Datasheet IKW08T120FKSA1 Specification

Page 1
IKW08T120
TrenchStop®Series
Low Loss DuoPack : IGBT in TrenchStop®and Fieldstop technology with soft,
fast recovery anti-parallel Emitter Controlled HE diode
Approx. 1.0Vreduced V
and 0.5V reduced VFcompared to BUP305D
Short circuit withstand time – 10s Designed for :
- Frequency Converters
- Uninterrupted Power Supply
TrenchStop®and Fieldstop technology for 1200 V applications
offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
NPT technology offers easy parallel switching capability due to
positive temperature coefficient in V
Low EMI Low Gate Charge Very soft, fast recovery anti-parallel Emitter Controlled HE diode Qualified according to JEDEC1for target applications  Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
CE(sat)
G
PG-TO-247-3
CE(sat)
C
E
Type V
CE
IKW08T120 1200V 8A 1.7V
I
V
C
CE(sat),Tj=25°CTj,max
150C
Marking Code Package
K08T120 PG-TO-247-3
Maximum Ratings Parameter Symbol Value Unit
Collector-emitter voltage DC collector current
TC= 25C TC= 100C
Pulsed collector current, tplimited by T Turn off safe operating area
jmax
V
CE
I
C
I
Cpul s
-
1200 V
A
16
8
24
24 VCE 1200V, Tj 150C Diode forward current
TC= 25C TC= 100C
Diode pulsed current, tplimited by T Gate-emitter voltage Short circuit withstand time
2)
jmax
I
F
I
Fpul s
V
GE
t
SC
16
8
24
20
10
V
s VGE= 15V, VCC 1200V, Tj 150C Power dissipation
P
tot
70 W
TC= 25C
Operating junction temperature Storage temperature
T
j
T
stg
-40...+150
-55...+150
C
1
J-STD-020 and JESD-022
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
IFAG IPC TD VLS
1 Rev. 2.4 12.06.2013
Page 2
IKW08T120
TrenchStop®Series
Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
IFAG IPC TD VLS
2 Rev. 2.4 12.06.2013
Page 3
IKW08T120
TrenchStop®Series
Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic
IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient
Electrical Characteristic, at Tj= 25 C, unless otherwise specified
Parameter Symbol Conditions
Static Characteristic
Collector-emitter breakdown voltage Collector-emitter saturation voltage
Diode forward voltage
Gate-emitter threshold voltage Zero gate voltage collector current
Gate-emitter leakage current Transconductance Integrated gate resistor
R
thJ C
R
thJ CD
R
thJ A
V
(BR )CESVGE
V
CE( sat)
V
F
V
GE( th)
I
CES
I
GES
g
fs
R
Gin t
=0V, IC=0.5mA VGE= 15V, IC=8A Tj=25C Tj=125C Tj=150C VGE=0V, IF=8A Tj=25C Tj=125C Tj=150C IC=0.3mA,VCE=V VCE=1200V,
VGE=0V Tj=25C Tj=150C
VCE=0V,VGE=20V VCE=20V, IC=8A
1.7 K/W
2.3
40
Value
min. typ. max.
1200 - - V
GE
-
-
-
-
-
-
5.0 5.8 6.5
-
-
1.7
2.0
2.2
1.7
1.7
1.7
-
-
- - 100 nA
- 5 - S
none Ω
Unit
2.2
-
-
2.2
-
-
mA
0.2
2.0
IFAG IPC TD VLS
3 Rev. 2.4 12.06.2013
Page 4
TrenchStop®Series
Dynamic Characteristic
Input capacitance Output capacitance Reverse transfer capacitance Gate charge
Internal emitter inductance
C C C Q
L
iss oss rss
Gat e
E
measured 5mm (0.197 in.) from case Short circuit collector current
1)
I
C(S C)
Switching Characteristic, Inductive Load, at Tj=25 C
Parameter Symbol Conditions
IGBT Characteristic
Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy
t
d(o n)
t
r
t
d(o ff)
t
f
E
on
E
off
E
ts
Anti-Parallel Diode Characteristic
Diode reverse recovery time Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse
recovery current during t
b
t
rr
Q
rr
I
rrm
dirr/dt
VCE=25V, VGE=0V, f=1MHz
VCC=960V, IC=8A VGE=15V
VGE=15V,tSC 10s VCC= 600V, Tj= 25C
Tj=25C, VCC=600V,IC=8A, VGE=0/15V, RG=81,
2)
L
=180nH,
2)
C
=39pF
Energy losses include “tail” and diode reverse recovery.
Tj=25C, VR=600V, IF=8A, diF/dt=600A/s
IKW08T120
- 600 - pF
- 36 -
- 28 -
- 53 - nC
- 13 - nH
- 48 - A
Value
min. typ. max.
