Datasheet HUF76121P3, HUF76121S3S Datasheet (Fairchild Semiconductor)

Page 1
HUF76121P3, HUF76121S3S
Data Sheet January 2003
47A, 30V, 0.021 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
These N-Channel pow er MOSFETs are manufactured using the innovati ve UltraFET™ process.
This advanced process technology achieves the lowest possible on-resistance per silicon ar ea, resultin g in outstanding performance. This device is capab le of withstanding hi gh energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was design ed for use in applicati ons where power efficiency is important, such as switching regulators, switchi ng converters, motor drivers, relay drivers , low­voltage bus switches, and power manage me nt i n po rtab le and battery-operated products.
Formerly developmental ty pe TA76121.
Ordering Information
PART NUMBER PACKAGE BRAND
HUF76121P3 TO-220AB 76121P HUF76121S3S TO-263AB 76121S
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUF76121S3ST.
Features
• Logic Level Gate Drive
• 47A, 30V
• Ultra Low On-Resistance, r
• Temperatur e Compensating PSPICE
• Temperatur e Compensating SABER
DS(ON)
= 0.021
®
Model
©
Model
• Thermal Impedance SPICE Model
• Thermal Impedance SABER Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
D
G
S
Packaging
DRAIN
(FLANGE)
JEDEC TO-220AB JEDEC TO-263AB
SOURCE
DRAIN
GATE
GATE
SOURCE
(FLANGE)
DRAIN
©2003 Fairchild Semiconductor Corporation HUF76121P3, HUF76121S3S Rev. C1
Page 2
HUF76121P3, HUF76121S3S
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gat e Voltage (R
= 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GS
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DSS
DGR
GS
30 V 30 V
±20 V
Drain Curr e nt
Continuous (T
Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
= 25oC, VGS = 10V) (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C
Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
, T
J
STG
D D D
DM
AS
D
47 25 24
Figure 4
Figures 6, 17,18
75
0.6
-40 to 150
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Rati ngs” may cause permane nt damage to the device. This is a stress only rating and oper ation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
300 260
A A A
W
W/oC
o
C
o
C
o
C
NOTE:
= 25oC to 150oC.
1. T
J
Electrical Specifications T
= 25oC, Unless Otherwise Specified
A
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain t o Source Breakdown Voltage BV Zero Gat e V ol tag e D rain Curre nt I
Gate to Sour c e Le ak ag e C urr e nt I
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V Drain to Source On Resistance r
GS(TH)VGS
DS(ON)ID
THERMAL SPECIFICATIONS
Thermal R esis ta nc e Ju ncti on to Case R Thermal Resistance Junction to Ambient R SWITCHING SPECIFICATIONS (V
GS
= 4.5V) Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t
DSSID
DSS
GSS
θJC
θJA
ON
r
f
OFF
= 250µA, VGS = 0V (Figure 12) 30 - - V VDS = 25V, VGS = 0V - - 1 µA V
= 25V, VGS = 0V, TC = 150oC--250µA
DS
VGS = ±20V - - ±100 nA
= VDS, ID = 250µA (Figur e 11) 1 - 3 V
= 47A, VGS = 10V (Figures 9, 10) - 0.01 5 0.021 I
= 25A, VGS = 5V (Figure 9) - 0.019 0.028
D
I
= 24A, VGS = 4.5V (Figure 9) - 0.021 0.031
D
(Figur e 3) - - 1. 66 TO-22 0 and TO-263 - - 62
VDD = 15V, ID 24A, RL = 0.63Ω, V
= 4.5V, RGS = 10.0
GS
(Figures 15, 21 , 22)
--265ns
-15-ns
o
o
C/W C/W
-160- ns
-14-ns
-31-ns
--70ns
