Page 1
Data Sheet December 2001
11A, 200V, 0.275 Ohm, N-Channel,
UltraFET® Power MOSFETs
HUF75925P3, HUF75925D3ST
Packaging
JEDEC TO-220AB JEDEC TO-252AA
HUF75925P3
Symbol
SOURCE
DRAIN
DRAIN
(FLANGE)
G
GATE
Features
• Ultra Low On-Resistance
GATE
SOURCE
DRAIN
(FLANGE
-r
• Simulation Models
- Temperature Compensated PSPICE® and SABER™
Electrical Models
- Spice and SABER Thermal Impedance Models
DS(ON)
= 0.275Ω, V
GS
= 10V
- www.fairchildsemi.com
HUF75925D3ST
• Peak Cu rrent vs Pulse Width Curve
• UIS Rating Curve
Ordering Information
D
S
PART NUMBER PACKAGE BRAND
HUF75925P3 TO-220AB 75925P
HUF75925D3ST TO-252AA 75925D
NOTE: When ordering, use the entire part number.
Absolute Maximum Ratings
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (R
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain Current
Continuous (T
Continuous (TC= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 14, 15
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
NOTE:
1. T
= 25oC to 150oC.
J
CAUTION: Stresses above those listed in “ Absolute M aximum Ratings” may cause perm anent damage to th e device. This is a stress onl y rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
©2001 Fairchild Semiconductor Corpo ration HUF75925P3, HUF75925D3ST Rev. B
C
= 20kΩ ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GS
= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
TC = 25oC, Unless Otherwise Specified
HUF75925P3,
HUF75925D3ST UNITS
DSS
DGR
GS
D
D
DM
D
, T
J
STG
L
pkg
200 V
200 V
± 20 V
11
8
Figure 4
100
1.5
-55 to 175
300
260
A
A
W
W/oC
o
C
o
C
o
C
Page 2
HUF75925P3, HUF75925D3ST
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BV
Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V
Drain to Source On Resistance r
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case R
Thermal Resistance Junction to
Ambient
SWITCHING SPECIFICATIONS (V
GS
= 10V)
Turn-On Time t
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
Turn-Off Time t
GATE CHARGE SPECIFICATIONS
Total Gate Charge Q
Gate Charge at 10V Q
Threshold Gate Charge Q
Gate to Source Gate Charge Q
Gate to Drain "Miller" Charge Q
CAPACITANCE SPECIFICATIONS
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
DSSID
DSS
VDS = 190V, VGS = 0V - - 1 µA
V
GSS
GS(TH)VGS
DS(ON)ID
θ JC
R
θ JA
VGS = ±20V - - ±100 nA
TO-220 - - 1.5
TO-220 - - 62
TO-252 - - 100
ON
VDD = 100V, ID = 11A
V
d(ON)
d(OFF)
OFF
g(TOT)VGS
g(10)
g(TH)
ISS
OSS
RSS
R
(Figures 18, 19)
r
f
VGS = 0V to 10V - 32 42 nC
VGS = 0V to 2V - 2.0 3.2 nC
gs
gd
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
= 250µ A, VGS = 0V (Figure 11) 200 - - V
= 180V, VGS = 0V, TC = 150oC - - 250 µA
DS
= VDS, ID = 250µ A (Figure 10) 2 - 4 V
= 11A, V GS = 10V (Figure 9) - 0.220 0.275 ¾
o
o
o
- - 45 ns
= 10V,
GS
GS
= 12Ω
-9-n s
-2 1-n s
-6 0-n s
- 27 - ns
- - 130 ns
= 0V to 20V VDD = 100V,
= 11A,
I
D
I
= 1.0mA
g(REF)
-5 97 8n C
(Figures 13, 16, 17)
-4 . 0-n C
-1 1-n C
- 1030 - pF
- 120 - pF
-1 5-p F
C/W
C/W
C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TE ST CONDIT IONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V
Reverse Recovery Time t
Reverse Recovered Charge Q
©2001 Fairchild Semiconductor Corpo ration HUF75925P3, HUF75925D3ST Rev. B
SD
rr
RR
ISD = 11A - - 1.25 V
= 5A - - 1.00 V
I
SD
ISD = 11A, dISD/dt = 100A/µs - - 190 ns