- 40 - ns
- 23 -
- 450 -
- 70 -
- 0.67 - mJ
- 0.7 -
- 1.37 -
- 80 - ns
- 1.0 - µC
- 13 - A
- 420 -
Unit
A/s
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2)
Leakage inductance Land Stray capacity Cdue to dynamic test circuit in Figure E.
IFAG IPC TD VLS
4 Rev. 2.4 12.06.2013
Page 5
TrenchStop®Series
Switching Characteristic, Inductive Load, at Tj=150 C
Parameter Symbol Conditions
IGBT Characteristic
Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy
Anti-Parallel Diode Characteristic
Diode reverse recovery time Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse
recovery current during t
b
t
d(o n)
t
r
t
d(o ff)
t
f
E
on
E
off
E
ts
t
rr
Q
rr
I
rrm
dirr/dt
Tj=150C, VCC=600V, IC=8A, VGE=0/15V, RG= 81,
1)
L
=180nH,
1)
C
=39pF
Energy losses include “tail” and diode reverse recovery.
Tj=150C VR=600V, IF=8A, diF/dt=600A/s
IKW08T120
Value
min. typ. max.
- 40 - ns
- 26 -
- 570 -
- 140 -
- 1.08 - mJ
- 1.2 -
- 2.28 -
- 200 - ns
- 2.3 - µC
- 20 - A
- 320 -
Unit
A/s
1)
Leakage inductance Land Stray capacity Cdue to dynamic test circuit in Figure E.
IFAG IPC TD VLS
5 Rev. 2.4 12.06.2013
Page 6
TC=80°C
Figure 1.
Collector current as a function of
Figure 2.
Safe operating area
Figure 3.
Power dissipation as a function of
Figure 4.
Collector current as a function of
I
c
I
c
IKW08T120
TrenchStop®Series
tp=2µs
10A
10µs
TC=110°C
, COLLECTOR CURRENT
C
I
5A
0A
10Hz 100Hz 1kHz 10kHz 100kHz
f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE
switching frequency
(Tj 150C, D = 0.5, VCE= 600V, VGE= 0/+15V, RG= 81)
, COLLECTOR CURRENT
C
I
1A
0,1A
0,01A
1V 10V 100V 1000V
(D = 0, TC= 25C, Tj150C;VGE=15V)
15A
50µs
150µs 500µs
20ms DC
, POWER DISSIPATION
tot
P
0W
25°C 50°C 75°C 100°C 125°C
TC, CASE TEMPERATURE TC, CASE TEMPERATURE
case temperature
(Tj 150C)
IFAG IPC TD VLS
10A
5A
, COLLECTOR CURRENT
C
I
0A
25°C 75°C 125°C
case temperature
(VGE 15V, Tj 150C)
6 Rev. 2.4 12.06.2013
Page 7
VGE=17V
Figure 5.
Typical output characteristic
Figure 6.
Typical output characteristic
Figure 7.
Typical transfer characteristic
Figure 8.
Typical collector
-
emitter
IKW08T120
TrenchStop®Series
20A
VGE=17V
15V
13V 11V
9V 7V
, COLLECTOR CURRENT
C
I
5A
0A
0V 1V 2V 3V 4V 5V 6V
VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE
(Tj= 25°C)
15V
15A
10A
, COLLECTOR CURRENT
C
I
5A
0A
13V 11V
9V
7V
0V 1V 2V 3V 4V 5V 6V
(Tj= 150°C)
, COLLECTOR CURRENT
C
I
5A
0A
0V 2V 4V 6V 8V 10V 12V
TJ=150°C
25°C
V
, GATE-EMITTERVOLTAGE T
GE
(VCE=20V)
3,0V
2,5V
2,0V
1,5V
1,0V
COLLECTOR-EMITT SATURATION VOLTAGE
0,5V
CE(sat),
V
0,0V
-50°C 0°C 50°C 100°C
, JUNCTION TEMPERATURE
J
saturation voltage as a function of junction temperature
(VGE= 15V)
IC=15A
IC=8A
IC=5A
IC=2.5A
IFAG IPC TD VLS
7 Rev. 2.4 12.06.2013
Page 8
t





Figure 9.
Typical switching times as a
Figure 10.
Typical switching times as a
Figure 11.
Typical switching times as a
Figure 12.