©2003 Fairchild Semiconductor Corporation HUF76121P3, HUF76121S3S Rev. C1
Page 3
HUF76121P3, HUF76121S3S
Electrical Specifications T
= 25oC, Unless Otherwise Specified (Continue d)
A
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time t Turn-On Delay Time t Rise Time t Turn-Off Delay Time t Fall Time t Turn-Off Time t
GATE CHARGE SPECIFICATIONS
Total Gate Charg e Q Gate Charge at 5V Q Threshold Gat e Ch arg e Q Gate to Source Gate Charg e Q Gate to Drai n “M ill er ” C ha r ge Q
CAPACITANCE SPECIFICATIONS
ON
d(ON)
d(OFF)
OFF
g(TOT)VGS
g(5)
g(TH)
VDD = 15V, ID 47A, RL = 0.32Ω, V (Figures 16, 21 , 22)
r
f
VGS = 0V to 5V - 13 16 nC VGS = 0V to 1V - 1.0 1.2 nC
gs
gd
= 10V, RGS = 12.5
GS
= 0V to 10V VDD = 15V, ID 25A,
R
= 0.6
L
I
= 1.0mA
g(REF)
(Figures 14, 1 9, 20)
--80ns
-6-ns
-47-ns
-47-ns
-42-ns
--135ns
-2430nC
-2.50- nC
-7.80- nC
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C
ISS
OSS
RSS
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Vol tage V Reverse Recovery Time t Reverse Recovered Charge Q
SD
rr
RR
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 150
TA, AMBIENT TEMPERATURE (oC)
FIGURE 1. NORMALIZED PO WER DISSIPATION vs CASE
TEMPERATURE
125
VDS = 25V, VGS = 0V, f = 1MHz
-850- pF
(Figur e 13 )
-465- pF
-100- pF
ISD = 25A - - 1.25 V ISD = 25A, dISD/dt = 100A/µs--65ns ISD = 25A, dISD/dt = 100A/µs - - 100 nC
50
40
30
VGS = 4.5V
20
, DRAIN CURRENT (A)
D
I
10
0
25
50 75 100 125 150
TC, CASE TEMPERATURE (oC)
VGS = 10V
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
©2003 Fairchild Semiconductor Corporation HUF76121P3, HUF76121S3S Rev. C1
Page 4
HUF76121P3, HUF76121S3S
Typical Performance Curves (Continued)
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
SINGLE PULSE
0.01
-5
10
-4
10
-3
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
-2
10
t, RECT ANGULAR PULSE DURATION (s)
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-1
10
P
DM
t
1
t
2
1/t2
x R
JC
θ
10
+ T
JC
C
θ
0
1
10
, PEAK CURRENT (A)
DM
I
1000
100
1000
100
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
40
-5
10
VGS = 10V
VGS = 5V
-4
10
-3
10
10
-2
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
TJ = MAX RATED
= 25oC
T
C
100µs
500
100
TC = 25oC
FOR TEMPERATURES ABOVE 25 CURRENT AS FOLLOWS:
-1
10
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0 t
= (L/R) ln [ (IAS*R)/(1.3*RATED BV
AV
o
C DERATE PEAK
25
0
10
- VDD)
DSS
150 - T
125
- VDD) +1]
I = I
DSS
STARTING TJ = 25oC
C
1
10
10
10
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS AREA MAY BE LIMITED BY r
1
1 10 100
DS(ON)
, DRAIN TO SOURCE VOLTAGE (V)
V
DS
BV
DSS MAX
= 30V
1ms
10ms
, AVALANCHE CURRENT (A) I
STARTING TJ = 150oC
AS
1
0.001 0.01 0.1 1 10 100 tAV, TIME IN AVALANCHE (ms)
NO TE: Refer to Fairchild App lication Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
©2003 Fairchild Semiconductor Corporation HUF76121P3, HUF76121S3S Rev. C1
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABIL ITY
Page 5
HUF76121P3, HUF76121S3S
Typical Performance Curves (Continued)
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
80
60
40
, DRAIN CURRENT (A)
D
I
20
0
012345
VGS, GATE TO SOURCE VOLTAGE (V)
25oC
-40oC
V
DD
150oC
= 15V
100
VGS = 10V V
= 5V
GS
80
60
40
, DRAIN CURRENT (A)
D
I
20
0
012345
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
40
35
30
25
ID = 47A
ID = 28A
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
