Page 1
PD-93998A
IRF5851
HEXFET® Power MOSFET
l Ultra Low On-Resistance
l Dual N and P Channel MOSFET
l Surface Mount
l Available in Tape & Reel
l Low Gate Charge
Description
These N and P channel MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
the extremely low on-resistance per silicon area. This
benefit provides the designer with an extremely efficient
device for use in battery and load management
applications.
This Dual TSOP-6 package is ideal for applications
where printed circuit board space is at a premium and
where maximum functionality is required. With two die
per package, the IRF5851 can provide the functionality of
two SOT-23 packages in a smaller footprint. Its unique
thermal design and R
increase in current-handling capability.
reduction enables an
DS(on)
G1
S2
G2
N-Ch P-Ch
1
2
3
D1
6
V
S1
5
D2
4
R
DS(on)
TSOP-6
20V -20V
DSS
0.090Ω 0.135Ω
Absolute Maximum Ratings
Parameter
V
DS
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 2.7 -2.2
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 2.2 -1.7
I
DM
PD @TA = 25°C Power Dissipation 0.96 W
PD @TA = 70°C Power Dissipation 0.62
V
GS
T
J, TSTG
Drain-to-Source Voltage 20 -20
Pulsed Drain Current 11 -9.0
Linear Derating Factor 7.7 mW/°C
Gate-to-Source Voltage ± 12 V
Junction and Storage Temperature Range °C
N-Channel P-Channel
Max.
-55 to + 150
Units
A
Thermal Resistance
Parameter Typ. Max. Units
R
θ JA
Maximum Junction-to-Ambient ––– 130 °C/W
www.irf.com 1
2/26/02
Page 2
IRF5851
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V
(BR)DSS
∆ V
(BR)DSS
R
DS(ON)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage
/∆ TJBreakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage N-P –– — ±100 VGS = ± 12V
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Parameter Min. Typ. Max. Units Conditions
N-Ch 20 —— VGS = 0V, ID = 250µA
P-Ch -20 —— V
N-Ch — 0.016 — Reference to 25° C, I
P-Ch — -0.011 — Reference to 25° C, I
—— 0.090 V GS = 4.5V, ID = 2.7A
N-Ch
——0.120 V
——0.135 V
P-Ch
—— 0.220 V
N-Ch 0.60 — 1.25 V
P-Ch -0.45 — -1.2 VDS = VGS, ID = -250µA
N-Ch 5.2 —— VDS = 10V, ID = 2.7A
P-Ch 3.5 —— V
N-Ch ——1.0 V DS = 16 V , VGS = 0V
P-Ch ——-1.0 V DS = -16V, VGS = 0V
N-Ch —— 25 V
P-Ch ——-25 V DS = -16V, VGS = 0V, TJ = 70°C
N-Ch — 4.0 6.0
P-Ch — 3.6 5.4
N-Ch — 0.95 —
P-Ch — 0.66 —
N-Ch — 0.83 —
P-Ch — 5.7 —
N-Ch — 6.6 —
P-Ch — 8.3 —
N-Ch — 1.2 —
P-Ch — 14 —
N-Ch — 15 —
P-Ch — 31 —
N-Ch — 2.4 —
P-Ch — 28 —
N-Ch — 400 —
P-Ch — 320 —
N-Ch — 48 —
P-Ch — 56 —
N-Ch — 32 —
P-Ch — 40 —
V
= 0V, ID = -250µA
GS
V/°C
= 2.5V, ID = 2.2A
GS
Ω
= -4.5V, ID = -2.2A
GS
= -2.5V, ID = -1.7A
GS
= VGS, ID = 250µA
DS
V
S
= -10V, ID = -2.2A
DS
µA
= 16 V , VGS = 0V, TJ = 70°C
DS
N-Channel
= 2.7A, VDS = 10V, VGS = 4.5V
I
D
nC
P-Channel
ID = -2.2A, VDS = -10V, VGS = -4.5V
N-Channel
= 10V, ID = 1.0A, RG = 6.2Ω,
V
DD
VGS = 4.5V
ns
P-Channel
VDD = -10V, ID = -1.0A, RG = 6.0Ω,
VGS = -4.5V
N-Channel
= 0V, VDS = 15V, ƒ = 1.0MHz
V
GS
pF
P-Channel
VGS = 0V, VDS = -15V, ƒ = 1.0MHz
= 1mA
D
= -1mA
D
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
Continuous Source Current (Body Diode)
Pulsed Source Current (Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 10 & 26 )
Pulse width ≤ 400µs; duty cycle ≤ 2%.
