Datasheet IRFP4310ZPBF, IRFP4410ZPBF Datasheet (International Rectifier)

Page 1
)
)
PD - 97123A
IRFP4310ZPbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
G
D
V
DSS
R
DS(on
max. I
D
(Silicon Limited)
I
D
S
(Package Limited)
D
typ.
SOA
l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free
S
D
G
TO-247AC
GDS
Gate Drain Source
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
I
@ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
D
I
@ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited
D
I
DM
@TC = 25°C
P
D
V
GS
dv/dt T
J
T
STG
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
d
f
Max.
c
134
95
120
560
280
1.9
± 20
18
-55 to + 175
300
10lbxin (1.1Nxm)
100V
4.8m
6.0m
134A
120A
W
W/°C
V/ns
°C
: :
c
A
V
Avalanche Characteristics
g
e
130
See Fig. 14, 15, 22a, 22b,
mJ
mJ
E
AS (Thermally limited)
I
AR
E
AR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
d
Thermal Resistance
Symbol Parameter Typ. Max. Units
R
JC
θ
R
CS
θ
R
JA
θ
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
j –––
0.24 ––– °C/W
j ––– 40
0.54
www.irf.com 1
A
3/8/08
Page 2
IRFP4310ZPbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V
(BR)DSS
ΔV
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
R
G
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 150 ––– ––– S Q
g
Q
gs
Q
gd
Q
sync
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
eff. (ER)
C
oss
eff. (TR)
C
oss
Drain-to-Source Breakdown Voltage 100 ––– ––– V
/ΔT
Breakdown Voltage Temp. Coefficient ––– 0.11 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 4.8 6.0 Gate Threshold Voltage 2.0 ––– 4.0 V Drain-to-Source Leakage Current ––– ––– 20 μA
––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 100 nA Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 0.7 ––– Ω
Total Gate Charge ––– 120 170 nC Gate-to-Source Charge ––– 29 ––– Gate-to-Drain ("Miller") Charge ––– 35 Total Gate Charge Sync. (Qg - Qgd)
––– 85 ––– Turn-On Delay Time ––– 20 ––– ns Rise Time ––– 60 ––– Turn-Off Delay Time ––– 55 ––– Fall Time ––– 57 ––– Input Capacitance ––– 6860 ––– pF Output Capacitance ––– 490 ––– Reverse Transfer Capacitance ––– 220 –––
Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related)
––– 570 –––
––– 920 –––
h
VGS = 0V, ID = 250μA Reference to 25°C, I
= 10V, ID = 75A
V
mΩ
GS
= VGS, ID = 150μA
V
DS
= 100V, VGS = 0V
V
DS
= 80V, VGS = 0V, TJ = 125°C
V
DS
= 20V
V
GS
= -20V
V
GS
VDS = 50V, ID = 75A
= 75A
I
D
=50V
V
DS
= 10V
= 65V
= 0V = 50V
g
g
V
GS
I
= 75A, VDS =0V, VGS = 10V
D
V
DD
I
= 75A
D
= 2.7Ω
R
G
VGS = 10V V
GS
V
DS
ƒ = 1.0MHz, See Fig. 5
= 0V, VDS = 0V to 80V i, See Fig. 11
V
GS
= 0V, VDS = 0V to 80V
V
GS
Conditions
= 5mA
D
g
Conditions
d
h
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
I
S
I
SM
V
SD
t
rr
Q
rr
I
RRM
t
on
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
RG = 25Ω, I above the Eas value and test conditions.
I
75A, di/dt 600A/μs, V
SD
Continuous Source Current ––– –––
134
c
(Body Diode) Pulsed Source Current ––– ––– 560 A
(Body Diode)
d
Diode Forward Voltage ––– ––– 1.3 V Reverse Recovery Time ––– 40 ns
––– 49 Reverse Recovery Charge ––– 58 nC
––– 89 Reverse Recovery Current ––– 2.5 ––– A Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Pulse width 400μs; duty cycle 2%. C
eff. (TR) is a fixed capacitance that gives the same charging time
oss
, starting TJ = 25°C, L = 0.047mH
Jmax
= 75A, VGS =10V. Part not recommended for use
AS
DD
V
(BR)DSS
, TJ ≤ 175°C.
as C
C
C
R
while V
oss
eff. (ER) is a fixed capacitance that gives the same energy as
oss
while V
oss
is measured at TJ approximately 90°C
θ
DS
is rising from 0 to 80% V
DS
A
MOSFET symbol
showing the integral reverse
p-n junction diode.
= 25°C, IS = 75A, VGS = 0V
T
J
TJ = 25°C VR = 85V,
= 125°C IF = 75A
T
J
TJ = 25°C
= 125°C
T
J
TJ = 25°C
is rising from 0 to 80% V
Conditions
di/dt = 100A/μs
.
