Page 1
查询HUF75631S3ST供应商
Data Sheet December 2001
33A, 100V, 0.040 Ohm, N-Channel,
UltraFET® Power MOSFETs
Packaging
HUF75631P3, HUF75631S3ST
JEDEC TO-220AB JEDEC TO-263AB
DRAIN
(FLANGE)
DRAIN
(FLANGE)
HUF75631P3
SOURCE
DRAIN
GATE
GATE
SOURCE
HUF75631S3ST
Features
• Ultra Low On-Resistan ce
-r
• Simulation Models
- Temperature Compensated PSPICE® and SABER™
Electrical Models
- Spice and SABER Thermal Impedance Models
- www.fairchildsemi.com
DS(ON)
= 0.040Ω, V
GS
= 10V
• Peak Cu rrent vs Pulse Width Curve
• UIS Rating Curve
Symbol
Ordering Information
D
G
S
Absolute Maximum Ratings
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (R
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain Current
Continuous (T
Continuous (TC = 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 14, 15
Power Dissipation 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
NOTE:
= 25oC to 150oC.
1. T
J
CAUTION: Stresses above those listed in “ Absolute M aximum Ratings” may cause perm anent damage to the device. This is a stress on ly rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
C
= 20kΩ ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
GS
= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
TC = 25oC, Unless Otherwise Specified
PART NUMBER PACKAGE BRAND
HUF75631P3 TO-220AB 75631P
HUF75631S3ST TO-263AB 75631S
NOTE: When ordering, use the entire part number, e.g.,
HUF75631S3ST.
HUF75631P3
HUF75631S3ST UNITS
DSS
DGR
GS
D
D
DM
D
, T
J
STG
L
pkg
100 V
100 V
± 20 V
33
23
Figure 4
120
0.80
-55 to 175
300
260
A
A
W
W/oC
o
C
o
C
o
C
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
©2001 Fairchild Semiconductor Corpo ration HUF75631P3, HUF75631S3ST Rev. B
For severe environments, see our Automotive HUFA series.
Page 2
HUF75631P3, HUF75631S3ST
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BV
Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V
Drain to Source On Resistance r
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case R
Thermal Resistance Junction to
Ambient
SWITCHING SPECIFICATIONS (V
GS
= 10V)
Turn-On Time t
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
Turn-Off Time t
GATE CHARGE SPECIFICATIONS
DSSID
DSS
GSS
GS(TH)VGS
DS(ON)ID
θ JC
R
θ JA
ON
d(ON)
VDS = 95V, VGS = 0V - - 1 µA
V
DS
VGS = ±20V - - ±100 nA
TO-220, TO-263 - - 1.25
VDD = 50V, ID = 33A
V
GS
R
GS
(Figures 18, 19)
r
d(OFF)
f
OFF
= 250µ A, VGS = 0V (Figure 11) 100 - - V
= 90V, VGS = 0V, TC = 150oC - - 250 µA
= VDS, ID = 250µ A (Figure 10) 2 - 4 V
= 33A, V GS = 10V (Figure 9) - 0.033 0.040 Ω
o
C/W
--6 2oC/W
- - 100 ns
= 10V,
= 9.1Ω
-9 . 5-n s
-5 7-n s
-4 0-n s
- 55 - ns
- - 145 ns
Total Gate Charge Q
Gate Charge at 10V Q
Threshold Gate Charge Q
g(TOT)VGS
g(10)
g(TH)
Gate to Source Gate Charge Q
Gate to Drain “Miller” Charge Q
CAPACITANCE SPECIFICATIONS
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
ISS
OSS
RSS
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V
Reverse Recovery Time t
Reverse Recovered Charge Q
SD
RR
= 0V to 20V VDD = 50V,
= 33A,
I
VGS = 0V to 10V - 35 42 nC
VGS = 0V to 2V - 2.4 2.9 nC
gs
gd
D
I
= 1.0mA
g(REF)
(Figures 13, 16, 17)
VDS = 25V, VGS = 0V,
-6 67 9n C
-5 . 4-n C
-1 3-n C
- 1220 - pF
f = 1MHz
(Figure 12)
- 295 - pF
- 100 - pF
ISD = 33A - - 1.25 V
I
