Datasheet IR2108 4-S Datasheet (IOR)

Page 1
Data Sheet No. PD60161-R
(S) & (PbF)
Features
Floating channel designed for bootstrap operation
Fully operational to +600V
IR2108(4)
HALF-BRIDGE DRIVER
Packages
Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V
Undervoltage lockout for both channels
3.3V, 5V and 15V input logic compatible
Cross-conduction prevention logic
Matched propagation delay for both channels
High side output in phase with HIN input
Low side output out of phase with
Logic and power ground +/- 5V offset.
Internal 540ns dead-time, and
LIN
input
programmable up to 5us with one external R Lower di/dt gate driver for better
resistor (IR21084)
DT
noise immunity
Available in Lead-Free
Description
The IR2108(4)(S) are high voltage, high speed power MOSFET and IGBT drivers with depen­dent high and low side referenced output channels. Proprietary HVIC and latch immune
8-Lead SOIC
IR2108S
8-Lead PDIP
IR2108
2106/2301//2108//2109/2302/2304 Feature Comparison
Part
2106/2301
21064
2108 Internal 540ns COM
21084
2109/2302 Internal 540ns COM
21094
2304
Input logic
HIN/LIN no none
HIN/LIN yes
IN/SD yes
HIN/LIN
Cross-
conduction
prevention
logic
yes
14-Lead SOIC
IR21084S
14-Lead PDIP
IR21084
Dead-Time Ground Pins
Programmable 0.54~5 µs
Programmable 0.54~5 µs
Internal 100ns
COM
VSS/COM
VSS/COM
VSS/COM
COM
CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.
Typical Connection
up to 600V
V
CC
V
V
CC
HIN
LIN
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
HIN
LIN
www.irf.com 1
B
HO
V
S
LOCOM
IR2108
V
HIN
LIN
V
TO
LOAD
up to 600V
HO
V
V
CC
CC
SS
HIN
LIN
DT
V
R
DT
B
V
S
COM
SS
LO
IR21084
TO
LOAD
Page 2
IR2108(4)
(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param­eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol Definition Min. Max. Units
V
B
V
S
V
HO
V
CC
V
LO
DT Programmable dead-time pin voltage (IR21084 only) VSS - 0.3 V
V
IN
V
SS
dVS/dt Allowable offset supply voltage transient 50 V/ns
P
D
Rth
JA
T
J
T
S
T
L
High side floating absolute voltage -0.3 625
High side floating supply offset voltage VB - 25 VB + 0.3
High side floating output voltage VS - 0.3 V
B
+ 0.3
Low side and logic fixed supply voltage -0.3 25
Low side output voltage -0.3 VCC + 0.3
+ 0.3
CC
Logic input voltage (HIN & LIN)V
Logic ground (IR21084 only) V
- 0.3 V
SS
- 25 V
CC
CC
CC
+ 0.3
+ 0.3
V
Package power dissipation @ TA +25°C (8 lead PDIP) 1.0
(8 lead SOIC) 0.625
(14 lead PDIP) 1.6
W
(14 lead SOIC) 1.0
Thermal resistance, junction to ambient (8 lead PDIP) 125
(8 lead SOIC) 200
(14 lead PDIP) 75
°C/W
(14 lead SOIC) 120
Junction temperature 150
Storage temperature -50 150
°C
Lead temperature (soldering, 10 seconds) 300
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential.
Symbol Definition Min. Max. Units
VB High side floating supply absolute voltage VS + 10 VS + 20
V
S
V
HO
V
CC
V
LO
V
IN
DT Programmable dead-time pin voltage (IR21084 only) V
V
SS
T
A
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
2 www.irf.com
High side floating supply offset voltage Note 1 600
High side floating output voltage V
S
V
Low side and logic fixed supply voltage 10 20
Low side output voltage 0 V
Logic input voltage IR2108 COM V
IR21084 VSS V
SS
CC
CC
CC
V
CC
Logic ground (IR21084 only) -5 5
Ambient temperature -40 125
B
V
°C
Page 3
IR2108(4)
(S) & (PbF)
Dynamic Electrical Characteristics
V
(VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C, DT = VSS unless otherwise specified.