DSS
.
DSS
G
g
g
2 www.irf.com
D
S
Page 3
IRFP4310ZPbF
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
, I
1000
TOP 15V
100
BOTTOM 4.5V
10
D
VGS
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
60μs PULSE WIDTH
Tj = 25°C
1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
)
Α
(
t n
100
e
r
r u
C e
c
r u
10
o S
­o
t
­n
i a
r
1
D ,
D
I
0.1
TJ = 175°C
TJ = 25°C
V
= 50V
DS
60μs PULSE WIDTH
2.0 3.0 4.0 5.0 6.0 7.0 8.0
VGS, Gate-to-Source Voltage (V)
1000
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
,
D
I
TOP 15V
BOTTOM 4.5V
100
VGS
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
60μs PULSE WIDTH
Tj = 175°C
10
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
2.5
e c n a
t s
i s e
R n O e
c
r u o S
­o
t
­n
i a
r D
,
) n o
( S D
R
ID = 75A
V
= 10V
GS
2.0
) d e z
i
l a
1.5
m
r o
N
(
1.0
0.5
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
) F p
( e
c n a
t
i c a p a
C ,
C
12000
10000
8000
6000
4000
2000
0
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
+ Cgd, C
gs
gd
+ C
ds
ds
gd
C
C
iss
rss
oss
Ciss
Coss
Crss
VDS, Drain-to-Source Voltage (V)
SHORTED
Fig 4. Normalized On-Resistance vs. Temperature
20
ID= 75A
) V
(
16
e g a
t
l o V
e
12
c
r u o S
­o
t
8
­e
t a
G ,
S
4
G
V
0
0 40 80 120 160 200
VDS= 80V
VDS= 50V VDS= 20V
Q
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com 3
Page 4
IRFP4310ZPbF
1000
10000
OPERATION IN THIS AREA
) A
( t
100
n e
r
r u
C n
i a
r
10
D e
s
r e v e
R ,
D S
I
0.1
TJ = 175°C
TJ = 25°C
1
V
= 0V
GS
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
) A
(
1000
t n e
r
r u
C
100
e c
r u o S
­o
t
10
­n
i a
r D
,
1
D
I
Tc = 25°C Tj = 175°C Single Pulse
0.1
0.1 1 10 100
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
LIMITED BY RDS(on)
1msec
100μsec
10msec
DC
VDS, Drain-toSource Voltage (V)
Forward Voltage
e g
140
LIMITED BY PACKAGE
120
) A
100
( t n e
r
r
80
u C n
i a
60
r D
,
D
40
I
20
0
25 50 75 100 125 150 175
TC, Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
130
a
t
l o V
n w
o d k a e
r B
e c
r u o S
­o
t
­n
i a
r D
,
V
ID = 5mA
120
110
100
S S D
) R B
(
90
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 10. Drain-to-Source Breakdown Voltage
Case Temperature
3.0
2.5
2.0
) J
μ
( y
1.5
g
r e n E
1.0
0.5
0.0
0 20 40 60 80 100
V
Drain-to-Source Voltage (V)
DS,
600
) J
m
( y
500
g
r e n E
e
400
h c n a
l a v
300
A e
s
l u P
200
e
l g n
i S
100
, S A
E
0
25 50 75 100 125 150 175
I
TOP
11A
19A
BOTTOM
Starting TJ, Junction Temperature (°C)
D
75A
Fig 11. Typical C
Stored Energy
OSS
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
4 www.irf.com
Page 5
IRFP4310ZPbF
τ
τ
1
0.1
0.01
D = 0.50
0.20
0.10
0.05
0.02
0.01
SINGLE PULSE ( THERMAL RESPONSE )
τ
τ
J
J
τ
τ
J
J
τ
1
τ
1
τ
1
τ
1
Ci= τi/Ri
Ci= τi/Ri
R
R
R
R
1
2
R
1
R
1
R
1
τ
τ
3
R
R
2
3
R
R
2
3
R
R
2
3
τ
2
3
τ
2
3
τ
τ
2
τ
3
τ
2
3
Ri (°C/W)
4
R
RiC/W)
4
R
4
R
4
0.01688 0.000007
0.018756 0.000373
τ
C
τ
C
0.143482 0.000117
0.159425 0.000734
τ
4
τ
4
τ
4
τ
4
0.288653 0.001817
0.320725 0.005665
0.091153 0.011735
0.101282 0.115865
Notes:
1. Duty Factor D = t1/t2
)
C J h
t Z (
e s n o p s e
R l a
m
r e h T
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Duty Cycle = Single Pulse
) A
(
10
t n e
r
r u
C e
h c n a
l a
1
v A
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤj = 25°C and
0.01
0.05
0.10
Tstart = 150°C.
