Datasheet IRFP4004PbF Datasheet

Page 1
Applications
)
l High Efficiency Synchronous Rectification in
SMPS
l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
Benefits
l Improved Gate, Avalanche and Dynamic
dv/dt Ruggedness
l Fully Characterized Capacitance and
Avalanche SOA
l Enhanced body diode dV/dt and dI/dt
Capability
PD - 97323
IRFP4004PbF
HEXFET® Power MOSFET
D
V
DSS
DS(on
typ.
R max. 1.70m
G
I
D (Silicon Limited)
S
I
D (Package Limited)
D
S
D
G
40V
1.35m
350A
195A
Ω Ω
c
TO-247AC
GDS
Gate Drain Source
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C
@ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
I
D
@ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
I
D
I
DM
P
@TC = 25°C
D
V
GS
dv/dt T
J
T
STG
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
d
f
Max.
c
350
c
250
195
1390
380
2.5
± 20
2.0
-55 to + 175
300
10lbxin (1.1Nxm)
Avalanche Characteristics
g
e
290
See Fig. 14, 15, 22a, 22b
E
AS (Thermally limited)
I
AR
E
AR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
d
A
W
W/°C
V
V/ns
°C
mJ
A
mJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
R
JC
θ
R
CS
θ
R
JA
θ
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
k
jk
–––
0.24 ––– °C/W ––– 40
0.40
06/05/08
Page 2
IRFP4004PbF
/
i
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 290 ––– ––– S Q
g
Q
gs
Q
gd
Q
sync
R
G(int)
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
eff. (ER)
C
oss
eff. (TR)
C
oss
Drain-to-Source Breakdown Voltage 40 ––– ––– V
T
Breakdown Voltage Temp. Coefficient ––– 0.035 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 1.35 1.70
Gate Threshold Voltage 2.0 ––– 4.0 V
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– ––– -200
Total Gate Charge ––– 220 330 nC
Gate-to-Source Charge ––– 59 –––
Gate-to-Drain ("Miller") Charge ––– 75 ––– Total Gate Charge Sync. (Qg - Qgd)
Internal Gate Resistance
––– 145 –––
–––
6.8 –––
Turn-On Delay Time ––– 59 ––– ns
Rise Time ––– 370 –––
Turn-Off Delay Time ––– 160 –––
Fall Time ––– 190 –––
Input Capacitance ––– 8920 ––– pF
Output Capacitance ––– 2360 –––
Reverse Transfer Capacitance ––– 930 –––
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
––– 2860 –––
––– 3110 –––
h
m
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, I
V
= 10V, ID = 195A
GS
V
= VGS, ID = 250µA
DS
V
= 40V, VGS = 0V
DS
V
= 40V, VGS = 0V, TJ = 125°C
DS
V
= 20V
GS
V
= -20V
GS
Conditions
VDS = 10V, ID = 195A
I
= 195A
D
= 20V
V
DS
g
= 10V
V
GS
= 195A, VDS =0V, VGS = 10V
I
D
= 20V
V
DD
= 195A
I
D
R
= 2.7
G
VGS = 10V
V
GS
V
DS
ƒ = 1.0MHz
V
GS
V
GS
g
= 0V
= 25V
= 0V, VDS = 0V to 32V
= 0V, VDS = 0V to 32V
= 5mA
D
g
d
i
h
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
I
S
I
SM
V
SD
t
rr
Q
rr
I
RRM
t
on
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. Refer to App Notes (AN-1140).
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
RG = 25, I above this value.
Continuous Source Current ––– –––
350
c
(Body Diode) Pulsed Source Current ––– ––– 1390
(Body Diode)
di
Diode Forward Voltage ––– ––– 1.3 V
Reverse Recovery Time ––– 83 130 ns
––– 78 120
Reverse Recovery Charge ––– 190 290 nC
––– 210 320
Reverse Recovery Current ––– 4.0 ––– A
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
I
195A, di/dt 690A/µs, V
SD
Pulse width 400µs; duty cycle 2%.C
eff. (TR) is a fixed capacitance that gives the same charging time
oss
, starting TJ = 25°C, L = 0.015mH
Jmax
= 195A, VGS =10V. Part not recommended for use
AS
as C
C
C
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
R
while V
oss
eff. (ER) is a fixed capacitance that gives the same energy as
oss
while V
oss
is measured at TJ approximately 90°C.
