Datasheet IRF3711ZPbF, IRF3711ZSPbF, IRF3711ZLPbF Datasheet (IOR)

Page 1
查询IRF3711ZLPBF供应商
Applications
l High Frequency Synchronous Buck
Converters for Computer Processor Power
l Lead-Free
Benefits
l Low R l Ultra-Low Gate Impedance l Fully Characterized Avalanche Voltage
and Current
DS(on)
at 4.5V V
GS
V
DSS
20V
TO-220AB
IRF3711Z
PD - 95530
IRF3711ZPbF
IRF3711ZSPbF
IRF3711ZLPbF
HEXFET® Power MOSFET
R
DS(on)
IRF3711ZS
6.0m
D2Pak
max
:
Qg
16nC
TO-262
IRF3711ZL
Absolute Maximum Ratings
Parameter Units
V
DS
V
GS
I
@ TC = 25°C
D
@ TC = 100°C
I
D
I
DM
PD @TC = 25°C
P
@TC = 100°C
D
T
J
T
STG
Drain-to-Source Voltage V
Gate-to-Source Voltage
Continuous Drain Current, V
Continuous Drain Current, V
Pulsed Drain Current
Maximum Power Dissipation W
Maximum Power Dissipation
Linear Derating Factor W/°C Operating Junction and °C
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
c
Thermal Resistance
Parameter Typ. Max. Units
R
JC
θ
R
CS
θ
R
JA
θ
R
JA
θ
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
Junction-to-Ambient (PCB Mount)
i
fi
@ 10V
GS
@ 10V
GS
gi
Max.
20
± 20
92
h
65
h
380
79
40
0.53
-55 to + 175
300 (1.6mm from case)
f
f
10 lbf
y
in (1.1Nym)
––– 1.89 °C/W
0.50 –––
––– 62
––– 40
A
www.irf.com 1
7/20/04
Page 2
IRF3711Z/S/LPbF
/
/
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
DSS
∆ΒV
DSS
R
DS(on)
V
GS(th)
V
GS(th)
I
DSS
I
GSS
gfs Forward Transconductance 46 ––– ––– S
Q
g
Q
gs1
Q
gs2
Q
gd
Q
godr
Q
sw
Q
oss
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage 20 ––– ––– V
T
Breakdown Voltage Temp. Coefficient ––– 0.013 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 4.8 6.0
––– 5.9 7.3
Gate Threshold Voltage 1.55 2.0 2.45 V
T
Gate Threshold Voltage Coefficient ––– -5.6 ––– mV/°C
J
Drain-to-Source Leakage Current ––– ––– 1.0 µA
––– ––– 150
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
Total Gate Charge ––– 16 24
Pre-Vth Gate-to-Source Charge ––– 4.6 –––
Post-Vth Gate-to-Source Charge ––– 1.4 ––– nC
Gate-to-Drain Charge ––– 5.3 –––
Gate Charge Overdrive ––– 4.7 ––– See Fig. 16
Switch Charge (Q
gs2
+ Qgd)
––– 6.7 –––
Output Charge ––– 9.5 ––– nC
Turn-On Delay Time ––– 12 –––
Rise Time ––– 16 –––
Turn-Off Delay Time ––– 15 ––– ns
Fall Time ––– 5.4 –––
Input Capacitance ––– 2150 –––
Output Capacitance ––– 680 ––– pF
Reverse Transfer Capacitance ––– 320 –––
VGS = 0V, ID = 250µA
Reference to 25°C, I
m
V
= 10V, ID = 15A
GS
V
= 4.5V, ID = 12A
GS
= VGS, ID = 250µA
V
DS
V
= 16V, VGS = 0V
DS
V
= 16V, VGS = 0V, TJ = 125°C
DS
VGS = 20V
V
= -20V
GS
= 10V, ID = 12A
V
DS
= 10V
V
DS
V
= 4.5V
GS
I
= 12A
D
V
= 10V, VGS = 0V
DS
V
= 10V, VGS = 4.5V
DD
ID = 12A
Clamped Inductive Load
V
= 0V
GS
V
= 10V
DS
ƒ = 1.0MHz
Conditions
= 1mA
D
e
e
e
Avalanche Characteristics
E
AS
I
AR
E
AR
Single Pulse Avalanche Energy
Avalanche Current
c
Repetitive Avalanche Energy
d
c
Parameter Units
Typ.
–––
–––
–––
Max.
