Datasheet IRF352, IRF353, IRF351 Datasheet (Intersil)

Page 1
IRF350
March 1999 File Number 1826.3Data Sheet
15A, 400V, 0.300 Ohm, N-Channel Power MOSFET
This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. They can be operated directly from integrated circuits.
Formerly developmental type TA9399.
Ordering Information
PART NUMBER PACKAGE BRAND
IRF350 TO-204AA IRF350
NOTE: When ordering, include the entire part number.
Features
• 15A, 400V
•r
DS(ON)
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
= 0.300Ω
Components to PC Boards”
Symbol
D
G
S
Packaging
DRAIN (FLANGE)
JEDEC TO-204AA
GATE (PIN 1)
TOP VIEW
SOURCE (PIN 2)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
IRF350
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
IRF350 UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
DS
D D
DM
GS
D
400 V 400 V
15
9.0 60 A
±20 V 150 W
A A
Linear Derating Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
AS
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Paackage Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
700 mJ
-55 to 150
300 260
o
C
o
C
o
C
NOTE:
1. TJ = 25oC to 125oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate to Threshold Voltage V
GS(TH)VGS
Zero-Gate Voltage Drain Current I
On-State Drain Current (Note 2) I
D(ON)
Gate to Source Leakage Current I Drain to Source On Resistance (Note 2) r
DS(ON)VGS
Forward Transconductance (Note 2) g Turn-On Delay Time t
D(ON)
Rise Time t Turn-Off Delay Time t
D(OFF)
Fall Time t Total Gate Charge
(Gate to Source + Gate to Drain) Gate to Source Charge Q Gate to Drain “Miller” Charge Q Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Internal Drain Inductance L
Internal Source Inductance L
Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
DSSVGS
DSS
GSS
fs
r
f
Q
g
gs gd
ISS OSS RSS
D
S
θJC
θJA
= 0V, ID = 250µA, (Figure 10) 400 - - V
= VDS, ID = 250µA 2.0 - 4.0 V VDS = Rated BV VDS = 0.8 x Rated BV VDS> I
D(ON) xrDS(ON)MAX,VGS
, VGS = 0V - - 25 µA
DSS
, VGS = 0V, TJ = 125oC - - 250 µA
DSS
= 10V 15 - - A
VGS = ±20V - - ±100 nA
= 10V, ID = 8.0A, (Figures 8, 9) - 0.25 0.300 VDS> I
D(ON) xrDS(ON)MAX,ID
VDD= 180V, ID≈ 8.0A, RG = 4.7, RL= 22.5Ω, VGS= 10V, (Figures 17, 18) MOSFET switching times are essentially indepen­dent of operating temperature
= 8A, (Figure 12) 8 10 - S
- - 35 ns
- - 65 ns
- - 150 ns
- - 75 ns
VGS = 10V, ID = 18A, VDS = 0.8 x Rated BV I
= 1.5mA (Figures 14, 19, 20)
G(REF)
DSS,
Gate charge is essentially independent of operating temperature
- 79 120 nC
-38-nC
-41-nC
VGS = 0V, VDS = 25V, f = 1.0MHz, (Figure 11) - 2000 - pF
- 400 - pF
- 100 - pF
Measured Between the Contact Screw on Head­er that is Closer to Source and Gate Pins and Center of Die
Measured From The Source Lead, 6mm (0.25in) From Header to Source Bonding Pad
Free Air Operation - - 30
Modified MOSFET Sym­bol Showing the Internal Devices Inductances
D
L
D
G
L
S
S
- 5.0 - nH
- 12.5 - nH
- 0.83 -
o o
C/W C/W
2
Page 3
IRF350
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current I Pulse Source to Drain Current
SD
I
SDM
(Note 3)
Source to Drain Diode Voltage (Note 2) V Reverse Recovery Time t Reverse Recovered Charge Q
NOTES:
2. Pulse Test: Pulse width 300µs, duty cycle 2%.
3. Repetitive Rating: Pulse width is limited by Maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 40V, starting TJ = 25oC, L = 5.66µH, RG = 50, peak IAS = 15A. (Figures 15, 16).