BIAS
Symbol Definition Min. Typ. Max. Units Test Conditions
t
on
t
off
MT Delay matching | ton - t
t
t
DT Deadtime: LO turn-off to HO turn-on(DT
MDT Deadtime matching = | DT
Turn-on propagation delay 220 300 VS = 0V
Turn-off propagation delay 200 280 VS = 0V or 600V
off
|
Turn-on rise time 150 220 VS = 0V
r
Turn-off fall time 50 80 VS = 0V
f
LO-HO) &
HO turn-off to LO turn-on (DT
LO-HO
- DT
HO-LO)
HO-LO
—0 30
nsec
400 540 680 RDT= 0 4 5 6 usec RDT = 200k (IR21084)
0 60 RDT=0
|
0 600 RDT = 200k (IR21084)
nsec
Static Electrical Characteristics
V
(VCC, VBS) = 15V, VSS = COM, DT= VSS and TA = 25°C unless otherwise specified. The VIL, VIH and I
BIAS
parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol Definition Min. Typ. Max. Units Test Conditions
V
IH
V
V
OH
V
OL
I
LK
I
QBS
I
QCC
I
IN+
I
IN-
V
CCUV+VCC
V
BSUV+
V
CCUV-
V
BSUV-
V
CCUVH
V
BSUVH
I
O+
I
O-
Logic “1” input voltage for HIN & logic “0” for LIN 2.9 VCC = 10V to 20V
Logic “0” input voltage for HIN & logic “1” for LIN 0.8 VCC = 10V to 20V
IL
High level output voltage, V
Low level output voltage, V
Offset supply leakage current 50 VB = VS = 600V
Quiescent VBS supply current 20 75 130 V
Quiescent VCC supply current 0.4 1.0 1.6 mA VIN = 0V or 5V
Logic “1” input bias current 5 20 HIN = 5V, LIN = 0V
Logic “0” input bias current 2 HIN = 0V, LIN = 5V
and VBS supply undervoltage positive going 8.0 8.9 9.8
threshold
VCC and V
threshold
Hysteresis 0.3 0.7
Output high short circuit pulsed current 120 200 VO = 0V,
Output low short circuit pulsed current 250 350 VO = 15V,
supply undervoltage negative going 7.4 8.2 9.0
BS
BIAS
O
- V
O
0.8 1.4 IO = 20 mA
0.3 0.6 IO = 20 mA
V
µA
µA
V
mA
IN
= 0V or 5V
IN
RDT=0
PW10 µs
PW10 µs
www.irf.com 3
Page 4
IR2108(4)
(S) & (PbF)
Functional Block Diagram
2108
HIN
VSS/COM
LEVEL SHIFT
PULSE
GENERATOR
HV
LEVEL
SHIFTER
PULSE
FILTER
UV
DETECT
VB
R
Q
R
S
HO
VS
LIN
HIN
DT
LIN
DT
+5V
+5V
VSS
DEADTIME &
SHOOT-THROUGH
PREVENTION
21084
DEADTIME &
SHOOT-THROUGH
PREVENTION
VSS/COM
LEVEL SHIFT
VSS/COM
LEVEL
SHIFT
VSS/COM
LEVEL
SHIFT
PULSE
GENERATOR
DELAY
DELAY
HV
LEVEL
SHIFTER
PULSE
FILTER
DETECT
UV
DETECT
DETECT
VCC
UV
LO
COM
VB
R
Q
R
S
HO
VS
VCC
UV
LO
COM
VSS
4 www.irf.com
Page 5
IR2108(4)
(S) & (PbF)
Lead Definitions
Symbol Description
HIN Logic input for high side gate driver output (HO), in phase (referenced to COM for IR2108 and
VSS for IR21084)
LIN
DT Programmable dead-time lead, referenced to VSS. (IR21084 only)
VSS Logic Ground (21084 only)
V
B
HO High side gate driver output
V
S
V
CC
LO Low side gate driver output
COM Low side return