1.6
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX V
= 10V, ID = 47A
GS
1.4
1.2
= 4.5V
V
GS
VGS = 4V
VGS = 3.5V
VGS = 3V
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
, DRAIN TO SOURCE
20
ON RESISTANCE (mΩ)
DS(ON)
r
ID = 15A
15
10
246810
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 9. SOURCE TO DRAIN ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
-60 0 60 120 180 TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.8
-60 0 60 120 180 TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2 ID = 250µA
1.1
1.0
BREAKOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-60.0 0.0 60.0 120 180 TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOL TAGE vs
JUNCTION TEMPERATURE
©2003 Fairchild Semiconductor Corporation HUF76121P3, HUF76121S3S Rev. C1
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
Page 6
HUF76121P3, HUF76121S3S
Typical Performance Curves (Continued)
1200
900
C
C
ISS
OSS
V
= 0V, f = 1MHz
GS
C
= CGS + C
ISS
C
= C
RSS
C
CDS + C
OSS
GD
GD
GD
600
C, CAPACITANCE (pF)
300
0
0 5 10 15 20 25 30
C
RSS
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
500
VGS = 4.5V, VDD = 15V, ID = 24A, RL = 0.63
400
300
200
t
SWITCHING TIME (ns)
100
d(OFF)
0
0
10 20 30 40 50
R
, GATE TO SOURCE RESISTANCE (Ω)
GS
t
r
t
d(ON)
t
f
10
8
6
4
WAVEFORMS IN
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
0 5 10 15 20 25
VDD = 15V
Q
, GATE CHARGE (nC)
g
DESCENDING ORDER:
ID = 47A
= 28A
I
D
I
= 15A
D
NO TE: Refer to Fairchild App lication Notes AN7254 and AN7260.
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
200
VGS = 10V, VDD = 15V, ID = 47A, RL = 0.32
150
100
SWITCHING TIME (ns)
50
0
0
10 20 30 40 50
RGS, GATE TO SOURCE RESISTANCE (Ω)
t
d(OFF)
t
t
t
d(ON)
f
r
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01
0
t
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
©2003 Fairchild Semiconductor Corporation HUF76121P3, HUF76121S3S Rev. C1
t
P
I
AS
t
AV
V
DS
V
DD
Page 7
HUF76121P3, HUF76121S3S
Test Circuits and Waveforms (Continued)
V
DS
R
L
V
GS
DUT
I
g(REF)
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
+
V
-
DD
V
DD
V
0
I
gREF)
0
GS
V
GS
= 1V
Q
g(TH)
Q
g(TOT)
V
DS
Q
g(5)
V
= 10V
GS
VGS = 5V
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
50%
t
10%
r
PULSE WIDTH
FIGURE 21. SWITCHING TIME TEST CIRCUIT FIGURE 22. SWITCHING TIME WAV EFORM
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
©2003 Fairchild Semiconductor Corporation HUF76121P3, HUF76121S3S Rev. C1
Page 8
HUF76121P3, HUF76121S3S
PSPICE Electrical Model
.SUBCKT HUF76121 2 1 3 ; rev March 1998
CA 12 8 1.2e -9 CB 15 14 1.23e-9 CIN 6 8 7.6e-10
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 33.4 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
GATE
IT 8 17 1 LDRAIN 2 5 1e- 9
LGATE 1 9 3.57e- 9 LSOURCE 3 7 4.25e-9
MMED 16 6 8 8 MMEDM OD MSTR O 16 6 8 8 M S T ROMOD MWEAK 16 21 8 8 MWE AKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.5e-3 RGATE 9 20 4 RLDRAIN 2 5 10 RLGATE 1 9 35.7 RLSOURCE 3 7 42.5 RSLC1 5 51 RSL CM OD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 10e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
LGATE
1
RLGATE
RGATE
9
CA
ESG
+
EVTEMP
+
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
-
13
10
6 8
+
+
RSLC2
6
S2A
14 13
S2B
6 8
-
-
DPLCAP
EVTHRES
+
19
8
CIN
15
CB
-
+
-
5
51
5
51
RDRAIN
21
MSTRO
14
5 8
RSLC1
+
ESLC
-