130
12
7.9
mJ
A
mJ
Diode Characteristics
Parameter Min. Typ. Max. Units
h
I
S
Continuous Source Current ––– –––
(Body Diode) A
I
SM
V
SD
t
rr
Q
rr
Pulsed Source Current ––– ––– 380
(Body Diode)
c
Diode Forward Voltage ––– ––– 1.0 V
Reverse Recovery Time ––– 16 24 ns
Reverse Recovery Charge ––– 6.0 9.0 nC
92
MOSFET symbol
showing the integral reverse
p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V
= 25°C, IF = 12A, VDD = 10V
T
J
di/dt = 100A/µs
Conditions
D
G
S
e
e
2 www.irf.com
Page 3
IRF3711Z/S/LPbF
1000
VGS
TOP 10V
D
100
10
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V BOTTOM 3.0V
3.0V
60µs PULSE WIDTH
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
, I
Tj = 25°C
1
0.1 1 10
VDS, Drain-to-Source Voltage (V)
1000
)
Α
(
t n e
r
r
100
u C e
c
r u o S
­o
t
-
10
n
i a
r D
,
D
I
TJ = 25°C
V
DS
TJ = 175°C
= 10V
60µs PULSE WIDTH
1
2.0 3.0 4.0 5.0 6.0 7.0 8.0
VGS, Gate-to-Source Voltage (V)
1000
VGS
TOP 10V
100
D
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V BOTTOM 3.0V
10
3.0V
60µs PULSE WIDTH
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
, I
Tj = 175°C
1
0.1 1 10
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
2.0
e c n a
t s
i s e
R n O
)
e
d
c
e
r
z
u
i
l
o
a
S
-
m
o
r
t
o
­n
N
i
( a
r D
,
) n o
( S D
R
ID = 30A
V
= 10V
GS
1.5
1.0
0.5
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
vs. Temperature
www.irf.com 3
Page 4
IRF3711Z/S/LPbF
) F p
( e
c n a
t
i c a p a
C ,
C
10000
1000
100
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
+ Cgd, C
gs
gd
+ C
ds
Ciss
Coss
Crss
gd
iss
C
rss
C
oss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000.0
) A
( t
100.0
n e
r
r u
C n
i a
r
10.0
D e
s
r e v e
R ,
D S
I
TJ = 175°C
1.0
0.1
0.0 0.5 1.0 1.5 2.0 2.5
VSD, Source-toDrain Voltage (V)
TJ = 25°C
SHORTED
ds
V
GS
= 0V
12
) V
( e
g a
t
l o V
e c
r u o S
­o
t
­e
t a
G ,
V
ID= 12A
10
8
6
4
S G
2
0
0 5 10 15 20 25 30 35 40
Q
VDS= 15V
VDS= 10V
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
10000
) A
( t
1000
n e
r
r u
C e
c
r u
100
o S
­o
t
­n
i a
r D
10
,
D
I
Tc = 25°C Tj = 175°C Single Pulse
1
0 1 10 100
OPERATION IN THIS AREA LIMITED BY RDS(on)
V
, Drain-toSource Voltage (V)
DS
100µsec
1msec
10msec
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Page 5
IRF3711Z/S/LPbF
τ
100
LIMITED BY PACKAGE
80
) A
( t n e
60
r
r u
C n
i a
r
40
D ,
D
I
20
0
25 50 75 100 125 150 175
TC , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
10
2.4
) V
(
2.0
e g a
t
l o V
d
l
1.6
o h s e
r h
t
1.2
e
t a
G
) h
t
(
0.8
S G
V
0.4
-75 -50 -25 0 25 50 75 100 125 150 175 200
ID = 250µA
TJ , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
)
C
1
0.1
0.01
D = 0.50
0.20
0.10
0.05
0.02
0.01
SINGLE PULSE ( THERMAL RESPONSE )
τ
J
τ
J
τ
1
τ
1
Ci= τi/Ri
Ci= τi/Ri
R
R
1
R
1
R
2
3
R
2
τ
2
τ
2
Ri (°C/W) τi (sec)
R
3
τ
0.894 0.000306
C
τ
3
τ
0.600 0.001019
3
0.401 0.006662
Notes:
1. Duty Factor D = t1/t2
J h
t
Z (
e s n o p s e
R l a
m
r e h T
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com 5
Page 6
IRF3711Z/S/LPbF
A
)
0.02
( e
c n a
t s
i s e
R n O e
c
r
0.01
u o S
­o
t
­n
i a
r D
,
) n o
(
S D
0.00
R
2.0 4.0 6.0 8.0 10.0
ID = 15A
TJ = 125°C
TJ = 25°C
VGS, Gate-to-Source Voltage (V)
Fig 12. On-Resistance Vs. Gate Voltage
15V
DRIVER
+
-
V
R
V
20V
V
DS
G
GS
L
D.U.T
I
AS
0.01
t
p
Fig 13a. Unclamped Inductive Test Circuit
V
(BR)DSS
t
p
DD
600
) J
m
( y
500
g
r e n E
e
400
h c n a
l a
300
v A
e s
l u
200
P e
l g n
i S
100
, S A
E
0
25 50 75 100 125 150 175
I
TOP
8.6A
BOTTOM
Starting TJ, Junction Temperature (°C)
Fig 13c. Maximum Avalanche Energy
vs. Drain Current
V
DS
D.U.T
V
GS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 14a. Switching Time Test Circuit
V
DS
90%
7.3A
L
D
V
DD
D
12A
+
-
10%
V
GS
I
AS
Fig 13b. Unclamped Inductive Waveforms
t
t
d(on)
r
Fig 14b. Switching Time Waveforms
t
d(off)
t
f
6 www.irf.com
Page 7
IRF3711Z/S/LPbF
Reverse Recovery Current
Driver Gate Drive
D.U.T. ISDWaveform
D.U.T. VDSWaveform
Inductor Curent
* V
GS
D.U.T
+
-
R
G
+
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
-
Low Leakage Inductance Current Transformer
-
dv/dt controlled by R
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
G
+
V
DD
Re-Applied Voltage
+
-
Period
P.W.