Logic input for low side gate driver output (LO), out of phase (referenced to COM for IR2108
and VSS for IR21084)
High side floating supply
High side floating supply return
Low side and logic fixed supply
Lead Assignments
V
1
CC
HIN
2
LIN
3
COM
4
V
HO
V
LO
8
B
7
6
S
5
V
1
CC
HIN
2
LIN
3
COM
4
8 Lead PDIP 8 Lead SOIC
IR2108 IR2108S
V
HO
V
14
13
B
12
11
S
10
9
8
V
1
CC
HIN
2
LIN
3
DT
4
VSS
5
COM
6
LO
7
14 Lead PDIP 14 Lead SOIC
V
1
CC
HIN
2
LIN
3
DT
4
VSS
5
COM
6
LO
7
IR21084 IR21084S
V
HO
V
LO
V
HO
V
8
B
7
6
S
5
14
13
B
12
11
S
10
9
8
www.irf.com 5
Page 6
IR2108(4)
HIN
LIN
(S) & (PbF)
HO
LO
Figure 1. Input/Output Timing Diagram
HIN LIN
50% 50%
90%
LIN
50%
t
off
90% 90%
50%
LO
50%
t
on
t
r
10% 10%
50%
HIN
t
on
t
r
90% 90%
HO
10% 10%
Figure 2. Switching Time Waveform Definitions
t
off
t
f
t
f
HO
LO
DT
LO-HO
MDT=
90%
DT
10%
LO-HO
- DT
DT
HO-LO
HO-LO
10%
Figure 3. Deadtime Waveform Definitions
6 www.irf.com
Page 7
IR2108(4)
)
)
(S) & (PbF)
500
400
300
Max .
200
Typ.
100
0
Turn-on Propagation Delay (ns
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Figure 4A. Turn-on Propagation De lay
vs. Tempe ratur e
500
500
400
Max.
300
Typ.
200
100
0
Turn-on Propagation Delay (ns
10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 4B. Turn-on Propagation Delay
vs. Supply Voltage
500
400
300
Max.
200
Typ.
100
Turn-off Propagation Delay (ns)
0
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Figure 5A. Turn-off Propagation Delay
vs.Temperature
400
Max.
300
Typ.
200
100
0
Turn-off Propagation Delay (ns)
10 12 14 16 18 20
V
Supply V oltage (V )
BIAS
Figure 5B. Turn-off Propagation Delay
vs. Supp ly Voltage
www.irf.com 7
Page 8
IR2108(4)
)
)
(S) & (PbF)
500
400
300
Max.
200
100
Turn-on Rise Time (ns
Typ.
0
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Figure 6A.Turn-on Rise Time
vs. Tem pe ratur e
200
500
400
300
Max .
200
Typ.
100
Turn-on Rise Time (ns
0
10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 6B. Turn-on Rise Time
vs. Supply Voltage
200
150
100
Max.
50
Turn-off Fall Time (ns)
Typ.
0
-50 -25 0 25 50 75 100 125
Temperature (
Figure 7A. Turn-off Fall Tim e
vs. Tem perature
o
C)
150
Max .
100
50
Turn-off Fall Time (ns)
Typ.
0
10 12 14 16 18 20
Supply Voltage (V)
V
BIAS
Figure 7B. Turn-off Fall Time
vs. Supply Voltage
8 www.irf.com
Page 9
IR2108(4)
(S) & (PbF)
1000
800
Max .
600
Typ.
Deadtime (ns)
400
Mi n.
200
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 8A. Deadtim e vs . Te m perature
7
6
5
Max.
4
3
Deadtime ( s)
2
1
0
0 50 100 150 200
R
(KΩ)
DT
Typ.
Mi n.
1000
800
Max.
Typ.
600
Deadtime (ns)
Min .