= 17A - - 1.00 V
SD
rr
ISD = 33A, dISD/dt = 100A/µs - - 112 ns
ISD = 33A, dISD/dt = 100A/µs - - 400 nC
©2001 Fairchild Semiconductor Corpo ration HUF75631P3, HUF75631S3ST Rev. B
Page 3
Typical Performance Curves
HUF75631P3, HUF75631S3ST
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 17
125
150
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIP A TI ON vs CASE
TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θ JC
Z
THERMAL IMPEDANCE
SINGLE PULSE
0.01
-5
10
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
40
30
V
GS
20
, DRAIN CURRENT (A)
D
I
10
0
25
50 75 100 125 150
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
P
DM
t
1
NOTES:
DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-2
10
-1
10
θ JC
10
1/t2
0
x R
θ JC
+ T
= 10V
t
2
17
C
1
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
600
100
, PEAK CURRENT (A)
DM
I
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
20
-5
10
VGS = 10V
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC
FOR TEMPERATURES
ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
0
10
C
150
10
FIGURE 4. PEAK CURRE NT CAPAB ILITY
©2001 Fairchild Semiconductor Corpo ration HUF75631P3, HUF75631S3ST Rev. B
1
Page 4
HUF75631P3, HUF75631S3ST
Typical Performance Curves
300
100
10
OPERATION IN THIS
AREA MAY BE
, DRAIN CURRENT (A)
LIMITED BY r
D
I
1
1
DS(ON)
10 30
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
(Continued)
SINGLE PULSE
TJ = MAX RATED
T
C
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
60
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
= 15V
V
DD
= 25oC
100
100µs
1ms
10ms
200
100
, AVALANCHE CURRENT (A)
AS
I
10
0.001 0.01 0.1
If R = 0
tAV = (L)(IAS)/(1.3*RATED BV
If R ≠ 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
STARTING TJ = 150oC
tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
60
VGS = 20V
V
= 10V
GS
VGS = 7V
V
= 6V
GS
40
20
DRAIN CURRENT (A)
D,
I
0
234
VGS, GATE TO SOURCE VOLTAGE (V)
TJ = 175oC
TJ = -55oC
TJ = 25oC
5
40
20
, DRAIN CURRENT (A)
D
I
0
01 2 3
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
T
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
3.0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
2.5
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 20
TJ, JUNCTION TEMPERATURE (oC)
VGS = 10V, ID = 33A
160
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
-80 -40 0 40 80 120 20
TJ, JUNCTION TEMPERATURE (oC)
VGS = 5V
= 25oC
C
VGS = VDS, ID = 250µA
160
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
©2001 Fairchild Semiconductor Corpo ration HUF75631P3, HUF75631S3ST Rev. B
FIGURE 10. NORMALIZED GA TE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
Page 5
HUF75631P3, HUF75631S3ST
Typical Performance Curves
1.2
ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 20
TJ, JUNCTION TEMPERATURE (oC)
(Continued)
160 160
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
VDD = 50V
8
6
4000
1000
C
OSS
100
C, CAPACITANCE (pF)
20
0.1 1.0 10 10
VDS, DRAIN TO SOURCE VOLTAGE (V)
≅ C
DS
+ C
GD
C
V
C
RSS
= 0V, f = 1MHz
GS
= C
ISS
GS
= C
GD
+ C
GD
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
4
WAVEF ORMS IN
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
01 02 03 04
, GATE CHARGE (nC)
Q
g
DESCENDING ORDER:
ID = 33A
= 17A
I
