038 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 0.90 1.25 Gate Threshold Voltage 2.0 ––– 4.0 V Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 100 nA Gate-to-Source Reverse Leaka
e ––– ––– -100
Internal Gate Resistance ––– 2.0 –––
Total Gate Charge ––– 160 240 nC Gate-to-Source Charge ––– 42 ––– Gate-to-Drain ("Miller") Charge ––– 65 ––– Total Gate Charge Sync. (Qg - Qgd)
––– 95 ––– Turn-On Delay Time ––– 23 ––– ns Rise Time ––– 240 ––– Turn-Off Delay Time ––– 91 ––– Fall Time ––– 160 ––– Input Capacitance ––– 9130 ––– pF Output Capacitance ––– 2020 ––– Reverse Transfer Capacitance ––– 990 –––
––– 2590 –––
h
i
––– 2650 –––
400
c
Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related)
Continuous Source Current ––– –––
(Body Diode) Pulsed Source Current ––– ––– 1610 A
(Body Diode)
d
Diode Forward Voltage ––– ––– 1.3 V Reverse Recovery Time ––– 49 ––– ns
––– 51 ––– Reverse Recovery Charge ––– 37 ––– nC
––– 41 ––– Reverse Recovery Current ––– 3.2 ––– A Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VGS = 0V, ID = 250µA Reference to 25°C, I VGS = 10V, ID = 195A
m
VDS = VGS, ID = 250µA V
= 40V, VGS = 0V
DS
V
= 40V, VGS = 0V, TJ = 125°C
DS
V
= 20V
GS
= -20V
V
GS
VDS = 10V, ID = 195A
= 180A
I
D
=20V
V
DS
= 10V
g
V
GS
I
= 180A, VDS =0V, VGS = 10V
D
VDD = 26V I
= 240A
D
R
= 2.7
G
VGS = 10V
g
VGS = 0V
= 25V
V
DS
ƒ = 1.0 MHz, See Fig. 5
= 0V, VDS = 0V to 32V i, See Fig. 11
V
GS
V
= 0V, VDS = 0V to 32V
GS
A
MOSFET symbol
showing the integral reverse
p-n junction diode.
= 25°C, IS = 195A, VGS = 0V
T
J
= 25°C VR = 34V,
T
J
= 125°C IF = 240A
T
J
= 25°C
T
J
= 125°C
T
J
= 25°C
T
J
Conditions
= 5mA
D
g
Conditions
h
Conditions
di/dt = 100A/µs
d
D
G
S
g
g
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 240A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
RG = 25, I above this value .
, starting TJ = 25°C, L = 0.01mH
Jmax
= 240A, VGS =10V. Part not recommended for use
AS
I
240A, di/dt 740A/µs, V
SD
DD
V
(BR)DSS
, TJ ≤ 175°C.
Pulse width 400µs; duty cycle 2%. C
eff. (TR) is a fixed capacitance that gives the same charging time
oss
as C
C
C
while V
oss
eff. (ER) is a fixed capacitance that gives the same energy as
oss
while V
oss
is rising from 0 to 80% V
DS
is rising from 0 to 80% V
DS
DSS
DSS
.
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
R
is measured at TJ approximately 90°C.
θ
R
value shown is at time zero.