θ
is rising from 0 to 80% V
DS
is rising from 0 to 80% V
DS
Conditions
MOSFET symbol
A
showing the integral reverse
p-n junction diode. T
= 25°C, IS = 195A, VGS = 0V
J
T
= 25°C VR = 20V,
J
T
= 125°C IF = 195A
J
T
= 25°C
J
T
= 125°C
J
T
= 25°C
J
DD
V
(BR)DSS
DSS
, TJ ≤ 175°C.
.
DSS
.
G
g
di/dt = 100A/µs
D
S
g
2 www.irf.com
Page 3
IRFP4004PbF
1000
4.5V
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
60µs PULSE WIDTH
TOP 15V
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
,
D
I
BOTTOM 4.5V
100
Tj = 25°C
10
0.1 1 10
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
) A
( t
n e
r
100
r u
C e
c
r u o S
­o
t
­n
i a
r D
,
D
I
10
TJ = 175°C
TJ = 25°C
V
= 10V
DS
60µs PULSE WIDTH
1.0 3 4 5 6 7 8
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
1000
4.5V
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
60µs PULSE WIDTH
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
, I
TOP 15V
BOTTOM 4.5V
100
D
Tj = 175°C
10
0.1 1 10
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
2.0
e c n a
t s
i s e
R n O e
c
r u o S
­o
t
­n
i a
r D
,
) n o
( S D
R
) d e z
i
l a
m
r o
N
(
1.5
1.0
ID = 195A
V
= 10V
GS
0.5
-60 -40 -20 0 20 40 60 80 100 120 140160 180
TJ , Junction Temperature (°C)
Fig 4. Normalized On-Resistance vs. Temperature
100000
) F
10000
p
( e
c n a
t
i c a p a
C
1000
, C
100
V
= 0V, f = 1 MHZ
GS
C
= C
C
C
iss
rss
oss
+ Cgd, C
gs
= C
gd
= C
+ C
ds
C
iss
C
oss
C
rss
SHORTED
ds
gd
1 10 100
VDS, Drain-to-Source Voltage (V)
12.0 ID= 195A
)
10.0
V
( e
g a
t
l
8.0
o V
e c
r u
6.0
o S
­o
t
­e
t
4.0
a G
,
S G
2.0
V
VDS= 32V
VDS= 24V
0.0 0 50 100 150 200 250
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
Page 4
IRFP4004PbF
1000
) A
(
100
t n e
r
r u
C n
i a
r
10
D e
s
r e v e
R ,
D S
I
0.1
TJ = 175°C
TJ = 25°C
1
V
= 0V
GS
0.0 0.4 0.8 1.2 1.6 2.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
350
300
)
250
A
( t n e
r
200
r u
C n
i
150
a
r D ,
D
100
I
50
0
25 50 75 100 125 150 175
TC , Case Temperature (°C)
Limited By Package
10000
OPERATION IN THIS AREA
) A
( t
1000
n e
r
r u
C e
c
r
100
u o S
­o
t
­n
i a
r D
10
,
D
I
Tc = 25°C Tj = 175°C Single Pulse
1
110100
LIMITED BY RDS(on)
100µsec
1msec
10msec
DC
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
) V
52
( e
g a
t
l o V
n w
o d k a e
r B
e c
r u o S
­o
t
­n
i a
r D
,
S S D
) R B
(
V
Id = 5.0mA
50
48
46
44
42
40
-60 -40 -20 0 20 40 60 80 100 120 140160 180
TJ , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Case Temperature
2.5
2.0
)
1.5
J µ
( y
g
r e n
1.0
E
0.5
0.0
-5 0 5 10 15 20 25 30 35 40
V
Drain-to-Source Voltage (V)
DS,
Fig 11. Typical C
Stored Energy
OSS
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
Fig 10. Drain-to-Source Breakdown Voltage
1200
) J
m
(
1000
y g
r e n E
800
e h c n a
l a
600
v A
e s
l u
400
P e
l g n
i S
200
,
S A
E
0
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
TOP 36A
BOTTOM 195A
I
73A
D
4 www.irf.com
Page 5
IRFP4004PbF
τ
1
W
/ C
° )
C J h
t
Z (
e s n o p s e
0.01
R l a
m
r e h T
0.001
1000
0.1
D = 0.50
0.20
0.10
0.05
0.02
0.01
SINGLE PULSE ( THERMAL RESPONSE )
τ
J
τ
J
τ
1
Ci= τi/Ri
R
R
R
R
1
2
R
1
τ
τ
1
2
τ
3
R
R
2
3
τ
3
τ
2
3
Ri (°C/W) τi (sec)
4
R
4
0.0123 0.000011
τ
C
τ
0.0585 0.000055
4
τ
4
0.1693 0.000917
0.1601 0.008784
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
) A
(
100
t n e
r
r u
C e
h c n a
l
10
a v
A
0.01
0.05
0.10
pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse)
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τj = 25°C and Tstart = 150°C.