50
16
8
MMED
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
LDRAIN
RLDRAIN
11
+
17 18
DBODY
DRAIN
2
-
LSOURCE
7
RLSOURCE
RVTEMP 19
SOURCE
3
-
VBAT
+
22
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*181),4))} .MODEL DBOD Y M OD D (IS = 4e-13 RS = 6.3e-3 TRS1 = 1e-3 TRS2 = 3e-6 CJO = 1.33e-9 TT = 2.8e-8 M = 0.4 XTI = 4.3 N = 0. 95 I KF = 5)
.MODEL DBREAKMOD D (RS = 1.05e-1 TRS1 = 0 TRS2 = 2.5e-5) .MODEL DPLCAPMOD D (CJO = 7.8e-10 IS = 1e-30 N = 10 M = 0.63) .MODEL MMEDMOD NMOS (VTO = 1.8 KP = 3.5 IS = 1e-3 0 N = 10 TOX = 1 L = 1u W = 1u RG = 4) .MODEL MSTROM OD NMOS (VTO = 2. 08 K P = 65 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.54 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 40 RS = 0.1) .MODEL RBR EAKMOD RES (TC 1 = 9. 7e-4 TC2 = 7e-7) .MODEL RDRAINMOD RES (TC1 = 1.6e-2 TC2 = 4e-5) .MODEL RSLC M OD RES (TC1 = 5e- 3 TC2 = 8e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -1.7e-3 TC2 = -4e-6 ) .MODEL RVT EMPMOD R ES (T C1 = -1.2e-3 TC2 = 1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5 VOFF= -3) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3 VOFF= -5) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF= 2) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2 VOFF= -0.5)
.ENDS
NOTE: For further discussi on of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global T emperature Opti ons; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2003 Fairchild Semiconductor Corporation HUF76121P3, HUF76121S3S Rev. C1
Page 9
HUF76121P3, HUF76121S3S
SABER Electrical Model
REV March 1998 template huf76121 n2, n1, n3
elec trical n2 , n1, n3 { var i iscl d..model db odymod = (is = 4e-13 , xti = 4.3, cjo = 1.33e-9, tt = 2.8e-8, n = 0.95, m = 0.4) d..model dbreakmod = () d..model dp lcapmod = (cjo = 7.8e-10, is = 1e-30, n = 10, m = 0.6 3) m..model mme dm od = (type=_n, vt o = 1. 8, kp = 3.5, is = 1e-30, tox = 1) m..model mst rongmod = (type=_n, vto = 2.08, kp = 65, is = 1e-30, tox = 1) m..model mweakmod = (type =_n, vto = 1.54, kp = 0.1, i s = 1e- 30, tox = 1) sw_vcsp.. mo del s 1am od = (ron = 1e-5, rof f = 0.1, von = -5, voff = -3) sw_vcsp.. mo del s 1bm od = (ron = 1e-5, rof f = 0.1, von = -3, voff = -5) sw_vcsp.. mo del s 2am od = (ron = 1e-5, rof f = 0.1, von = -0.5, voff = 2) sw_vcsp.. mo del s 2bm od = (ron = 1e-5, rof f = 0.1, von = 2, voff = -0.5)
c.ca n12 n8 = 1.2e-9 c.cb n15 n14 = 1.23e-9 c.cin n6 n8 = 7.6e -10
d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbr eakmod
ESG
d.dplcap n10 n5 = m odel=dplcapmod i.it n8 n17 = 1
GATE
l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 3.57e-9 l.lsource n3 n7 = 4.25e-9
LGATE
1
RLGATE
9
RGATE
EVTEMP +
20
m.mmed n16 n6 n8 n8 = m odel=mmed m od, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=m s trongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
res.rbreak n17 n18 = 1, tc1 = 9.7e-4, tc2 = 7e-7 res.rdbody n71 n5 = 6.3e-3, tc1 = 1e-3, tc2 = 3e-6
12
S1A
res.rdbreak n72 n5 = 1.05e-1, tc1 = 0, tc2 = 2.5e- 5 res.rdrain n50 n16 = 2.5e-3, tc 1 = 1.6 e-2, tc2 = 4e-5 res.rgat e n9 n20 = 4 res.rldrai n n2 n5 = 10 res.rlgate n1 n9 = 35.7
S1B
CA
res.rlsource n3 n7 = 42.5 res.rslc1 n5 n51 = 1e-6, tc1 = 5e-3, tc2 = 8e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 10e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.2 e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -1.7e -3, tc2 = -4e-6