Modified MOSFET Symbol Showing the In­tegral Reverse P-N
D
- - 15 A
- - 60 A
Junction Diode
G
S
TJ = 25oC, ISD= 15A, VGS = 0V, (Figure 13) - - 1.6 V
SD
TJ = 150oC, ISD = 15A, dISD/dt = 100A/µs - 1000 - ns
rr
TJ = 150oC, ISD = 15A, dISD/dt = 100A/µs - 6.6 - µC
RR
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 50 100 150
TC, CASE TEMPERATURE (oC)
Unless Otherwise Specified
FIGURE 1. NORMALIZED POWERDISSIPATION vs CASE
TEMPERATURE
1.0
0.5
20
16
12
8
DRAIN CURRENT (A)
D,
I
4
0
50 75 10025 150
TC,CASE TEMPERATURE (oC)
125
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
0.2
0.1
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01 10
0.05
0.02
0.01
SINGLE PULSE
-5
NOTES: DUTY FACTOR: D = t1/t T
-4
10
-3
10
t
, RECTANGULAR PULSE DURATION (S)
1
-2
10
0.1 1 10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
3
= PD x Z
J
θJC
P
x R
DM
θJC
t
1
t
t
2
2
2
+ T
C
Page 4
IRF350
Typical Performance Curves
100
10
OPERATION IN THIS REGION IS LIMITED BY r
1
, DRAIN CURRENT (A)
D
I
= 25oC
T
C
TJ = MAX RATED SINGLE PULSE
0.1
1.0 10
DS(ON)
25
VDS, DRAIN TO SOURCE VOLTAGE (V)
Unless Otherwise Specified (Continued)
10µs
100µs
1ms
10ms 100ms
DC
100
5020 200
500
20
VGS = 6.0V
16
12
8
, DRAIN CURRENT (A)
D
I
4
0
50 100 150 2000 250
V
DS,
PULSE DURATION = 80µs
VGS = 5.5V
VGS = 5.0V
VGS = 4.5V
VGS = 4.0V VGS = 3.5V
DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS
10
PULSE DURATION = 80µs
8
6
4
, DRAIN CURRENT (A)
D
I
2
VGS = 10V
VGS = 5.0V
VGS = 4.5V
VGS = 4.0V
VGS = 3.5V
12
V
> I
DS
PULSE DURATION = 80µs
10
8
6
4
, DRAIN TO SOURCE CURRENT (A)
2
x r
D(ON)
TJ = 25oC
TJ = -55oC
DS(ON)MAX
TJ = 125oC
300
0
0
123405 V
DRAIN TO SOURCE VOLTAGE (V)
DS,
DS(ON)
I
0 123 78
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS
0.8
30
VGS = 10V
J
40
VGS = 20V
= 25oC.
60 70
0.7
0.6
0.5
0.4
, DRAIN TO SOURCE
0.3
ON RESISTANCE ()
DS(ON)
r
0.2
0
050
r
MEASURED WITH CURRENT PULSE OF
DS(ON)
2.0µs DURATION. INITIAL T (HEATING EFFECT OF 2.0µs PULSE IS MINIMAL)
10 20
ID,DRAIN CURRENT (A)
FIGURE 8. DRAIN TO SOURCE ON RESISTANCEvs GATE
VOLTAGE AND DRAIN CURRENT
2.2 ID = 8A
V
= 10V
GS
1.8
1.4
1.0
ON RESISTANCE
0.6
NORMALIZED DRAIN TO SOURCE
0.2
-40 40
0
T
, JUNCTION TEMPERATURE (oC)
J
FIGURE 9. NORMALIZED DRAIN TOSOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
645
80
120
160
4
Page 5
IRF350
Typical Performance Curves
1.25
1.15
1.05
0.95
BREAKDOWN VOLTAGE
0.85
NORMALIZED DRAIN TO SOURCE
0.75 0-40 40 80 120 160
, JUNCTION TEMPERATURE (oC)
T
J
Unless Otherwise Specified (Continued)
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
20
VDS > I PULSE DURATION = 80µs
16
12
TJ = 125oC
8
D(ON)
x r
DS(ON)MAX
TJ = 25oC
TJ = -55oC
4000
3200
2400
1600
C, CAPACITANCE (pF)
800
0
010
C
ISS
C
OSS
C
RSS
V
DS,
20 30
DRAIN TO SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz
= CGS + C
C C
C
ISS RSS
OSS
= C
C
GD
GD
+ C
DS
40 50
GD
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
2
2
10
10
TJ = 150oC
TJ = 25oC
TJ = 25oC
TJ = 150oC
, TRANSCONDUCTANCE (S)
4
fs
g
0
4 8 12 16020
ID,DRAIN CURRENT (A)
, SOURCE TO DRAIN CURRENT (A)
SD
I
1
01234
VSD, SOURCE TO DRAIN VOLTAGE (V)
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
20
ID = 18A
15
10
5
GATE TO SOURCE VOLTAGE (V)
GS,
V
0
28 56 84 1120 140
Q
g(TOT),
VDS = 80V
VDS = 200V
VDS = 320V
TOTAL GATE CHARGE (nC)
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
5
Page 6
IRF350
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01
0
t
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
t
P
I
AS
t
AV
V
DS
V
DD
t
ON
t
d(ON)
t
R
L
+
V
R
G
DD
-
V
DS
90%
0
r
10%
DUT
V
GS
V
GS
10%
0
50%
PULSE WIDTH
FIGURE 17. SWITCHING TIME TEST CIRCUIT FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
V
DS
D
S
CURRENT
I
D
SAMPLING
(ISOLATED SUPPLY)
SAME TYPE AS DUT
DUT
V
DS
V
DD
Q
g(TOT)
Q
gd
Q
gs
V
DS
0
I
G(REF)
0
12V
BATTERY
0
0.2µF
50k
I
G(REF)
CURRENT
REGULATOR
0.3µF
G
IG CURRENT
SAMPLING
RESISTOR RESISTOR
t
d(OFF)
90%
V
GS
t
OFF
50%
t
f
10%
90%
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
6
Page 7
IRF350
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporationreserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
7
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...