D
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
©2001 Fairchild Semiconductor Corpo ration HUF75631P3, HUF75631S3ST Rev. B
Page 6
HUF75631P3, HUF75631S3ST
Test Circuits and Waveforms
V
DS
BV
DSS
L
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01Ω
0
t
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
V
I
g(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
V
GS
0
g(REF)
0
V
GS
= 2V
Q
g(TH)
Q
gs
t
P
I
AS
t
AV
Q
g(TOT)
V
DS
Q
g(10)
VGS = 10V
Q
gd
V
DS
V
DD
V
= 20
GS
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS
V
DS
R
L
V
GS
+
V
DD
-
V
DS
0
DUT
R
GS
V
GS
V
GS
10%
0
t
d(ON)
90%
t
ON
50%
t
10%
r
PULSE WIDTH
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. SWITCHING TIME WAVEFORM
©2001 Fairchild Semiconductor Corpo ration HUF75631P3, HUF75631S3ST Rev. B
Page 7
HUF75631P3, HUF75631S3ST
PSPICE Electrical Model
.SUBCKT HUF75631 2 1 3 ; rev 19 July 1999
CA 12 8 1.95e-9
CB 15 14 1.90e-9
CIN 6 8 1.12e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 D B REAK MOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 112.8
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRAIN 2 5 1.0e-9
LGATE 1 9 6.19e-9
LSOURCE 3 7 2.18e-9
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 2.00e-2
RGATE 9 20 1.77
RLDRAIN 2 5 10
RLGATE 1 9 26
RLSOURCE 3 7 11
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 6.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTE MPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
GATE
LGATE
1
RLGATE
RGATE
9
CA
-
ESG
+
EVTEMP
+
-
18
22
20
S1A
12
13
8
S1B
EGS EDS
13
10
6
8
+
+
RSLC2
6
S2A
14
13
S2B
6
8
-
-
DPLCAP
EVTHRES
+
19
8
CIN
15
CB
-
+
51
5
8
-
5
RSLC1
51
+
5
-
50
RDRAIN
21
MSTRO
14
ESLC
16
8
MMED
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
LDRAIN
RLDRAIN
11
+
17
18
DBODY
DRAIN
2
-
LSOURCE
7
RLSOURCE
RVTEMP
19
SOURCE
3
-
VBAT
+
22
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*71),3.5))}
.MODEL DBODYMOD D (IS = 1.20e-12 RS = 4.2e-3 XTI = 5 TRS1 = 1.3e-3 TRS2 = 8.0e-6 CJO = 1.50e-9 TT = 7.47e-8 M = 0.63)
.MODEL DBREAKMOD D (RS = 4.2e- 1TRS1 = 8e- 4TRS2 = 3e-6)
.MODEL DPLCAPMOD D (C JO = 1.45e- 9IS = 1e-3 0M = 0 .82)
.MODEL MMEDMOD NMOS (VTO = 3.11 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.77)
.MODEL MSTROMOD NMOS (VTO = 3.57 KP = 33.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKM OD NMOS (VTO = 2 . 68 K P = 0.09 IS = 1e- 3 0 N = 10 TO X = 1 L = 1u W = 1u RG = 17.7 )
.MODEL RBREAKMOD RES (TC1 =1.05e- 3TC2 = -5e-7)
.MODEL RDRAINMOD RES (TC1 = 9.40e-3 TC2 = 2.93e-5)
.MODEL RSLCMOD RES (TC1 = 3.5e-3 TC2 = 2.0e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -1.8e-3 TC2 = -8.6e-6)
.MODEL RVTEMPMOD RES (TC1 = -3.0e- 3TC2 =1.5e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.2 VOFF= -3.1)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.1 VOFF= -6.2)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.0 VOFF= 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.0)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options ; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2001 Fairchild Semiconductor Corpo ration HUF75631P3, HUF75631S3ST Rev. B
Page 8
HUF75631P3, HUF75631S3ST
SABER Electrical Model
REV 19 July 1999