Gate
-
emitter threshold voltage as
t
d(off)
f
TrenchStop®Series
t
d(off)
t
f
100 ns
IKW08T120
t
d(on)
10ns
t, SWITCHING TIMES
1ns
t
r
5A 10A 15A
t, SWITCHING TIMES
10 ns
1 ns
t
d(on)
t
r
IC, COLLECTOR CURRENT RG, GATE RESISTOR
function of collector current
(inductive load, TJ=150°C, VCE=600V, VGE=0/15V, R
Dynamic test circuit in Figure E)
t
d(off)
=81Ω,
G
7V
6V
function of gate resistor
(inductive load, TJ=150°C, VCE=600V, VGE=0/15V, IC=8A,
Dynamic test circuit in Figure E)
t
f
t
t, SWITCHING TIMES
d(on)
t
r
10ns
0°C 50°C 100°C 150°C
TJ, JUNCTION TEMPERATURE TJ, JUNCTION TEMPERATURE
function of junction temperature
(inductive load, VCE=600V, VGE=0/15V, IC=8A, R Dynamic test circuit in Figure E)
IFAG IPC TD VLS
=81Ω,
G
5V
4V
3V
2V
GATE-EMITT TRSHOLD VOLTAGE
GE(th),
1V
V
0V
-50°C 0°C 50°C 100°C 150°C
max.
typ. min.
a function of junction temperature
(IC= 0.3mA)
8 Rev. 2.4 12.06.2013
Page 9
TrenchStop®Series
Figure 13.
Typical switching energy losses
Figure 14. Typical switching energy losses
Figure 15.
Typical switching energy losses
Figure 16.
Typical switching energy losses
IKW08T120
*) Eonand Etsincludelosses
dueto diode recovery
E, SWITCHING ENERGY LOSSES
5A 10A 15A
Ets*
Eon*
E
off
E, SWITCHING ENERGY LOSSES
3,2 mJ
2,8 mJ
2,4 mJ
2,0 mJ
1,6 mJ
1,2 mJ
0,8 mJ
0,4 mJ
0,0 mJ
*) Eonand Etsinclude losses
dueto diode recovery
    
Ets*
E
Eon*
off
IC, COLLECTOR CURRENT RG, GATE RESISTOR
as a function of collector current
(inductive load, TJ=150°C, VCE=600V, VGE=0/15V, R
=81Ω,
G
Dynamic test circuit in Figure E)
as a function of gate resistor
(inductive load, TJ=150°C, VCE=600V, VGE=0/15V, IC=8A,
Dynamic test circuit in Figure E)
*) Eonand Etsinclude losses
due to diode recovery
E, SWITCHING ENERGY LOSSES
25°C 50°C 75°C 100°C 125°C
TJ, JUNCTION TEMPERATURE VCE, COLLECTOR-EMITTER VOLTAGE
as a function of junction temperature
(inductive load, VCE=600V, VGE=0/15V, IC=8A, R Dynamic test circuit in Figure E)
=81Ω,
G
Ets*
E
Eon*
*) Eonand Etsincludelosses
dueto diode recovery
3mJ
off
2mJ
1mJ
Ets*
E
off
E, SWITCHING ENERGY LOSSES
Eon*
0mJ
400V 500V 600V 700V 800V
as a function of collector emitter voltage
(inductive load, TJ=150°C, VGE=0/15V, IC=8A, R
=81Ω,
G
Dynamic test circuit in Figure E)
IFAG IPC TD VLS
9 Rev. 2.4 12.06.2013
Page 10
TrenchStop®Series
Figure 17.
Typical gate charge
Figure 18.
Typical capacitance as a function
Figure 19.
Short circuit withstand time as a
Figure 20.
Typical short circuit collector
IKW08T120
240V
, GATE-EMITTER VOLTAGE
5V
GE
V
0V
0nC 25nC 50nC
QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE
(IC=8 A)
960V
c, CAPACITANCE
1nF
100pF
10pF
0V 10V 20V
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
C
iss
C
oss
C
rss
5µs
, SHORT CIRCUIT WITHSTAND TIME
SC
t
0µs
12V 14V 16V
VGE, GATE-EMITTETR VOLTAGE VGE, GATE-EMITTETR VOLTAGE
function of gate-emitter voltage
(VCE=600V, start at TJ=25°C)
75A
50A
25A
, short circuit COLLECTOR CURRENT
C(sc)
I
0A
12V 14V 16V 18V
current as a function of gate­emitter voltage
(VCE 600V, Tj 150C)
IFAG IPC TD VLS
10 Rev. 2.4 12.06.2013
Page 11
IKW08T120
1us
Figure 21.
Typical turn on behavior
Figure 22.
Typical turn off behavior
Figure 23.
IGBT transient thermal resistance
Figure 24.