400
200
10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 8B. Deadtime vs. Supply Voltage
8
7
6
5
4
Max.
3
2
Input Voltage (V)
1
0
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Figure 8C. Deadtim e vs. R
(IR21084 Only)
DT
Figure 9A. Logic "1" Input Voltage
vs. Tem pe ratur e
www.irf.com 9
Page 10
IR2108(4)
(S) & (PbF)
8
7
6
5
4
Max.
3
2
Input Voltage (V)
1
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 9B. Logic "1" Input Voltage
vs. Supply Voltage
4.0
4.0
3.2
2.4
1.6
Input Voltage (V)
0.8
Min .
0.0
-50 -25 0 25 50 75 100 125
Temperature (
o
Figure 10A. Logic "0" Input Voltage
vs. Tem pe ratur e
4
C)
3.2
3
2.4
2
1.6
Min .
Input Voltage (V)
0.8
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 10B. Logic "0" Input Voltage
vs. Supply Voltage
Max.
1
Typ.
High Level Output Voltage (V)
0
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 11A. High Level Output
vs. Tem peratur e
10 www.irf.com
Page 11
IR2108(4)
)
(S) & (PbF)
4
3
2
Max .
1
Typ.
High Level Output Voltage (V
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 11B. High Level Output
vs. Supply Voltage
1.5
1.5
1.2
0.9
0.6
Max.
0.3
Typ.
Low Level Output Voltage (V)
0
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 12A. Low Level Output
vs. T e m peratur e
500
1.2
0.9
Max.
0.6
Typ.
0.3
Low Level Output Voltage (V)
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 12B. Low Level Output
vs. Supply Voltage
400
300
200
100
Max.
0
Offset Supply Leakage Current ( A)
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 13A. Offset Supply Leakage Current
vs. Temperature
www.irf.com 11
Page 12
IR2108(4)
(S) & (PbF)
500
400
300
200
100
Max.
0
Offset Supply Leakage Current ( A)
0 100 200 300 400 500 600
V
Boost Voltage (V )
B
Figure 13B. Offset Supply Leakage Curre nt
vs. Tem pe ratur e
400
400
300
200
Supply Current ( A)
V
Max .
100
BS
Typ.
Mi n .
0
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 14A. VBS Supply Current
vs. Tem pe ratur e
3.0
300
2.5
2.0
Max.
200
Max.
Supply Current ( A)
100
BS
Typ.
V
Mi n .
0
10 12 14 16 18 20
Supply Voltage (V)
V
BS
Figure 14B. VBS Supply Current
vs. Supply Voltage
1.5
Typ.
1.0
Min .
0.5
Vcc Supply Current (mA)
0.0
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Figure 15A. VCC Supply Current
vs. Tempe ratur e
12 www.irf.com
Page 13
IR2108(4)
(S) & (PbF)
3.0
2.5
2.0
1.5
Max.
1.0
Supply Current (mA)
V
Typ.
CC
0.5
Min .
0.0 10 12 14 16 18 20
Supply Voltage (V)
V
CC
Figure 15B. VCC Supply Current
vs. Supply Voltage
60
60
50
40
30
20
Max.
10
Logic "1" Input Current ( A)
Typ.
0
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Figure 16A. Logic "1" Input Current
vs. Tem perature
5
50
40
30
Max.
20
10
Logic "1" Input Current ( A)
Typ.
0
10 12 14 16 18 20
Supply Voltage (V )
V
CC
Figure 16B. Logic "1" Input Current
vs. Supply Voltage
4
3
Max.
2
1
Logic "0" Input Current ( A)
0
-50 -25 0 25 50 75 100 125
Temperatur e (
o
C)
Figure 17A. Logic "0" Input Current
vs. Tem pe r atur e
www.irf.com 13
Page 14
IR2108(4)
(S) & (PbF)
5
4
3
Max.
2
1
Logic "0" Input Current ( A)
0
10 12 14 16 18 20
Supply Voltage (V)
V
CC
Figure 17B. Logic "0" Input Current
vs. Supply Voltage
11
12
11
10
Max.