1
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
300
TOP Single Pulse
250
) J
m
( y
200
g
r e n E
e
150
h c n a
l a v
100
A ,
R A
E
50
BOTTOM 1.0% Duty Cycle ID = 195A
0
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T
2. Safe operation in Avalanche is allowed as long asT
. This is validated for every part type.
jmax
is not exceeded.
jmax
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
= Average power dissipation per single avalanche pulse.
D (ave)
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
6. I
= Allowable avalanche current.
av
7. ∆T = Allowable rise in junction temperature, not to exceed T
(assumed as
jmax
25°C in Figure 14, 15). t
Average time in avalanche.
av =
D = Duty cycle in avalanche = t Z
(D, tav) = Transient thermal resistance, see Figures 13)
thJC
P
D (ave)
·f
av
= 1/2 ( 1.3·BV·Iav) = DT/ Z
I
2DT/ [1.3·BV·Zth]
av =
E
= P
AS (AR)
D (ave)·tav
thJC
Fig 15. Maximum Avalanche Energy vs. Temperature
Page 6
IRFP4004PbF
5.0
)
4.5
V
( e
g
4.0
a
t
l o V
3.5
d
l o h s e
3.0
r h
t e
t a
G ,
) h
t
( S G
V
ID = 250µA
ID = 1.0mA
2.5 ID = 1.0A
2.0
1.5
1.0
-75 -50 -25 0 25 50 75 100 125 150 175 200
TJ , Temperature ( °C )
Fig 16. Threshold Voltage vs. Temperature
14
IF = 117A
VR = 34V
12
TJ = 25°C
TJ = 125°C
10
) A
(
8
R R
I
6
12
IF = 78A
VR = 34V
10
TJ = 25°C
TJ = 125°C
8
) A
(
R R
I
6
4
2
0 200 400 600 800 1000
diF /dt (A/µs)
Fig. 17 - Typical Recovery Current vs. dif/dt
350
IF = 78A
VR = 34V
300
TJ = 25°C
TJ = 125°C
250
) A
(
200
R R
Q
150
4
2
0 100 200 300 400 500 600
diF /dt (A/µs)
400
350
300
) A
(
250
R R
Q
200
150
100
100
50
0 200 400 600 800 1000
diF /dt (A/µs)
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
IF = 117A
VR = 34V
TJ = 25°C
TJ = 125°C
0 100 200 300 400 500 600
diF /dt (A/µs)
Fig. 20 - Typical Stored Charge vs. dif/dt
6 www.irf.com
Page 7
IRFP4004PbF
A
+
-
Reverse Recovery Current
Driver Gate Drive
P.W.
D.U.T. ISDWaveform
D.U.T. VDSWaveform
Inductor Current
Inductor Curent
* V
GS
D.U.T
+
-
R
G
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
-
Low Leakage Inductance Current Transformer
-
dv/dt controlled by R
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
G
+
V
DD
Re-Applied Voltage
Period
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
= 5V for Logic Level Devices
D =
P. W .
Period
VGS=10V
V
DD
I
SD
*
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V
15V
V
DS
L
DRIVER
t
p
(BR)DSS
R
V
20V
G
GS
D.U.T
I
AS
0.01
t
p
+
V
DD
-
Fig 21a. Unclamped Inductive Test Circuit
L
V
DS
D
+
-
V
DD
D.U.T
V
GS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 22a. Switching Time Test Circuit
L
0
DUT
1K
VCC
I
AS
Fig 21b. Unclamped Inductive Waveforms
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 22b. Switching Time Waveforms
Vds
Vgs(th)
Id
Vgs
Qgs1
Qgs2 Qgd Qgodr
Fig 23a. Gate Charge Test Circuit
Fig 23b. Gate Charge Waveform
Page 8
IRFP4004PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/(
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8 www.irf.com
7+,6,6$1,5)3( :,7+$66(0%/<
/27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+
LQGLFDWHV/HDG)UHH
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/< /27&2'(
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
Visit us at www.irf.com for sales contact information. 06/08
,5)3(
+

3$57180%(5
'$7(&2'( <($5 :((. /,1(+
TAC Fax: (310) 252-7903
Loading...