N-Ch ——0.96
P-Ch ——-0.96
N-Ch —— 11
A
P-Ch ——-9.0
N-Ch ——1.2 T
P-Ch ——-1.2 T J = 25° C, IS = -0.96A, VGS = 0V
N-Ch — 25 38
P-Ch — 23 35
N-Ch — 6.5 9.8
P-Ch — 7.7 12
= 25° C, IS = 0.96A, VGS = 0V
J
V
N-Channel
ns
T
= 25° C, IF = 0.96A, di/dt = 100A/µs
J
P-Channel
nC
T
= 25° C, IF = -0.96A, di/dt = -100A/µs
J
Surface mounted on FR-4 board, t ≤ 10sec.
2 www.irf.com
Page 3
N-Channel
IRF5851
100
10
1
TOP
BOTTOM
VGS
7.5V
4.5V
3.5V
3.0V
2.5V
2.0V
1.75V
1.5V
1.50V
D
I , Drain-to-Source Current (A)
20µs PULSE WIDTH
°
T = 25 C
0.1
0.1 1 10 100
V , Drain-to-Source Voltage (V)
DS
J
Fig 1. Typical Output Characteristics
100
100
10
1
D
I , Drain-to-Source Current (A)
0.1
0.1 1 10 100
VGS
TOP
7.5V
4.5V
3.5V
3.0V
2.5V
2.0V
1.75V
BOTTOM
1.5V
1.50V
20µs PULSE WIDTH
T = 150 C
J
V , Drain-to-Sou rce Voltage (V)
DS
°
Fig 2. Typical Output Characteristics
2.0
I =
D
2.7A
°
T = 25 C
10
1
D
I , Drain-to-Source Current (A)
0.1
1.5 2.0 2.5 3.0
V , Gate-to-Source Voltage (V)
GS
J
T = 150 C
J
V = 15V
DS
20µs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
°
1.5
1.0
(Normalized)
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature( C)
J
Fig 4. Normalized On-Resistance
V =
GS
°
4.5V
Vs. Temperature
www.irf.com 3
Page 4
IRF5851
N-Channel
600
500
400
300
200
C, Capacitance (pF)
100
0
1 10 100
V
=
0V,
GS
C
=
iss gs gd , ds
C
=
rss gd
C
=
oss ds gd
C
iss
C
oss
C
rss
V , Drain-to-Source Voltage (V)
DS
f = 1MHz
C
+ C
C
C
C SHORTED
+ C
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
10
I =
2.7A
D
8
6
4
2
GS
V , Gate-to-Source Voltage (V)
0
0 2 4 6 8
Q , Total Gate Charge (nC)
G
V = 16V
DS
V = 10V
DS
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
100
OPERATION IN THIS ARE A LIMITED
BY R
DS(on)
10
°
T = 150 C
J
1
°
SD
I , Reverse Drain Current (A)
0.1
0.4 0.6 0.8 1.0 1.2 1.4
V ,Source-to-Drain Voltage (V)
SD
T = 25 C
J
V = 0 V
GS
Fig 7. Typical Source-Drain Diode
10
100us
1
D
I , Drai n Current (A) I , Drain Current (A)
°
= 25 C
A
T T= 150 C
Single Pulse
0.1
0.1 1 10 100
°
J
V , Drain-to-Sou rce Voltage (V)
DS
1ms
10ms
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Page 5
N-Channel
IRF5851
3.0
2.5
2.0
1.5
1.0
D
I , Drain Current (A)
0.5
0.0
25 50 75 100 125 150
T , Case Temperature ( C)
C
Fig 9. Maximum Drain Current Vs.
Case Temperature
1000
R
D.U.T.