Body Diode Forward
Current
di/dt
Diode Recovery
dv/dt
Body Diode Forward Drop
Ripple 5%
= 5V for Logic Level Devices
D =
P. W .
Period
VGS=10V
V
DD
I
SD
*
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Current Regulator
Same Type as D.U.T.
Vds
Id
Vgs
50K
12V
.2µF
.3µF
D.U.T.
+
V
DS
-
Vgs(th)
V
GS
3mA
I
G
Current Sampling Resistors
Fig 16. Gate Charge Test Circuit
I
D
Qgs1
Qgs2 Qgd Qgodr
Fig 17. Gate Charge Waveform
www.irf.com 7
Page 8
IRF3711Z/S/LPbF
)
Power MOSFET Selection for Non-Isolated DC/DC Converters
Control FET
Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the R MOSFET, but these conduction losses are only about one half of the total losses.
Power losses in the control switch Q1 are given by;
P
= P
loss
P
loss
conduction
This can be expanded and approximated by;
= I
()
rms
⎛ ⎜
+ I ×
+ Qg× Vf
()
Q
+
This simplified loss equation includes the terms Q and Q
charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q Fig 16.
the gate driver between the time that the threshold voltage has been reached and the time the drain cur­rent rises to I gins to change. Minimizing Q reducing switching losses in Q1.
put capacitance of the MOSFET during every switch­ing cycle. Figure A shows how Q parallel combination of the voltage dependant (non­linear) capacitances Cds and Cdg when multiplied by the power supply input buss voltage.
which are new to Power MOSFET data sheets.
oss
Q
is a sub element of traditional gate-source
gs2
Q
indicates the charge that must be supplied by
gs2
Q
is the charge that must be supplied to the out-
oss
+ P
2
× R
ds(on )
Q
gd
× Vin× f
i
g
oss
×Vin× f
2
at which time the drain voltage be-
dmax
switching
⎞ ⎟
⎞ ⎠
and Q
gs1
+ P
+ I ×
+ P
drive
Q
gs2
i
g
, can be seen from
gs2
is a critical factor in
gs2
is formed by the
oss
of the
ds(on)
output
× Vin× f
Synchronous FET
The power loss equation for Q2 is approximated
by;
P
= P
loss
P
loss
+ Qg× Vg× f
+
conduction
= I
rms
()
Q
⎜ ⎝
*dissipated primarily in Q1.
For the synchronous MOSFET Q2, R
portant characteristic; however, once again the im-
⎞ ⎟
portance of gate charge must not be overlooked since
it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the con­trol IC so the gate drive losses become much more significant. Secondly, the output charge Q verse recovery charge Qrr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on.
gs2
The drain of Q2 is connected to the switching node of the converter and therefore sees transitions be­tween ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is ca­pacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Q potential for Cdv/dt turn on.