Typ.
9
UVLO Threshold (+) (V)
CC
V
Mi n.
8
7
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 18. VCC Undervoltage Threshold (+)
vs. Te m pe ratur e
12
10
Max .
9
Typ.
8
Mi n.
7
VCC UVLO Threshold (-) (V)
6
-50-250 255075100125
Temperature (
o
C)
Figure 19. VCC Undervoltage Threshold (-)
vs. Tempe ratur e
11
10
Max.
Typ.
9
UVLO Threshold (+) (V)
V
Min .
8
BS
7
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 20. VBS Undervoltage Threshold (+)
vs. Te m pe ratur e
14 www.irf.com
Page 15
IR2108(4)
)
(S) & (PbF)
11
10
Max.
9
Typ.
8
Min.
7
UVLO Threshold (-) (V)
BS
V
6
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 21. VBS Undervoltage Threshold (-)
vs. Tempe rature
500
500
400
300
Typ.
200
Min .
100
Output Source Current ( A)
0
-50 -25 0 25 50 75 100 125
o
Temperature (
C)
Figure 22A. Output Source Current
vs. Temperature
600
400
500
Typ.
400
300
200
Typ.
Output Source Current ( A)
100
Min .
Output Sink Current (mA
0
10 12 14 16 18 20
Supply Voltage (V)
V
BIAS
Figure 22B. Output Source Current
vs. Supply Voltage
www.irf.com 15
Min .
300
200
100
0
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Figure 23A. Output Sink Current
vs. Te m perature
Page 16
IR2108(4)
(S) & (PbF)
600
500
400
300
Typ.
200
Min.
100
Output Sink Current ( A)
0
10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 23B. Output Sink Curr ent
vs. Supply Vo ltage
0
-2
Typ.
-4
-6
-8
Offset Supply Voltage (V)
S
V
-10 10 12 14 16 18 20
V
Flouting Supply Voltage (V)
BS
Figure 24. Maximum Vs Ne g ative Off s et
vs. Supply Voltage
140
120
C)
o
100
80
60
Temprature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 25. IR2108 vs. Fre quency (IRFBC20),
=33:, VCC=15V
R
gate
140V
70V
0V
140
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Fig ure 26. IR2108 vs. Fr equency ( IRFB C30),
R
=22:, VCC=15V
gate
140V
70V
0V
16 www.irf.com
Page 17
IR2108(4)
(S) & (PbF)
140
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 27. IR2108 vs. Freque ncy (IRFBC40),
=15:, VCC=15V
R
gate
140
140V
70V
0V
140
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 28. IR2108 vs. Fre quency (IRFPE50),
=10:, VCC=15V
R
gate
140
1 40V 70 V
0V
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 29. IR21084 vs. Frequency (IRFBC20),
R
=33:, VCC=15V
gate
140V
70V
0V
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 30. IR21084 vs. Fre quency (IRFBC30),
=22:, VCC=15V
R
gate
1 40V
70V
0V
www.irf.com 17
Page 18
IR2108(4)
g
0V
(S) & (PbF)
140
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 31. IR21084 vs. Fre quency (IRFBC40),
=15:, VCC=15V
R
gate
140V
70V
0V
140
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 32. IR21084 vs. Frequency (IRFPE50),
R
=10:, VCC=15V
ate
1 4
70V
0V
140
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 33. IR2108S vs. Freque ncy ( IRFBC20),
=33:, VCC=15V
R
gate
1 40V
70V
0V
140
120
C)
100
o
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 34. IR2108S vs. Frequency ( IRFBC30),