D
+
V
DD
-
V
DS
V
GS
R
G
4.5V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
V
DS
90%
°
10%
V
GS
t
d(on)tr
t
d(off)tf
Fig 10b. Switching Time Waveforms
100
thJA
D = 0.50
0.20
0.10
10
0.05
P
1 2
DM
t
1
t
2
0.02
0.01
1
Thermal R esponse (Z )
0.1
0.00001 0.0001 0.001 0.01 0.1 1 10
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t / t
2. Peak T =P x Z + T
t , Rectangular Pulse Durati on (sec)
1
J DM thJA A
Fig 10. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com 5
Page 6
IRF5851
)
0.14
Ω
(
e
c
n
a
t
s
i
s
0.12
e
R
n
O
e
c
r
u
0.10
o
S
o
t
-
n
i
a
r
0.08
D
,
)
n
o
(
S
D
0.06
R
2.0 3.0 4.0 5.0 6.0 7.0 8.0
V
GS,
ID = 2.7A
Gate -to - Source Voltage (V)
N-Channel
)
Ω
(
e
c
n
a
t
s
i
s
e
R
n
O
e
c
r
u
o
S
-
o
t
-
n
i
a
r
D
,
)
n
o
(
S
D
R
0.30
0.20
V
= 2.5V
GS
0.10
V
= 4.5V
GS
0.00
024681 01 2
ID , Drain Current (A)
Fig 11. Typical On-Resistance Vs. Gate
Voltage
Q
G
4.5 V
Q
GS
V
G
Q
GD
Charge
Fig 13a. Basic Gate Charge Waveform
Fig 12. Typical On-Resistance Vs. Drain
Current
Current Regulator
Same Type as D.U.T.
50KΩ
.2µF
12V
V
GS
.3µF
D.U.T.
3mA
I
G
Current Sampling Resistors
+
V
DS
-
I
D
Fig 13b. Gate Charge Test Circuit
6 www.irf.com
Page 7
N-Channel
IRF5851
1.2
)
1.0
V
(
e
c
a
i
r
a
0.8
V
,
)
h
t
(
S
G
V
0.6
0.4
-75 -50 -25 0 25 50 75 100 125 150
TJ , Temperature ( ° C )
ID = 250µA
Fig 14. Threshold Voltage Vs. Tempera-
ture
24
20
16
)
W
(
r
12
e
w
o
P
8
4
0
0.001 0.010 0.100 1.000 10.000
Time (sec)
Fig 15. Typical Power Vs. Time
www.irf.com 7
Page 8
IRF5851
P-Channel
100
10
1
0.1
D
-I , Drain-to-Source Current (A)
0.01
0.1 1 10 100
VGS
TOP
-7.0V
-5.0V
-4.5V
-2.5V
-2.0V
-1.8V
-1.5V
BOTTOM
-1.2V
-1.2V
20µs PULSE WIDTH
T = 25 C
J
-V , Drain-to-Sou rce Voltage (V)
DS
°
Fig 16. Typical Output Characteristics
10
°
T = 25 C
J
100
10
1
D
-I , Drain-to-Source Current (A)
0.1
0.1 1 10 100
VGS
TOP
-7.0V
-5.0V
-4.5V
-2.5V
-2.0V
-1.8V
-1.5V
BOTTOM
-1.2V
-1.2V
-V , Drain-to-Sou rce Voltage (V)
DS
20µs PULSE WIDTH
T = 150 C
J
°
Fig 17. Typical Output Characteristics
2.0
I =
D
-2.2A
°
T = 150 C
J
1
1.5
1.0
(Normalized)
D
-I , Drain-to-Source Current (A)
V = -15V
DS
0.1
1.2 1.6 2.0 2.4 2.8
-V , Gate-to-Source Voltage (V)
GS
20µs PULSE WIDTH
Fig 18. Typical Transfer Characteristics
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature ( C)
J
Fig 19. Normalized On-Resistance
V =
GS
°
-4.5V
Vs. Temperature
8 www.irf.com
Page 9
P-Channel
IRF5851
500
400
300
200
V
=
0V,
GS
C
=
C
iss gs gd , ds
C
=
C
rss gd
C
=
C
oss ds gd
C
iss
f = 1MHz
+ C
+ C
C SHORTED
C, Capacitance (pF)
100
C
oss
C
rss
0
1 10 100
-V , Drain-to-Source Voltage (V)
DS
Fig 20. Typical Capacitance Vs.
Drain-to-Source Voltage
10
10
I =
-2.2A
D
8
6
4
2
GS
-V , Gate-to-Source Voltage (V)
0
0 2 4 6 8
Q , Total Gate Charge (nC)
G
V =-16V
DS
V =-10V
DS
Fig 21. Typical Gate Charge Vs.
Gate-to-Source Voltage
100
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
°
T = 150 C
J
1
°
T = 25 C
J
SD
-I , Reverse Drain Current (A)
V = 0 V
0.1
0.4 0.6 0.8 1.0 1.2 1.4
-V ,Source-to-Drain Voltage (V)
SD
GS
Fig 22. Typical Source-Drain Diode
10
100us
1
D
-I , Drain Current (A) I , Drain Current (A)
°
= 25 C
A
T T= 150 C
Single Pulse
0.1
0.1 1 10 100
°
J
-V , Drain-to-Source Voltage (V)
DS
1ms
10ms
Fig 23. Maximum Safe Operating Area
Forward Voltage
www.irf.com 9
Page 10
IRF5851
P-Channel
2.5
2.0
1.5
1.0
D
-I , Drain Current (A)
0.5
0.0
25 50 75 100 125 150
TJ , Junction Temperature (°C)
Fig 24. Maximum Drain Current Vs.