Diode transient thermal
-
1
-
2
-
3
0.350
2.71*10
-
4
C1=
1
/
R
1
C2=
2
/
R
2
-
2
-
3
-
3
0.344
1.55*10
-
4
C1=
1
/
R
1
C2=
2
/
R
2
TrenchStop®Series
V
CE
30A
600V
, COLLECTOR-EMITTER VOLTAGE
CE
V
100K/W
, TRANSIENT THERMAL RESISTANCE
thJC
Z
0V
-1
0us
K/W
I
C
0.5us
t, TIME t, TIME
(VGE=0/15V, RG=81Ω, Tj= 150C, Dynamic test circuit in Figure E)
D=0.5
0.2
0.1
0.05
0.02
0.01 single pulse
R,( K/W )
0.187 1.73*10
0.575 2.75*10
0.589 2.57*10
R
1
1.5us
, (s)
20A
10A
0A
I
C
, COLLECTOR CURRENT
C
I
V
CE
0A
0us
1.5us1us0.5us
400V
200V
0V
(VGE=15/0V, RG=81Ω, Tj= 150C, Dynamic test circuit in Figure E)
D=0.5
100K/W
0.2
0.1
0.05
R
2
10-1K/W
0.02
0.01
R,( K/W )
0.552 7.23*10
0.732 8.13*10
0.671 1.09*10
R
1
, (s)
R
2
single pulse
, TRANSIENT THERMAL RESISTANCE
thJC
Z
-2
K/W
10µs 100µs 1ms 10ms 100ms
tP, PULSE WIDTH tP, PULSE WIDTH
(D = tp/ T)
IFAG IPC TD VLS
10-2K/W
10µs 100µs 1ms 10ms 100ms
impedance as a function of pulse width
(D=tP/T)
11 Rev. 2.4 12.06.2013
Page 12
500ns
Figure 23.
Typical reverse recovery time as
Figure 24.
Typical reverse recovery charge
di
/dt
,
OF R
EVERSE RECOVERY CURR
ENT
Figure 25.
Typical reverse recovery current
Figure 26.
Typical diode peak rate of fall of
IKW08T120
TrenchStop®Series
400ns
300ns
200ns
, REVERSE RECOVERY TIME
rr
t
100ns
TJ=150°C
2µC
1µC
, REVERSE RECOVERY CHARGE
rr
Q
TJ=150°C
TJ=25°C
TJ=25°C
0ns
200A/µs 400A/µs 600A/µs 800A/µs
diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE
a function of diode current slope
(VR=600V, IF=8A, Dynamic test circuit in Figure E)
0µC
200A/µs 400A/µs 600A/µs 800A/µs
as a function of diode current slope
(VR=600V, IF=8A, Dynamic test circuit in Figure E)
, REVERSE RECOVERY CURRENT
5A
rr
I
0A
200A/µs 400A/µs 600A/µs 800A/µs
diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE
as a function of diode current slope
(VR=600V, IF=8A, Dynamic test circuit in Figure E)
TJ=150°C
TJ=25°C
DIODE PEAK RATE OF FALL
rr
-600A/µs
-500A/µs
-400A/µs
-300A/µs
-200A/µs
-100A/µs
-0A/µs
TJ=25°C
TJ=150°C
200A/µs 400A/µs 600A/µs 800A/µs
reverse recovery current as a function of diode current slope
(VR=600V, IF=8A, Dynamic test circuit in Figure E)
IFAG IPC TD VLS
12 Rev. 2.4 12.06.2013
Page 13
TJ=25°C
Figure 27.
Typical diode forward current as
Figure 28.
Typical diode forward voltage as a
IKW08T120
TrenchStop®Series
, FORWARD CURRENT
F
I
0A
0V 1V 2V
VF, FORWARD VOLTAGE TJ, JUNCTION TEMPERATURE
a function of forward voltage
150°C
2,0V
IF=15A
1,5V
1,0V
, FORWARD VOLTAGE
F
V
0,5V
0,0V
8A 5A
2,5A
-50°C 0°C 50°C 100°C
function of junction temperature
IFAG IPC TD VLS
13 Rev. 2.4 12.06.2013
Page 14
TrenchStop®Series
IKW08T120
IFAG IPC TD VLS
14 Rev. 2.4 12.06.2013
Page 15
TrenchStop®Series
I
rrm
90%
10%
di /dt
i,v
di /dt
12n
T(t
)
j1
22n
n
T
C
Figure A. Definition of switching t
imes
IKW08T120
t =t t
+
F
I
F
r r S F
Q =Q Q
r r S F
t
r r
t
S
+
t
F
Q
S
Figure C. Definition of diodes switching characteristics
r r
1
p(t)
r
Figure D. Thermal equivalent circuit
t
Q
F
I
r r m
V
r r
I
r r m
R
r
rr
Figure B. Definition of switching losses
IFAG IPC TD VLS
Figure E. Dynamic test circuit
Leakage inductance L=180nH and Stray capacity C=39pF.
15 Rev. 2.4 12.06.2013
Page 16
IKW08T120
TrenchStop®Series
Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
IFAG IPC TD VLS
16 Rev. 2.4 12.06.2013
Loading...