Datasheet IRF340, IRF343, IRF341IRF342 Datasheet (Intersil)

Page 1
1
File Number
2307.3
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
IRF340
10A, 400V, 0.550 Ohm, N-Channel Power MOSFET
This N-Channel enhancementmode silicon gate power field effect transistor is designed, tested and guaranteed to withstand a specific level of energy in the breakdown avalanche mode of operation. These MOSFETs are designed for applications such as switching regulators, switchingconverters,motordrivers,relaydrivers,anddrivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.
Formerly developmental type TA17424.
Features
• 10A, 400V
•r
DS(ON)
= 0.550
• Single Pulse Avalanche Energy Rated
• SOA is Power-Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Majority Carrier Device
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
Packaging
JEDEC TO-204AE
Ordering Information
PART NUMBER PACKAGE BRAND
IRF340 TO-204AE IRF340
NOTE: When ordering, use the entire part number.
D
G
S
DRAIN (FLANGE)
SOURCE (PIN 2)
GATE (PIN 1)
Data Sheet March 1999
Page 2
2
Absolute Maximum Ratings T
C
= 25oC, Unless Otherwise Specified
IRF340 UNITS
Drain To Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
DS
400 V
Drain To Gate Voltage (RGS = 20kΩ) (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
DGR
400 V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
D
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
D
10
6.3
A A
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
DM
40 A
Gate To Source Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GS
±20 V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
125 W
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
AS
520 mJ
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ,T
STG
-55 to 150
o
C
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
L
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
pkg
300 260
o
C
o
C
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ= 25oC to 125oC.
Electrical Specifications T
C
= 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain To Source Breakdown Voltage BV
DSSID
= 250µA, VGS = 0V (Figure 10) 400 - - V
Gate Threshold Voltage V
GS(TH)VDS
= VGS, ID = 250µA 2.0 - 4.0 V
Zero Gate Voltage Drain Current I
DSS
VDS = Rated BV
DSS
, VGS = 0V - - 25 µA
VDS = 0.8 x Rated BV
DSS
, VGS = 0V, TJ = 150oC - - 250 µA
On-State Drain Current (Note 2) I
D(ON)VDS
> I
D(ON)
x r
DS(ON)MAX
, VGS = 10V 10 - - A
Gate to Source Leakage Current I
GSS
VGS = ±20V - - ±100 nA
Drain to Source On Resistance (Note 2) r
DS(ON)ID
= 5.2A, VGS = 10V (Figures 8, 9) - 0.4 0.550
Forward Transconductance (Note 2) g
fs
VDS≥ 50V, ID = 5.2A (Figure 12) 5.8 8 - S
Turn-On Delay Time
d(ON)
VDD = 200V, I
D
10A, R
G
= 9.1, RL = 19.5 (Figures 17, 18) MOSFET Switching Times are Essentially Independent of Operating Temperature
-1721ns
Rise Time t
r
-2741ns
Turn-Off Delay Time t
d(OFF)
-4575ns
Fall Time t
f
-2036ns
Total Gate Charge (Gate to Source + Gate to Drain)
Q
g(TOT)VGS
= 10V, ID = 10A, VDS = 0.8 x Rated BV
DSS
I
g(REF)
= 1.5mA (Figures 14, 19, 20) Gate Charge is
Essentially Independent of Operating Temperature
-4163nC
Gate to Source Charge Q
gs
-7-nC
Gate to Drain “Miller” Charge Q
gd
-23-nC
Input Capacitance C
ISS
VDS = 25V, VGS = 0V, f = 1MHz (Figure 11) - 1250 - pF
Output Capacitance C
OSS
- 300 - pF
Reverse Transfer Capacitance C
RSS
-80-pF
Internal Drain Inductance L
D
Measured between the Contact Screw on Header thatisCloser to Sourceand Gate Pins and Center of Die
Modified MOSFET Symbol Showing the Internal Device Inductances
- 5.0 - nH
Internal Source Inductance L
S
Measured from the Source Lead, 6mm (0.25in) from Header and Source Bonding Pad
- 12.5 - nH
Thermal Resistance Junction to Case R
θJC
- - 1.0oC/W
Thermal Resistance Junction to Ambient R
θJA
Free Air Operation - - 30oC/W
L
S
L
D
G
D
S
IRF340
Page 3
3
Source To Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current I
SD
Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Rectifier
- - 10 A
Pulse Source to Drain Current (Note 3) I
SDM
- - 40 A
Drain to Source Diode Voltage (Note 2) V
SD
TJ = 25oC, ISD = 9.2A, VGS = 0V (Figure 13) - - 2.0 V
Reverse Recovery Time t
rr
TJ = 25oC, ISD = 9.2A, dISD/dt = 100A/µs 170 350 790 ns
Reverse Recovery Charge Q
RR
TJ = 25oC, ISD = 9.2A, dISD/dt = 100A/µs 1.6 4.0 8.2 µC
NOTES:
2. Pulse Test: Pulse Width 300µs, Duty Cycle 2%.
3. Repetitive Rating: Pulse width limited by Max junction temperature. See Transient Thermal Impedance Curve (Figure 3).
4. VDD = 50V, starting TJ = 25oC, L = 9.2mH, RG = 25, peak IAS = 10A (Figures 15, 16).
Typical Performance Curves
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
G
D
S
0 50 100 150
0
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
0.2
0.4
0.6
0.8
1.0
1.2
25 50 75 100 125 150
10
8
6
4
2
0
TC, CASE TEMPERATURE (oC)
I
D
, DRAIN CURRENT (A)
10
-5
10
-4
10
-3
10
-2
0.1 1 10
1
0.1
0.01
10
-3
Z
θJC,
TRANSIENT THERMAL IMPEDANCE
t1, RECTANGULAR PULSE DURATION (s)
0.5
0.2
0.1
0.05
0.02
0.01 SINGLE PULSE
P
DM
t
1
t
2
NOTES: DUTY FACTOR: D = t
1/t2
PEAK TJ = PDM x Z
θJC
+ T
C
2
IRF340
Page 4
4
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS
FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. DRAIN TOSOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
Typical Performance Curves
(Continued)
110
10
2
10
3
VDS, DRAIN TO SOURCE VOLTAGE (V)
10
2
10
1
0.1
I
D
, DRAIN CURRENT (A)
TC = 25oC T
J
= 150oC
SINGLE PULSE
OPERATION IN THIS AREA LIMITED BY r
DS(ON)
100µs
10µs
1ms
10ms
DC
0 40 80 120 160 200
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
15
12
9
6
3
0
I
D
, DRAIN CURRENT (A)
80µs PULSE TEST
VGS = 6V
VGS = 4V
VGS = 4.5V
VGS = 5V
VGS = 5.5V
V
GS
= 10V
0246810
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
15
12
9
6
3
0
I
D
, DRAIN CURRENT (A)
80µs PULSE TEST
VGS = 5V
VGS = 4.5V
VGS = 4V
VGS = 5.5V
VGS = 6V
VGS = 10V
0246810
V
GS
, GATE TO SOURCE VOLTAGE (V)
100
10
1
0.1
I
DS(ON)
, DRAIN TO SOURCE CURRENT (A)
TJ = 150oC
TJ = 25oC
VDS≥ 50V 80µs PULSE TEST
0 1020304050
5
4
3
2
1
0
I
D
, DRAIN CURRENT (A)
r
DS(ON)
, DRAIN TO SOURCE
80µs PULSE TEST
VGS = 20V
VGS = 10V
ON RESISTANCE
3.0
2.4
1.8
1.2
0.6
0
-60 0 20 120 160 T
J
, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
ID = 10A
-40 -20 14010040 60 80
V
GS
= 10V
IRF340
Page 5
5
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
Typical Performance Curves
(Continued)
1.25
1.15
1.05
0.95
0.85
0.75
-60 0 20 120 160 T
J
, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
ID = 250µA
-40 -20 14010040 60 80
2500
2000
1500
1000
500
0
110
100
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
C
ISS
C
RSS
C
OSS
VGS = 0V, f = 1MHz C
ISS
= CGS + C
GD
C
RSS
= C
GD
C
OSS
C
DS
+ C
GS
1000
TJ = 150oC
TJ = 25oC
048121620
I
D
, DRAIN CURRENT (A)
15
12
9
6
3
0
g
fs
, TRANSCONDUCTANCE (S)
VDS≥ 50V 80µs PULSE TEST
0 0.3 0.6 0.9 1.2 1.5
V
SD
, SOURCE TO DRAIN VOLTAGE (V)
100
10
1
0.1
I
SD
, SOURCE TO DRAIN CURRENT (A)
TJ = 150oC
TJ = 25oC
20
16
12
8
4
0
0 12243648 60
Q
g(TOT)
, TOTAL GATE CHARGE (nC)
V
GS
, GATE TO SOURCE VOLTAGE (V)
ID = 10A
VDS = 320V V
DS
= 200V
V
DS
= 80V
IRF340
Page 6
6
Test Circuits and Waveforms
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
FIGURE 17. SWITCHING TIME TEST CIRCUIT
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
t
P
V
GS
0.01
L
I
AS
+
-
V
DS
V
DD
R
G
DUT
VARY t
P
TO OBTAIN
REQUIRED PEAK I
AS
0V
V
DD
V
DS
BV
DSS
t
P
I
AS
t
AV
0
V
GS
R
L
R
G
DUT
+
-
V
DD
t
ON
t
d(ON)
t
r
90%
10%
V
DS
90%
10%
t
f
t
d(OFF)
t
OFF
90%
50%
50%
10%
PULSE WIDTH
V
GS
0
0
0.3µF
12V
BATTERY
50k
V
DS
S
DUT
D
G
I
g(REF)
0
(ISOLATED
V
DS
0.2µF
CURRENT
REGULATOR
I
D
CURRENT
SAMPLING
IG CURRENT
SAMPLING
SUPPLY)
RESISTOR RESISTOR
SAME TYPE AS DUT
Q
g(TOT)
Q
gd
Q
gs
V
DS
0
V
GS
V
DD
I
g(REF)
0
IRF340
Page 7
7
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only.Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
IRF340
Loading...