ISD = 11A, dISD/dt = 100A/µs - - 940 nC
Page 3
Typical Performance Curves
HUF75925P3, HUF75925D3ST
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
150
02 55 07 51 0 0 1 7
125
TC, CASE TEMPERA TURE (oC)
FIGURE 1. NORMALIZED POWER DISSIP ATION vs CASE
TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
12
9
V
= 10V
GS
6
, DRAIN CURRENT (A)
3
D
I
0
25 50 75 100 125 150 17
TC, CASE TEMPERA TURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
0.1
, NORMALIZED
θ JC
Z
THERMAL IMPEDANCE
0.01
-5
10
200
100
, PEAK CURRENT (A)
DM
I
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10
-5
10
VGS = 10V
NOTES:
SINGLE PULSE
-4
10
-3
10
10
DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-2
-1
10
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
θ JC
1/t2
x R
+ T
C
θ JC
TC = 25oC
FOR TEMPERATURES
ABOVE 25
CURRENT AS FOLLOWS:
I = I
25
10
P
DM
t
1
t
0
10
o
C DERATE PEAK
175 - T
C
150
0
2
1
10
10
FIGURE 4. PEAK CURRENT CAPAB ILIT Y
©2001 Fairchild Semiconductor Corpo ration HUF75925P3, HUF75925D3ST Rev. B
Page 4
HUF75925P3, HUF75925D3ST
Typical Performance Curves
100
10
OPERATION IN THIS
AREA MAY BE
1
, DRAIN CURRENT (A)
D
I
0.1
LIMITED BY r
11 0
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
SINGLE PULSE
TJ = MAX RATED
T
C
(Continued)
= 25oC
100 50
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
20
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
V
= 15V
DD
15
10
TJ = 175oC
DRAIN CURRENT (A)
5
D,
I
0
234
VGS, GATE TO SOURCE VOLTAGE (V)
100µs
1ms
10ms
TJ = -55oC
TJ = 25oC
100
10
, AVALANCHE CURRENT (A)
AS
I
If R = 0
tAV = (L)(IAS)/(1.3*RATED BV
If R ≠ 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
STARTING TJ = 150oC
1
0.001 0.01 0.1 1
tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
DSS
STARTING TJ = 25oC
- VDD) +1]
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
20
15
10
, DRAIN CURRENT (A)
5
D
I
0
01234
VGS = 10V
= 5V
V
GS
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
= 25oC
T
C
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 4.5V
10
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
3.5
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
3.0
2.5
2.0
1.5
ON RESISTANCE
1.0
0.5
NORMALIZED DRAIN TO SOURCE
0.0
-80 -40 0 40 80 120 160 20
TJ, JUNCTION TEMPERATURE (oC)
VGS = 10V, ID = 11A
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
©2001 Fairchild Semiconductor Corpo ration HUF75925P3, HUF75925D3ST Rev. B
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
-80 -40 0 40 80 120 160 20
TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
FIGURE 10. NORMALIZED GA TE THRESHOLD VOL TAGE vs
JUNCTION TEMPERATURE
Page 5
HUF75925P3, HUF75925D3ST
Typical Performance Curves
1.3
ID = 250µA
1.2
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
(Continued)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
VDD = 100V
8
3000
1000
C
OSS
100
C, CAPACITANCE (pF)
10
0.1 1 10 100
VDS, DRAIN TO SOURCE VOLTAGE (V)
≅ C
DS
+ C
GD
C
V
RSS
= 0V, f = 1MHz
GS
C
= C
ISS
= C
GD
GS
+ C
GD
200
FIGURE 12. CAPA C ITANCE vs DRAIN TO SOURCE VOLTAGE
, GATE TO SOURCE VOLTAGE (V)
GS
V
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Wavefo rms
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
AS
R
G
6
4
WAVEFORMS IN
2
0
0 5 10 15 20 25 30 35
, GATE CHARGE (nC)
Q
g
V
DS
L