Figure A: Q
+ P
2
× R
ds(on)()
oss
×Vin× f
2
must be minimized to reduce the
gs1
Characteristic
oss
drive
*
+ P
output
+ Qrr× Vin× f
(
ds(on)
oss
is an im-
and re-
8 www.irf.com
Page 9
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
IRF3711Z/S/LPbF
10.54 (.415)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
1.40 (.055)
3X
1.15 (.045)
2.54 (.1 00)
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14 .5M, 1982. 3 OUTLINE C ONFORMS TO JEDE C OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
10.29 (.405)
4
1 2 3
2X
3.78 (.149)
3.54 (.139)
- A -
6.47 (.255)
6.10 (.240)
1.15 (.045) MIN
4.06 (.160)
3.55 (.140)
0.93 (.037)
3X
0.69 (.027)
0.36 (.014 ) M B A M
4.69 (.185)
4.20 (.165)
- B -
1.32 (.052)
1.22 (.048)
2.92 (.115)
2.64 (.104)
HEXFET
1- GATE 2- DRAIN 3- SOURCE 4- DRAIN
3X
LEAD ASSIG NMENTS
LEAD ASSIGNMENTS 1 - GATE 2 - DRA IN 3 - SOURC E 4 - DRA IN
0.55 (.022)
0.46 (.018)
TO-220AB Part Marking Information
IGBTs, CoPACK
1- GATE 2- COLLECTO R 3- EMITTER 4- COLLECTO R
EXAMPLE:
T HIS IS AN IRF 1010
LOT CODE 1789 ASS EMBL ED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"
Note: "P" in assembly line position indicates "Lead-Free"
INTERNATIONAL
RE CTIFIER
LOGO
AS S E MB LY LOT CODE
PART NUMBER
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
www.irf.com 9
Page 10
IRF3711Z/S/LPbF
2
Pak Package Outline
D
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information (Lead-Free)
T H IS IS AN IR F 530S WIT H LOT CODE 8024
ASS EMB L ED ON WW 02, 2000 IN T HE AS SE MB L Y L IN E "L"
No te: "P" in as sem bly line pos ition in dicates "L ead-F ree"
INT ER NAT ION AL
R E CT IFIE R
LOGO
AS SE MB LY LOT CODE
F 530S
PART NUMB ER
DATE CODE YEAR 0 = 2000 WEE K 02 LINE L
OR
INT ER N AT ION AL
R E CTIF IE R
LOGO
AS SE MB LY LOT CODE
F 530S
10 www.irf.com
PART NUMBE R
DATE CODE
P = D E S IGNAT E S LE AD-F RE E
PRODUCT (OPTIONAL)
YEAR 0 = 2000 WEE K 02
A = AS S E MB L Y S IT E CO DE
Page 11
TO-262 Package Outline
IRF3711Z/S/LPbF
IGBT
1- GATE
2- COLLECTOR
3- EMITTER
TO-262 Part Marking Information
EXAMPLE:
TH IS IS AN IRL 3103L LOT CODE 1789 ASS EMBL ED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"
Note: "P" in ass embly line position indicates "Lead-Free"
INTERNATIONAL
RECTIFIER
LOGO
AS S E MB L Y LOT CODE
PART NUMBER
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
OR
INTERNATIONAL
RECTIFIER
LOGO
AS S E MB L Y LOT CODE
www.irf.com 11
PART NUMBER
DATE CODE P = DESIGNATES LEAD-FREE
PRODUCT (OPTIONAL)
YE AR 7 = 1997 WEEK 19
A = ASSEMBLY SITE CODE
Page 12
IRF3711Z/S/LPbF
D2Pak Tape & Reel Infomation
TRR
FEED DIRECTION
TRL
FEED DI RECTION
1.85 (.073)
1.65 (.065)
10.90 (. 429)
10.70 (. 421)
4.10 (.161)
3.90 (.153)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
16.10 (.634)
15.90 (.626)
1.60 (.063)
1.50 (.059)
1.75 (.069)
1.25 (.049)
15.42 (.609)
15.22 (.601)
0.368 (.0145)
0.342 (.0135)
24.30 (.957)
23.90 (.941)
4.72 (.136)
4.52 (.178)
13.50 (.532)
12.80 (.504)
330.00 (14.173) MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
27.40 (1.079)
23.90 (.941)
4
26.40 (1.039)
24.40 (.961 )
3
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
 Starting T
I
AS
= 25°C, L = 1.8mH, RG = 25Ω,
J
= 12A.
Pulse width 400µs; duty cycle 2%.
This is only applied to TO-220AB pakcage. This is applied to D
4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 30A.
R
is measured at TJ approximately 90°C
θ
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
60.00 (2.362) MIN.
30.40 (1.197) MAX.
4
2
Pak, when mounted on 1" square PCB (FR-
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 7/04
12 www.irf.com
Page 13
Copyright © Each Manufacturing Company.
All Datasheets cannot be modified without permission.
This datasheet has been download from :
www.AllDataSheet.com
100% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com
Loading...