=22:, VCC=15V
R
gate
140V
70V
0V
18 www.irf.com
Page 19
IR2108(4)
g
(S) & (PbF)
140
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 35. IR2108S vs. Frequency ( IRFBC40),
=15:, VCC=15V
R
gate
140
140V 70V
0V
140
120
C)
o
100
80
60
Tempreture (
40
20
1 10 100 1000
Frequency (KHz )
Figure 36. IR2108S vs. Frequency
(IRFPE50), R
=10:, VCC=15V
ate
140
140V 70V 0V
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 37. IR21084S vs. Frequency (IRFBC20),
R
=33:, VCC=15V
gate
140V 70V 0V
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figu re 38. IR21084S vs. Freq uency (IRF BC30),
R
=22:, VCC=15V
gate
140V
70V
0V
www.irf.com 19
Page 20
IR2108(4)
0V
(S) & (PbF)
140
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 39. IR21084S vs. Freque ncy ( IRFBC40),
=15:, VCC=15V
R
gate
1 40V
70V
0V
140
120
C)
o
100
80
60
Temperature (
40
20
1 10 100 1000
Frequency (KHz)
Figure 40. IR21084S vs. Frequency ( IRFPE50),
R
=10:, VCC=15V
gate
1 40V 7
0V
20 www.irf.com
Page 21
Case outlines
IR2108(4)
(S) & (PbF)
A
87
6
E
e
6X
8X b
0.25 [.010] C A B
NOT ES :
1. DIMENS IONING & TOLER ANCING PER ASME Y14.5M-1994.
2. CONT ROLL ING DIME NSI ON: MIL LIME TE R
3. DIMENS IONS ARE S HOWN IN MILLIMETE RS [INCHES ].
4. OUT LINE CONFORMS T O JEDE C OUTL INE MS-012AA.
D B
5
65
4312
e1
A1
H
0.25 [.010] A
A
C
0.10 [ .004]
8-Lead PDIP
6.46 [.255]
3X 1.27 [.050]
y
8-Lead SOIC
01-3003 01
DIM
FOOTPRINT
8X 0.72 [.028]
8X 1.78 [.070]
MIN MAX
A
.0532
A1
b
c .0075 .00 98 0.19 0.25
D
E
e
e1
H
K
L
y
.0688
.0040
.0098
.013
.020
.189
.1968
.1497
.1574
.050 B AS IC
.025 B AS IC 0. 635 BAS IC
.2284
.2440
.0099
.0196
.016
.050
K x 45°
8X L
8X c
7
5 DIME NSI ON DOES NOT INCL UDE MOLD P ROTR US IONS. MOLD PROTRU SIONS NOT T O EXCEED 0.15 [.006].
6 DIME NSI ON DOES NOT INCL UDE MOLD P ROTR US IONS. MOLD PROTRU SIONS NOT T O EXCEED 0.25 [.010].
7 DIME NSI ON IS T HE LE NGT H OF L EAD FOR S OLDE RING T O A S UBS TRATE .
01-0021 11
01-6014
(MS-001AB)
MILLIMETERSINCHE S
MIN MAX
1.35
1.75
0.10
0.25
0.33
0.51
4.80
5.00
3.80
4.00
1.27 B ASIC
5.80
6.20
0.25
0.50
0.40
1.27
01-6027
(MS-012AA)
www.irf.com 21
Page 22
IR2108(4)
(S) & (PbF)
14-Lead PDIP
01-3002 03
01-6010
(MS-001AC)
14-Lead SOIC (narrow body)
22 www.irf.com
01-3063 00
01-6019
(MS-012AB)
Page 23
IR2108(4)
P
C
(S) & (PbF)
ORDER INFORMATION
Basic Part (Non-Lead Free) Lead-Free Part
8-Lead PDIP IR2108 order IR2108 8-Lead PDIP IR2108 order IR2108PbF 8-Lead SOIC IR2108S order IR2108S 8-Lead SOIC IR2108S order IR2108SPbF 14-Lead PDI 14-Lead SOI
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
www.irf.com 23
IR21084 order IR21084 14-Lead PDIP IR21084 order IR21084PbF IR21084S order IR21084S 14-Lead SOICIR21084S order IR21084SPbF
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Website.
Data and specifications subject to change without notice.
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/08/04
Loading...