+
V
DD
-
DUT
DESCENDING ORDER:
ID = 11A
= 5A
I
D
BV
DSS
t
P
I
AS
V
DS
V
DD
0V
P
I
AS
0.01Ω
0
t
AV
t
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
©2001 Fairchild Semiconductor Corpo ration HUF75925P3, HUF75925D3ST Rev. B
Page 6
HUF75925P3, HUF75925D3ST
Test Circuits and Wavefo rms
V
DS
V
GS
I
g(REF)
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS
V
(Continued)
R
L
DUT
DS
R
L
V
DD
+
V
DD
-
V
GS
0
g(REF)
V
GS
= 2V
Q
g(TH)
Q
gs
Q
V
DS
g(10)
Q
gd
Q
g(TOT)
VGS = 10V
V
= 20
GS
0
t
ON
t
d(ON)
t
V
DS
90%
r
t
d(OFF)
t
OFF
t
f
90%
V
GS
+
V
DD
-
0
10%
DUT
R
GS
V
GS
V
GS
10%
0
50%
PULSE WIDTH
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. SWITCHING TIME WAVEFORM
10%
90%
50%
©2001 Fairchild Semiconductor Corpo ration HUF75925P3, HUF75925D3ST Rev. B
Page 7
HUF75925P3, HUF75925D3ST
PSPICE Electrical Model
.SUBCKT HUF75925 2 1 3 ; rev 19 October 2000
CA 12 8 1.6e-9
CB 15 14 1.75e-9
CIN 6 8 9.3e-8
DBODY 7 5 DBODYMOD
DBREAK 5 11 D B REAK MOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 227
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRAIN 2 5 1e-9
LGATE 1 9 5.12e-9
LSOURCE 3 7 4.24e-9
GATE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.98e-1
RGATE 9 20 1.61
RLDRAIN 2 5 10
RLGATE 1 9 51.2
RLSOURCE 3 7 42.4
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 1e-2
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTE MPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
7
RVTEMP
19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
DPLCAP
10
RSLC2
-
6
ESG
8
EVTHRES
+
LGATE
1
RLGATE
9
RGATE
CA
EVTEMP
+
18
22
20
S1A
12
13
8
S1B
EGS EDS
+
6
-
S2A
14
13
S2B
13
+
+
6
8
-
-
5
RSLC1
51
+
5
ESLC
51
-
50
RDRAIN
16
21
-
19
8
MMED
MSTRO
CIN
15
CB
+
8
14
5
8
-
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
11
+
17
18
-
ESLC 51 50 VALUE={(V (5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*19),2.5))}
.MODEL DBODYMOD D (IS = 1e-12 N=1.02 RS = 7.75e-3 TRS1 = 2.5e-3 TRS2 = 2e-5 CJO = 8.5e-10 TT = 9.6e-6 M = 0.61 XTI=5.5)
.MODEL DBREAKMOD D (RS = 4. 2TRS1 = 1e- 3TRS2 = -8.9e-6)
.MODEL DPLCAPMOD D (CJO = 1.15e- 9IS = 1e-30 N = 10 M = 0.86)
.MODEL MMEDMOD NMOS (VTO = 3.25 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.61)
.MODEL MSTROMOD NMOS (VTO = 3.65 KP = 28 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKM OD NMOS (VTO = 2. 8 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 16.1 RS=.1)
.MODEL RBREAKMOD RES (TC1 =1.3e- 3TC2 = 2e-6)
.MODEL RDRAINMOD RES (TC1 = 1e-2 TC2 = 3.7e-5)
.MODEL RSLCMOD RES (TC1 = 4e-3 TC2 = 1e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -2e-3 TC2 = -1.3e-5)
.MODEL RVTEMPMOD RES (TC1 = -3e- 3TC2 = 1.9e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.5 VOFF= -.5)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VO N = -.5 VOFF= -7.5)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.1 VOFF= 0.2)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.2 VOFF= -0.1 )
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options ; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2001 Fairchild Semiconductor Corpo ration HUF75925P3, HUF75925D3ST Rev. B
Page 8
HUF75925P3, HUF75925D3ST
SABER Electrical Model
REV 19 October 2000
template huf75925 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodym od = (isl = 1e-12, rs = 7.75e-3, xt i = 5.5, trs1 = 2.5e-3, trs2 = 2e-5, cjo = 8.5e-10, tt = 9.6e-6, m = 0.61)
