Datasheet IRF333, IRF332, IRF331, IRF330 Datasheet (Intersil)

Page 1
IRF330
Data Sheet March 1999
5.5A, 400V, 1.000 Ohm, N-Channel Power MOSFET
This N-Channel enhancementmode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdownavalanchemodeof operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.
Formerly developmental type TA17414.
Ordering Information
PART NUMBER PACKAGE BRAND
IRF330 TO-204AA IRF330
NOTE: When ordering, use the entire part number .
File Number
Features
• 5.5A, 400V
•r
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
= 1.000
DS(ON)
Components to PC Boards”
Symbol
D
G
1570.4
Packaging
DRAIN (FLANGE)
JEDEC TO-204AA
GATE (PIN 1)
S
SOURCE (PIN 2)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
IRF330
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
IRF330 UNITS
Drain to Source Breakdown Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
DS
D D
DM
GS
D
400 V 400 V
5.5
3.5 22 A
±20 V
75 W
A A
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ,T
AS
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
300 mJ
-55 to 150
300 260
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 125oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate Threshold Voltage V
GS(TH)VGS
Zero Gate Voltage Drain Current I
On-State Drain Current (Note 2) I
D(ON)VDS
Gate to Source Leakage Current I Drain to Source On Resistance (Note 2) r
DS(ON)ID
Forward Transconductance (Note 2) g Turn-On Delay Time t
d(ON)VDD
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Total Gate Charge
Q
g(TOT)VGS
(Gate to Source + Gate to Drain) Gate to Source Charge Q Gate to Drain “Miller” Charge Q Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Internal Drain Inductance L
Internal Source Inductance L
Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
DSSID
DSS
GSS
fs
r
f
gs gd
ISS OSS RSS
D
S
θJC
θJA
= 250µA, VGS = 0V (Figure 10) 400 - - V
= VDS, ID = 250µA 2.0 - 4.0 V VDS = Rated BV VDS = 0.8 x Rated BV
> I
D(ON)
, VGS = 0V - - 25 µA
DSS
, VGS = 0V, TJ= 125oC - - 250 µA
DSS
x r
DS(ON)MAX
, VGS = 10V 5.5 - - A
VGS = ±20V ±100 nA
= 3.0A, VGS = 10V (Figures 8, 9) - 0.8 1.0
VDS≥ 10V, ID = 3.3A (Figure 12) 2.9 4.0 - S
= 200V, ID≈ 5.5A, RG = 12, RL = 36, VGS = 10V (Figures 17, 18) MOSFET Switching Times are Essentially Independent of Operating Temperature
-1117ns
-2029ns
-3556ns
-1524ns
= 10V, ID = 5.5A, VDS = 0.8 x Rated BV I
=1.5mA(Figures 14, 19, 20) GateChargeis
G(REF)
Essentially Independent of Operating Temperature
DSS
,
-2135nC
-4-nC
-17-nC
VDS = 25V, VGS = 0V, f = 1MHz (Figure 11) - 700 - pF
- 150 - pF
-40-pF
Measured between the Contact Screw on the Flange that is Closer to Source and Gate Pins and the Center of Die
Measured from the Source Lead, 6mm (0.25in) from the Flange and the Source Bonding Pad
Modified MOSFET Symbol Showing the Internal Devices Inductances
D
L
D
G
L
S
S
- 5.0 - nH
- 12.5 - nH
- - 1.67oC/W
Free Air Operation - - 30
o
C/W
2
Page 3
IRF330
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current I Pulse Source to Drain Current (Note 3) I
SD
SDM
Source to Drain Diode Voltage (Note 2) V Reverse Recovery Time t Reverse Recovery Charge Q
NOTES:
2. Pulse test: pulse width 300µs, duty cycle 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD= 50V, starting TJ= 25oC, L = 17.75mH, RG= 25Ω,peak IAS = 6.5A. See Figures 15, 16.