spe.ebreak n11 n7 n17 n18 = 33.4 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1
DPLCAP
10
RSLC2
-
6 8
EVTHRES
+
+
6
-
18 22
S2A
13
14
8
13
S2B
13
+
+
6
EGS EDS
8
-
-
5
RSLC1
51
ISCL
50 RDRAIN
16
21
-
19
8
MSTRO
CIN
15
CB
8
14
+
5 8
-
MMED
RDBREAK
72
DBREAK
11
MWEAK
EBREAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
17 18
-
7
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
RDBODY
71
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
sw_vcsp.s1 a n6 n12 n13 n8 = model=s 1amod sw_vcsp.s1 b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2 a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2 b n13 n15 n14 n13 = mod el= s2bmod
v.vbat n22 n19 = dc = 1 equations {
i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v (n5,n51))))*((abs(v (n5,n51)*1e6/181))** 4)) } }
©2003 Fairchild Semiconductor Corporation HUF76121P3, HUF76121S3S Rev. C1
Page 10
HUF76121P3, HUF76121S3S
SPICE Thermal Model
REV March 1998
HUF76121
CTHERM1 th 6 1.1e-3 CTHERM2 6 5 2.9e-3 CTHERM3 5 4 3.2e-3 CTHERM4 4 3 1.5e-2 CTHERM5 3 2 3.9e-1 CTHERM6 2 tl 2.2
RTHERM1 th 6 1.0e-4 RTHERM2 6 5 2.0e-3 RTHERM3 5 4 3.4e-1 RTHERM4 4 3 4.6e-1 RTHERM5 3 2 1.8e-1 RTHERM6 2 tl 7.0e-2
SABER Thermal Model
Saber thermal model HUF76121 template thermal_model th tl
thermal_c th, tl { ctherm.ctherm1 th 6 = 1.1e-3 ctherm.ctherm2 6 5 = 2.9e-3 ctherm.ctherm3 5 4 = 3.2e-3 ctherm.ctherm4 4 3 = 1.5e-2 ctherm.ctherm5 3 2 = 3.9e-1 ctherm.ctherm6 2 tl = 2.2
rtherm.rtherm1 th 6 = 1.0 e-4 rtherm.rtherm2 6 5 = 2.0e -3 rtherm.rtherm3 5 4 = 3.4e -1 rtherm.rtherm4 4 3 = 4.6e -1 rtherm.rtherm5 3 2 = 1.8e -1 rtherm.rtherm6 2 tl = 7.0e-2 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
RTHERM6
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
CASE
tl
©2003 Fairchild Semiconductor Corporation HUF76121P3, HUF76121S3S Rev. C1
Page 11
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ ActiveArray™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™
2
E
CMOS™ EnSigna™ Across the board. Around the world.™ The Power F ranchise™ Programma ble Active Droop™
FACT™ FACT Quiet Series™
®
FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™
2
I
C™
ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC
®
OPTOPLANAR™
PACMAN™ POP™ Power247™ PowerTrench
®
QFET™ QS™ QT Optoelectronics™ Quiet Se ries™ RapidConfigure™ RapidConnect™ SILENT SWITCHER SMART START™
SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic TruTranslation™ UHC™ UltraFET
®
VCX™
®
®
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) ar e int ende d fo r s urgic al i mpla nt into the bo dy, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A c r it ic al c om ponen t i s an y c om po nent o f a l ife su pp ort device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Adva nce Information Formative or In
Design
Preliminary First Production This datasheet contai ns preliminary data, and
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Obsolete Not In Producti on This datasheet contain s specifications on a product
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
supple m entary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Semiconductor reserves the right to make changes at any time without notice in order to improve design.
that has been disco ntinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I2
Loading...