dp..model dbreakmod = (rs = 4.2, trs1 = 1e-3, trs2 = -8.9e-6)
dp..model dplcapmod = (c jo = 1.15e-9, isl = 10e-30, nl=10, m = 0. 86)
m..model mmedmod = (typ e=_n, vto = 3.25, kp = 5, isl = 1e-3 0, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.65, kp = 28, isl = 1e-30, tox = 1)
m..model mweakmod = (type=_ n, vto = 2.8, kp = 0.05, isl = 1e-30, tox = 1, rs=0.1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7.5, voff = -.5)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -.5, voff = -7.5)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.1, voff = 0.2)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.1)
c.ca n12 n8 = 1.6e-9
c.cb n15 n14 = 1.75e-9
c.cin n6 n8 = 9.3e-8
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 5.12e-9
l.lsource n3 n7 = 4.24e-9
GATE
LGATE
1
RLGATE
RGATE
9
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1 = 1.3e-3, tc2 = 2e-6
res.rdrain n50 n16 = 1.98e-5, tc1 = 1e-2, tc2 =3.7e-5
res.rgate n9 n20 = 1.61
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 51.2
res.rlsource n3 n7 = 42.4
res.rslc1 n5 n51= 1e-6, tc1 = 4e-3, tc2 = -1e-6
CA
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 10e-3, tc1 = 1e-3, tc2 =1e-6
res.rvtemp n18 n19 = 1, tc1 = -2e-3, tc2 = -1.3e-5
res.rvthres n22 n 8 = 1, tc1 = -3e-3, tc2 = 1.9e-6
spe.ebreak n11 n7 n17 n18 = 227
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc =1
ESG
EVTEMP
+
18
22
20
S1A
12
13
S1B
EGS EDS
DPLCAP
10
RSLC2
-
6
8
EVTHRES
+
+
6
-
S2A
14
13
8
S2B
13
+
+
6
8
-
-
5
RSLC1
51
ISCL
MMED
DBREAK
MWEAK
EBREAK
RSOURCE
17 18
IT
8
50
RDRAIN
16
21
-
19
8
MSTRO
CIN
15
CB
8
14
+
5
8
-
11
+
17
18
-
RBREAK
RVTHRES
7
RLSOURCE
RVTEMP
19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
VBAT
DRAIN
2
SOURCE
3
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51) )))*((abs(v(n5,n51)*1e6*19))** 2 .5))
}
}
©2001 Fairchild Semiconductor Corpo ration HUF75925P3, HUF75925D3ST Rev. B
Page 9
SPICE Thermal Model
REV 19 October 2000
HUF75925T
CTHERM1 th 6 8.0e-4
CTHERM2 6 5 2.6e-3
CTHERM3 5 4 3.5e-3
CTHERM4 4 3 5.2e-3
CTHERM5 3 2 7.0e-3
CTHERM6 2 tl 3.3e-2
RTHERM1 th 6 1.0e-3
RTHERM2 6 5 4.5e-3
RTHERM3 5 4 4.2e-2
RTHERM4 4 3 2.5e-1
RTHERM5 3 2 3.9e-1
RTHERM6 2 tl 5.0e-1
HUF75925P3, HUF75925D3ST
RTHERM1
RTHERM2
JUNCTION
th
CTHERM1
6
CTHERM2
5
SABER Thermal Model
SABER thermal model HUF75925T
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 8.0e-4
ctherm.ctherm2 6 5 = 2.6e-3
ctherm.ctherm3 5 4 = 3.5e-3
ctherm.ctherm4 4 3 = 5.2e-3
ctherm.ctherm5 3 2 = 7.0e-3
ctherm.ctherm6 2 tl = 3.3e-2
rtherm.rtherm1 th 6 = 1.0e-3
rtherm.rtherm2 6 5 = 4.5e-3
rtherm.rtherm3 5 4 = 4.2e-2
rtherm.rtherm4 4 3 = 2.5e-1
rtherm.rtherm5 3 2 = 3.9e-1
rtherm.rtherm6 2 tl = 5.0e-1
}
RTHERM3
RTHERM4
RTHERM5
RTHERM6
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
tl
CASE
©2001 Fairchild Semiconductor Corpo ration HUF75925P3, HUF75925D3ST Rev. B
Page 10
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
Bottomless™
CoolFET™
CROSSVOLT ™
DenseTrench™
DOME™
EcoSPARK™
E2CMOS
EnSigna
TM
TM
FACT™
FACT Quiet Series™
STAR*POWER is used under license
FAST
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or
In Design
First Production
Full Production
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. H4