θJC
2 www.irf.com
Page 3
IRFS3004-7PPbF
1000
TOP 15V
) A
(
100
t n e
r
r u
C e
c
r
10
u o S
­o
t
­n
i a
r
1
D ,
D
I
4.5V
0.1
BOTTOM 4.5V
60µs PULSE WIDTH
Tj = 25°C
0.1 1 10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
) A
(
t
100
n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
,
D
I
10
1
TJ = 175°C
TJ = 25°C
V
= 25V
DS
60µs PULSE WIDTH
0.1 3 4 5 6 7 8
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
1000
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
, I
100
D
4.5V
TOP 15V
BOTTOM 4.5V
60µs PULSE WIDTH
Tj = 175°C
10
0.1 1 10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
2.0
e c n a
t s
i s e
R n O e
c
r u o S
­o
t
­n
i a
r D
,
) n o
( S D
R
) d e z
i
l a
m
r o
N
(
1.5
1.0
ID = 195A
V
= 10V
GS
0.5
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
Fig 4. Normalized On-Resistance vs. Temperature
100000
) F
10000
p
( e
c n a
t
i c a p a
C
1000
, C
100
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
+ Cgd, C
gs
gd
+ C
ds
iss
C
rss
C
oss
C
iss
C
oss
C
rss
SHORTED
ds
gd
1 10 100
VDS, Drain-to-Source Voltage (V)
14.0 ID= 180A
12.0
) V
( e
g
10.0
a
t
l o V
e
8.0
c
r u o S
-
6.0
o
t
­e
t a
4.0
G ,
S G
V
2.0
VDS= 32V
VDS= 20V
0.0 0 50 100 150 200 250
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com 3
Page 4
IRFS3004-7PPbF
) A
( t n e
r
r u
C n
i a
r D e
s
r e v e
R ,
I
1000
TJ = 175°C
100
10
1
D S
0.1
0.0 0.5 1.0 1.5 2.0
VSD, Source-to-Drain Voltage (V)
TJ = 25°C
Fig 7. Typical Source-Drain Diode
Forward Voltage
420
360
)
300
A
( t n e
r
240
r u
C n
i
180
a
r D ,
D
120
I
60
0
25 50 75 100 125 150 175
TC , Case Temperature (°C)
Limited By Package
Fig 9. Maximum Drain Current vs.
V
GS
= 0V
10000
OPERATION IN THIS AREA
) A
( t
1000
n e
r
r u
C e
c
r u
100
o S
­o
t
­n
i a
r D
10
,
D
I
Tc = 25°C Tj = 175°C Single Pulse
1
0 1 10 100
LIMITED BY RDS(on)
100µsec
1msec
10msec
DC
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
) V
(
50
e g a
t
l o V
n w
o d k a e
r B
e c
r u o S
­o
t
­n
i a
r D
,
S S D
) R B
(
V
Id = 5mA
48
46
44
42
40
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Temperature ( °C )
Fig 10. Drain-to-Source Breakdown Voltage
Case Temperature
3.5
3.0
2.5
) J
2.0
µ
( y
g
r e
1.5
n E
1.0
0.5
0.0
-5 0 5 10 15 20 25 30 35 40 45
V
Drain-to-Source Voltage (V)
DS,
Fig 11. Typical C
Stored Energy
OSS
1200
) J
m
( y
1000
g
r e n E
e
800
h c n a
l a v
600
A e
s
l u P
400
e
l g n
i S ,
200
S A
E
0
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
TOP 44A
BOTTOM 240A
I
D
80A
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
4 www.irf.com
Page 5
IRFS3004-7PPbF
τ
1
W
/ C
° )
C J h
t
Z (
e s n o p s e
0.01
R l a
m
r e h T
0.001
1000
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
SINGLE PULSE ( THERMAL RESPONSE )
τ
J
τ
J
τ
1
τ
1
Ci= τi/Ri
R
R
R
R
1
2
R
1
τ
2
τ
3
R
R
2
3
τ
3
τ
2
3
Ri (°C/W) τi (sec)
4
R
4
0.00757 0.000006
τ
C
τ
0.06508 0.000064
4
τ
4
0.18313 0.001511
0.14378 0.009800
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
) A
( t n e
r
r u
C e
h c n a
l a v A
100
10
0.01
0.05
0.10
pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse)
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
1
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
320
TOP Single Pulse
280
) J
m
240
( y
g
r e
200
n E
e h
160
c n a
l a
120
v A ,
R
80
A
E
BOTTOM 1.0% Duty Cycle ID = 240A
40
0
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T
2. Safe operation in Avalanche is allowed as long asT
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
D (ave)
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
. This is validated for every part type.
jmax
is not exceeded.
jmax
= Average power dissipation per single avalanche pulse.
during avalanche).