Junction Temperature
1000
R
D.U.T.
D
-
+
V
V
DS
V
GS
R
G
V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 25a. Switching Time Test Circuit
V
10%
90%
V
GS
DS
t
d(on)tr
t
d(off)tf
Fig 25b. Switching Time Waveforms
DD
100
thJA
D = 0.50
0.20
0.10
10
0.05
P
1 2
DM
t
1
t
2
0.02
0.01
1
Thermal R esponse (Z )
0.1
0.00001 0.0001 0.001 0.01 0.1 1 10
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t / t
2. Peak T =P x Z + T
t , Rectangular Pulse Durati on (sec)
1
J DM thJA A
Fig 26. Typical Effective Transient Thermal Impedance, Junction-to-Ambient
10 www.irf.com
Page 11
)
0.24
Ω
(
e
c
n
a
t
s
i
s
0.20
e
R
n
O
e
c
r
u
0.16
o
S
o
t
-
n
i
a
r
0.12
D
,
)
n
o
(
S
D
0.08
R
2.0 3.0 4.0 5.0 6.0 7.0
-V
Gate -to - Source Voltage (V)
GS,
ID = -2.2A
P-Channel
)
Ω
(
e
c
n
a
t
s
i
s
e
R
n
O
e
c
r
u
o
S
-
o
t
-
n
i
a
r
D
,
)
n
o
(
S
D
R
IRF5851
0.40
0.30
V
= -2.5V
GS
0.20
V
= -4.5V
GS
0.10
024681 0
-ID , Drain Current (A)
Fig 27. Typical On-Resistance Vs. Gate
Voltage
Q
G
Q
GS
V
G
Q
GD
Charge
Fig 29a. Basic Gate Charge Waveform
Fig 28. Typical On-Resistance Vs. Drain
Current
Current Regulator
Same Type as D.U.T.
50KΩ
.2µF
12V
V
GS
.3µF
D.U.T.
-3mA
I
G
Current Sampling Resistors
V
DS
+
I
D
Fig 29b. Gate Charge Test Circuit
www.irf.com 11
Page 12
IRF5851
P-Channel
1.0
)
V
(
0.8
e
c
a
i
r
a
V
,
)
h
t
(
S
0.6
G
V
-
0.4
-75 -50 -25 0 25 50 75 100 125 150
TJ , Temperature ( ° C )
ID = -250µA
Fig 30. Threshold Voltage Vs. Temperature
24
20
16
)
W
(
r
12
e
w
o
P
8
4
0
0.001 0.010 0.100 1.000 10.000
Time (sec)
Fig 31 . Typical Power Vs. Time
12 www.irf.com
Page 13
TSOP-6 Package Outline
IRF5851
TSOP-6 Part Marking Information
EXAMPLE: THIS IS AN SI3443DV
PART NUMBER
WAFER L OT
NUMBER CODE
PA RT NUMBER C ODE REFERENC E:
3A = SI3443DV
3B = IRF5800
3C = IRF5850
3D = IRF5851
3E = IRF5852
3I = IRF5805
3J = IRF 5806
DATE CODE EXAMPLES :
YWW = 9603 = 6C
YW W = 9632 = FF
3A
XXXX
BOTTOM
YW
TOP
www.irf.com 13
WW = (1 -2 6) IF PRECEDED BY LAST DI GIT O F CALENDAR YE AR
WORK
DATE
CODE
2005
5
1996
6
1997
7
1998
8
9
1999
2000
0
WW = (27- 52) IF PRE CEDED BY A LETTER
Y
E
2005
F
1996
G
1997
H
1998
1999
J
K
2000
WE E K
WORK
WE E K
01
02
03
04
24
25 Y
26 Z
27
28
29
30
50
51 Y
W YEAR Y
A 2001 1
B 2002 2
C 2003 3
D 2004 4
X
W YEAR
A 2001 A
B 2002 B
C 2003 C
D 2004 D
X
Page 14
IRF5851
TSOP-6 Tape & Reel Information
Data and specifications subject to change without notice.
This product has been designed and qualified for the consumer market.
Qualification Standards can be found on IR’ s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 2/02
14 www.irf.com