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
(sec)
τι
τι (sec)
0.1
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
140
TOP Single Pulse
120
) J
m
(
100
y g
r e n E
80
e h c n a
60
l a v A ,
40
R A
E
20
0
25 50 75 100 125 150 175
BOTTOM 1% Duty Cycle ID = 75A
Starting TJ , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T
2. Safe operation in Avalanche is allowed as long asT
. This is validated for every part type.
jmax
is not exceeded.
jmax
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
= Average power dissipation per single avalanche pulse.
D (ave)
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
6. I
= Allowable avalanche current.
av
7. ΔT = Allowable rise in junction temperature, not to exceed T
(assumed as
jmax
25°C in Figure 14). t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t Z
(D, tav) = Transient thermal resistance, see Figures 13)
thJC
P
D (ave)
·f
av
= 1/2 ( 1.3·BV·Iav) = DT/ Z
I
2DT/ [1.3·BV·Zth]
av =
E
= P
AS (AR)
D (ave)·tav
thJC
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com 5
Page 6
IRFP4310ZPbF
4.5
) V
4.0
( e
g a
t
l
3.5
o V
d
l o
3.0
h s e
r h
t
2.5
e
t a
G )
2.0
h
t
(
S G
1.5
V
1.0
-75 -50 -25 0 25 50 75 100 125 150 175
ID = 1.0A
ID = 1.0mA
ID = 250μA
ID = 150μA
TJ , Temperature ( °C )
Fig 16. Threshold Voltage Vs. Temperature
24
20
24
20
16
) A
(
-
12
M R R
I
8
4
0
100 200 300 400 500 600 700 800 900 1000
IF = 30A
VR = 85V
TJ = 125°C
TJ = 25°C
dif / dt - (A / μs)
Fig. 17 - Typical Recovery Current vs. dif/dt
600
500
16
) A
(
-
12
M R R
I
8
4
0
100 200 300 400 500 600 700 800 900 1000
IF = 45A
VR = 85V
TJ = 125°C
TJ = 25°C
dif / dt - (A / μs)
400
) C
n
(
-
300
R R
Q
200
100
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
600
500
400
) C
n
(
-
300
R R
Q
200
100
0
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
IF = 45A
VR = 85V
TJ = 125°C
TJ = 25°C
IF = 30A
VR = 85V
TJ = 125°C
TJ = 25°C
0
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
Fig. 20 - Typical Stored Charge vs. dif/dt
6 www.irf.com
Page 7
IRFP4310ZPbF
A
D.U.T
+
-
R
G
*
Use P-Channel Driver for P-Channel Measurements
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
-
Low Leakage Inductance Current Transformer
-
*
dv/dt controlled by R
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
G
+
** Reverse Polarity for P-Channel
Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
15V
V
DS
L
DRIVER
Driver Gate Drive
D.U.T. ISDWaveform
Reverse Recovery Current
D.U.T. VDSWaveform
V
DD
Re-Applied Voltage
+
**
-
Inductor Curent
*** V
Period
P.W.
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
= 5V for Logic Level Devices
GS
t
p
D =
P. W .
Period
V
(BR)DSS
***
VGS=10V
V
DD
I
SD
R
V
20V
G
GS
D.U.T
I
AS
0.01
t
p
Ω
Fig 22a. Unclamped Inductive Test Circuit
R
V
DS
V
GS
R
G
D
D.U.T.
10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 23a. Switching Time Test Circuit
0
20K
1K
DUT
+
V
DD
-
I
AS
Fig 22b. Unclamped Inductive Waveforms
V
DS
90%
+
V
DD
-
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 23b. Switching Time Waveforms
Id
Vgs
Vds
L
VCC
Vgs(th)
Qgs1
Qgs2QgdQgodr
Fig 24a. Gate Charge Test Circuit
www.irf.com 7
Fig 24b. Gate Charge Waveform
Page 8
IRFP4310ZPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE:
Note: "P" in ass embly line pos ition
TO-247AC packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at
8 www.irf.com
THIS IS AN IR FPE 30 WITH ASSEMBLY LOT CODE 5657
AS S EMBLE D ON WW 35, 2001 IN THE AS SEMBLY LINE "H"
in dicates " L ead- F ree"
INTER NATIONAL
RECTIF IER
LOGO
ASSEMBLY
IRFP E30
135H
56 57
PAR T NUMBER
DATE CODE YEAR 1 = 2001 WEEK 35LOT CODE LINE H
http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 3/08
Loading...