6. I
= Allowable avalanche current.
av
7. ∆T = Allowable rise in junction temperature, not to exceed T
(assumed as
jmax
25°C in Figure 14, 15). t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t Z
(D, tav) = Transient thermal resistance, see Figures 13)
thJC
P
D (ave)
·f
av
= 1/2 ( 1.3·BV·Iav) = DT/ Z
I
2DT/ [1.3·BV·Zth]
av =
E
= P
AS (AR)
D (ave)·tav
thJC
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com 5
Page 6
IRFS3004-7PPbF
4.5
) V
4.0
( e
g a
t
l
3.5
o V
d
l o
3.0
h s e
r h
t
2.5
e
t a
G ,
) h
t
( S G
V
ID = 250µA
ID = 1.0mA
2.0 ID = 1.0A
1.5
1.0
-75 -50 -25 0 25 50 75 100 125 150 175 200
TJ , Temperature ( °C )
Fig 16. Threshold Voltage vs. Temperature
12
IF = 144A
11
VR = 34V
10
TJ = 25°C
9
TJ = 125°C
)
8
A
(
7
M R R
I
6
5
4
3
2
100 200 300 400 500
diF /dt (A/µs)
10
IF = 96A
9
VR = 34V
TJ = 25°C
8
TJ = 125°C
7
) A
(
6
M R R
I
5
4
3
2
100 200 300 400 500
diF /dt (A/µs)
Fig. 17 - Typical Recovery Current vs. dif/dt
140
IF = 96A
VR = 34V
120
TJ = 25°C
TJ = 125°C
100
) C
n
(
80
R R
Q
60
40
20
100 200 300 400 500
diF /dt (A/µs)
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
180
IF = 144A
160
VR = 34V
TJ = 25°C
140
TJ = 125°C
120
) C
n
(
100
R R
Q
80
60
40
20
100 200 300 400 500
diF /dt (A/µs)
Fig. 20 - Typical Stored Charge vs. dif/dt
6 www.irf.com
Page 7
IRFS3004-7PPbF
A
+
-
+
-
Reverse Recovery Current
Driver Gate Drive
D.U.T. ISDWaveform
D.U.T. VDSWaveform
Inductor Current
Inductor Curent
* V
GS
D.U.T
+
-
R
G
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
-
Low Leakage Inductance Current Transformer
-
dv/dt controlled by R
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
G
+
V
DD
Re-Applied Voltage
Period
P.W.
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
= 5V for Logic Level Devices
D =
P. W .
Period
VGS=10V
V
DD
I
SD
*
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V
15V
V
DS
L
DRIVER
t
p
(BR)DSS
R
G
V
20V
GS
Fig 22a. Unclamped Inductive Test Circuit
V
GS
R
G
10V
V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
D.U.T
I
AS
0.01
t
p
+
V
DD
-
I
AS
Fig 22b. Unclamped Inductive Waveforms
R
V
DS
D
V
DS
90%
D.U.T.
V
DD
10% V
GS
t
d(on)tr
t
d(off)tf
Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms
Current Regulator
Same Type as D.U.T.
.2µF
12V
V
GS
50K
.3µF
D.U.T.
3mA
I
G
Current Sampling Resistors
+
V
DS
-
I
D
Vds
Vgs(th)
Qgs1
Qgs2 Qgd Qgodr
Id
Vgs
Fig 24a. Gate Charge Test Circuit
www.irf.com 7
Fig 24b. Gate Charge Waveform
Page 8
IRFS3004-7PPbF
D2Pak - 7 Pin Package Outline
Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8 www.irf.com
Page 9
D2Pak - 7 Pin Part Marking Information
14
2
D
Pak - 7 Pin Tape and Reel
IRFS3004-7PPbF
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/2010
www.irf.com 9
Loading...