template huf75631 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 1.20e-12, cjo = 1.50e-9, tt = 7.47e-8, xti = 5, m = 0.63)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 1.45e-9, is = 1e-30, m = 0.82)
m..model mmedmod = (type=_n, vto = 3.11, kp = 5, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.57, kp = 33.5, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.68, kp = 0.09, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.2, voff = -3.1)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -3.1, voff = -6.2)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.0)
c.ca n12 n8 = 1.95e-9
c.cb n15 n14 = 1.90e-9
c.cin n6 n8 = 1.12e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 6.19e-9
l.lsource n3 n7 = 2.18e-9
GATE
LGATE
1
RLGATE
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5.0e-7
res.rdbody n71 n5 = 4.2e-3, tc1 = 1.30e-3, tc2 = 8.0e-6
res.rdbreak n72 n5 = 4.2e-1, tc1 = 8.0e-4, tc2 = 3.0e-6
res.rdrain n50 n16 = 2.00e-2, tc1 = 9.40e-3, tc2 = 2.93e-5
res.rgate n9 n20 = 1.77
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 26
res.rlsource n3 n7 = 11
res.rslc1 n5 n51 = 1e-6, tc1 = 3.5e-3, tc2 = 2.0e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 6.5e-3, tc1 = 1e-3, tc2 = 1e-6
res.rvtemp n18 n19 = 1, tc1 = -3.0e-3, tc2 = 1.5e-7
res.rvthres n22 n 8 = 1, tc1 = -1.8e-3, tc2 = -8.6e-6
RGATE
9
CA
-
ESG
+
EVTEMP
+
-
18
22
20
S1A
12
13
8
S1B
EGS EDS
13
10
6
8
+
+
-
-
DPLCAP
RSLC2
EVTHRES
6
S2A
14
13
S2B
6
8
5
RSLC1
51
ISCL
50
RDRAIN
+
19
21
-
8
MSTRO
CIN
15
CB
14
+
5
8
-
16
8
MMED
RDBREAK
72
DBREAK
11
MWEAK
EBREAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
17
18
-
LDRAIN
RLDRAIN
RDBODY
71
DBODY
LSOURCE
7
RLSOURCE
RVTEMP
19
-
VBAT
+
22
DRAIN
2
SOURCE
3
spe.ebreak n11 n7 n17 n18 = 112.8
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc =1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/71))** 3.5))
}
}
©2001 Fairchild Semiconductor Corpo ration HUF75631P3, HUF75631S3ST Rev. B
Page 9
HUF75631P3, HUF75631S3ST
SPICE Thermal Model
REV 26 July 1999
HUF75631T
CTHERM1 th 6 2.60e-3
CTHERM2 6 5 8.85e-3
CTHERM3 5 4 7.60e-3
CTHERM4 4 3 7.65e-3
CTHERM5 3 2 1.22e-2
CTHERM6 2 tl 8.70e-2
RTHERM1 th 6 9.00e-3
RTHERM2 6 5 1.80e-2
RTHERM3 5 4 9.15e-2
RTHERM4 4 3 2.43e-1
RTHERM5 3 2 3.10e-1
RTHERM6 2 tl 3.21e-1
SABER Thermal Model
SABER thermal model HUF75631T
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 2.60e-3
ctherm.ctherm2 6 5 = 8.85e-3
ctherm.ctherm3 5 4 = 7.60e-3
ctherm.ctherm4 4 3 = 7.65e-3
ctherm.ctherm5 3 2 = 1.22e-2
ctherm.ctherm6 2 tl = 8.70e-2
rtherm.rtherm1 th 6 = 9.00e-3
rtherm.rtherm2 6 5 = 1.80e-2
rtherm.rtherm3 5 4 = 9.15e-2
rtherm.rtherm4 4 3 = 2.43e-1
rtherm.rtherm5 3 2 = 3.10e-1
rtherm.rtherm6 2 tl = 3.21e-1
}
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
RTHERM6
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
tl
CASE
©2001 Fairchild Semiconductor Corpo ration HUF75631P3, HUF75631S3ST Rev. B
Page 10
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
Bottomless™
CoolFET™
CROSSVOLT ™
DenseTrench™
DOME™
EcoSPARK™
E2CMOS
EnSigna
TM
TM
FACT™
FACT Quiet Series™
STAR*POWER is used under license
FAST
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or
In Design
First Production
Full Production
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. H4