Modified MOSFET Symbol Showing the Integral
D
Reverse P-N Junction Diode
G
S
TJ = 25oC, ISD = 5.5A, VGS = 0V (Figure 13) - - 1.6 V
SD
TJ = 25oC, ISD = 5.5A, dISD/dt = 100A/µs 140 400 660 ns
rr
TJ = 25oC, ISD = 5.5A, dISD/dt = 100A/µs 0.93 2.4 4.3 µC
RR
- - 5.5 A
- - 22 A
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 50 100 150
TC, CASE TEMPERATURE (oC)
Unless Otherwise Specified
FIGURE 1. NORMALIZED POWERDISSIPATION vs CASE
TEMPERATURE
2
1.0
0.5
0.5
10
8
6
4
, DRAIN CURRENT (A)
D
I
2
0
050
TC, CASE TEMPERATURE (oC)
75 125
100
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
150
0.2
0.2
0.1
0.1
0.05
0.02
0.05
0.02
0.01 10
0.01 SINGLE PULSE
-5
, NORMALIZED TRANSIENT
THERMAL IMPEDANCE
θJC
Z
-4
10
-3
10 t
, RECTANGULAR WAVE PULSE DURATION (s)
1
-2
10
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE
3
P
DM
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-1
10
t
1
t
2
1/t2
x R
θJC
1.0 10
θJC
+ T
C
Page 4
IRF330
Typical Performance Curves
100
10
1
, DRAIN CURRENT (A)
D
I
TC = 25oC
= MAX RATED
T
J
SINGLE PULSE
0.1 110
OPERATION IN THIS AREA IS LIMITED BY r
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
Unless Otherwise Specified (Continued)
10µs 100µs
1ms
, DRAIN CURRENT (A)
D
I
100
10ms 100ms
DC
500
8
10V
7
6
5
4
3
2
1 0
50
100 150 200 2500 300
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS
5
80µs PULSE TEST
4
VGS = -10V
VGS = 6V
VGS = 5V
5
80ms PULSE TEST
50V
V
DS
4
80µs PULSE TEST
VGS = 5.5V
5V
4.5V
4V
3
VGS = 4.5V
2
, DRAIN CURRENT (A)
D
I
1
024 68
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 4V
FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS
3
VGS = 10V
2
, DRAIN TO SOURCE
1
ON RESISTANCE ()
DS(ON)
r
0
5101520025
ID, DRAIN CURRENT (A)
VGS = 20V
NOTE: Heating effect of 2µs pulse is minimal.
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
3
2
, DRAIN CURRENT (A)
D
I
1
0
10
30
0
2.2
1.8
1.4
1.0
ON RESISTANCE
0.6
NORMALIZED DRAIN TO SOURCE
0.2
VGS, GATE TO SOURCE VOLTAGE (V)
ID = 2.0A
= 10V
V
GS
-40 40 80 120
125oC
25oC
-55oC
234 71
0
TJ, JUNCTION TEMPERATURE (oC)
56
FIGURE 9. NORMALIZED DRAIN TOSOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4
Page 5
IRF330
Typical Performance Curves
1.25
ID = 250µA
1.15
1.05
0.95
BREAKDOWN VOLTAGE
0.85
NORMALIZED DRAIN TO SOURCE
0.75
-40 40 80 120
FIGURE 10. NORMALIZED DRAINTOSOURCE BREAKDOWN
0 160 TJ, JUNCTION TEMPERATURE (oC)
Unless Otherwise Specified (Continued)
2000
1600
1200
800
C, CAPACITANCE (pF)
400
0
0
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
VGS = 0V
f = 1MHz
C
ISS
C
OSS
C
RSS
10 20 30 40 50
VDS, DRAIN TO SOURCE VOLTAGE (V)
VOLTAGE vs JUNCTION TEMPERATURE
10
80µs PULSE TEST
8
6
4
, TRANSCONDUCTANCE (S)
2
fs
g
0
010
246
ID, DRAIN CURRENT (A)
TJ = -55oC
TJ = 25oC
TJ = 125oC
8
100
80µs PULSE TEST
10
TJ = 150oC
, SOURCE TO DRAIN CURRENT (A)
SD
I
0.1 01234
VSD, SOURCE TO DRAIN VOLTAGE (V)
TJ = 25oC
TJ = 25oC
VGS= 0V, f = 1MHz C
= CGS + C
ISS
C
= C
RSS
C
OSS
GD
C
DS
TJ = 150oC
GD
+ C
GD
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
20
16
12
8
4
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
ID = 5.5A
8162432040
Q
g(TOT)
VDS = 320V V
= 200V
DS
V
= 80V
DS
, TOTAL GATE CHARGE (nC)
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
5
Page 6
IRF330
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01
0
t
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
t
P
I
AS
t
AV
V
DS
V
DD
t
ON
t
d(ON)
t
R
L
+
V
R
G
DD
-
V
DS
0
r
90%
10%
DUT
V
GS
V
GS
10%
0
50%
PULSE WIDTH
FIGURE 17. SWITCHING TIME TEST CIRCUIT FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
V
DS
(ISOLATED SUPPLY)
SAME TYPE AS DUT
V
DD
Q
g(TOT)
Q
gd
Q
gs
12V
BATTERY
0.2µF
50k
CURRENT
REGULATOR
0.3µF
t
d(OFF)
90%
V
GS
t
OFF
50%
t
f
90%
10%
D
G
I
0
G(REF)
IG CURRENT
SAMPLING
RESISTOR RESISTOR
DUT
S
CURRENT
I
D
SAMPLING
0
V
DS
I
G(REF)
0
V
DS
FIGURE 19. GATE CHARGE TEST CIRCUITS FIGURE 20. GATE CHARGE WAVEFORMS
6
Page 7
IRF330
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only.Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
7
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...