Datasheet HPMX-2006-BLK, HPMX-2006-TR1 Datasheet (HP)

Page 1
0.8 – 2.5 GHz
HPMX
2006
YYWW
LO in 1 LO in 2
Ref 3 IF in 4 IF in 5
Amp Ve1 6
Amp RF in 7
enable 8
16 Mixer Vc 15 Gnd 14 Amp Vc 13 Amp RF Out 12 Amp Ve2 11 Amp 1 Ve2 10 Gnd 1 9 Mixer RF Out
Upconverter/Amplifier
Technical Data
HPMX-2006

Features

• Wide Band Operation
RF Output: 800 -2500 MHz IF Input: DC- 900 MHz
• Mixer + Amplifier: 38 mA Mixer only: 15 mA
Standby Mode: <40 µA
• Differential LO and High Impedance IF Inputs
• -8.5 dBm Mixer and +4.5␣ dBm Amplifier Output Power at 1900 MHz
• JEDEC Standard SSOP-16 Surface Mount Package

Applications

• Cordless Handsets and Base Stations
• Wireless Data Terminals
• Cellular/ PCS Handsets and Base Stations

Package Pin Configuration

Plastic SSOP-16

HPMX
2006
YYWW

Description

The HPMX-2006 upconverter/ amplifier IC is designed to meet the needs of cellular and PCS telephone and wireless LAN applications.
The IC consists of a Gilbert Cell mixer optimized for upconversion followed by a post-amplifier. The mixer and amplifier are indepen­dent allowing the insertion of a sideband filter between the two.

Functional Block Diagram

IF INPUT
LO
INPUT
RF OUTPUT AMP INPUT
5966-0455E
ENABLE
HPMX-2006
AMP
OUTPUT
The mixer is double balanced. Both LO and IF inputs may be run either single-endedly, or in differential mode to reduce LO leakage. LO inputs are matched
near 50 ; high impedance IF
inputs allow the mixer to be used as a BPSK modulator. An inte­grated transformer on the mixer RF port creates a single-ended,
matched to 50 output at
1900␣ MHz, and also reduces common mode noise.
7-66
Page 2
The amplifier features a single-
ended 50 match on the input
port. The open collector output is easily matched with a simple 2␣ element network, providing flexible use and good power added efficiency. The amplifier can be disabled to allow use of the mixer alone, reducing the current
draw to around 15 mA. The entire IC can be put into a standby mode reducing current consumption to
under 40 µA from a 3V source.
The SSOP-16 package insures that the IC occupies a minimal amount of printed circuit board space.
The HPMX-2006 is manufactured using Hewlett-Packard’s 30 GHz ISOSAT-II process which com­bines stepper lithography, self alignment, ion implantation techniques and gold metalization to produce state-of-the-art RFICs.
HPMX-2006 Absolute Maximum Ratings
[1]
Mixer Amplifier
Symbol Parameter Units Min. Max. Min. Max.
V
CC
P
diss
Supply Voltage V -0.2 8 -0.2 8
Power Dissipation
[2,3]
m W 174 274
Single-Ended Input Mixer LO Voltage V VC + 0.2
Single-Ended Input Mixer IF Voltage V VC + 0.2
Amplifier Input RF Power dBm +5
T
T
STG
Notes:
1. Operation of this device in excess of any of these parameters may cause permanent damage.
2. T
CASE
3. Derate at 7 mW/°C for T
Recommended operating range of Vcc = 2.7 to 5.5 V, T
Junction Temperature °C -4 0 +150 -4 0 +150
j
Storage Temperature °C -4 0 +150 - 40 +150
Thermal Resistance
θjc = 150°C/W
= 25°C
>82° C.
CASE
= -40 to + 85°C
a

Standard Test Conditions

Unless otherwise stated, all test data was taken on packaged parts under the following conditions:
Vcc = +3.0 VDC, Z LO input: 1750 MHz, -3 dBm, single-ended IF input: 150 MHz, 300 mV Z
out mixer
= Z
in amp
See Figure 11 for test set-up schematic diagram.
= 50 , ambient temperature Ta = 25° C
out
, single-ended, terminated in a 50 pull-up resistor (R1R2 in Figure 11)
p-p
= 50 , Z
per Figure 11 ( (L=2.8 nH, C=2.2 pF)
out amp
[2]
:

HPMX-2006 Guaranteed Electrical Specifications

Standard test conditions apply unless otherwise noted.
Symbol Parameters and Test Conditions Units Min. Typ. Max.
I
mix Sleep Mode Current, Mixer µA20
C
I
amp Sleep Mode Current, Amplifier µA20
C
I
mix Mixer Transmit Current mA 15 18
C
IC amp Amplifier Transmit Current mA 23 28
P
out
P
out
SSB Output Power, Mixer Only dBm -11 -9 Output Power, Amplifier Only (-9.5 dBm in) dBm +2.5 +3.8
7-67
Page 3

HPMX-2006 Summary Characterization Information

Standard test conditions apply unless otherwise noted. Table 2 applies for 900 and 2500 MHz. IF remains 150 MHz for all frequencies.
Performance vs. Frequency 900 MHz 1900 MHz 2500 MHz Units
Mixer RF Output Power, V
Mixer RF Output Power, V
= 300 mV
if
= 30 mV
if
pp
pp
-8 -9 -12.5 d Bm
-28 -28 -32 d Bm
Mixer RF Output Power at 1 dB Gain Compression -7 -8.5 -12 dBm
Mixer Output Third Order Intercept Point +3+2 -4 dBm
Mixer LO Suppression 25 21 18.5 d Bc
Mixer Phase Noise (4 MHz offset) -143 -144 -146 dBm/Hz
Amplifier RF Output Power at P
= -9.5 dBm +9 +3.8 -2 d B m
in
Amplifier RF Output Power at 1 dB Gain Compression +9 +4.5 +2.5 d B m
Amplifier Output Third Order Intercept Point +19 +14 +12 dBm
Small Signal Amplifier Gain 21 14.5 9.5 dB
Amplifier Noise Figure 8.5 9 9.5 dB
Amplifier Input Return Loss 10.5 9.5 10.5 dB
Amplifier Output Return Loss 9.5 6.5 12 dB
Isolation, Mixer Output to Amplifier Input 32 30 30 dB

HPMX-2006 Pin Description Table

No. Mnemonic Description Typical Signal Notes
1 LO differential mixer LO -3 dBm from single-ended, LO identical to LObar. 2 LObar input 50 source DC present (needs Cbl).
3 Ref internal voltage reference Supplies base bias for
AC-coupled IF.
4 IF differential mixer IF -6 dBm from single-ended, IF identical to IFbar.
5 IFbar input 50 W source Must bias per Table 3.
6 AmpVe1 ground 0 V or unconnected Disconnect for mixer only
7 AmpRFin amplifier input -9.5 dBm from 50 source DC present (needs Cbl)
8 Enable chip (amp and mixer) <0.4V disables
enable input >2.5V enables IC
9 MxRFout mixer RF output -9.0 dBm into 50 load At DC ground
10 gnd1 ground 0 V
11 Amp1Ve2 ground 0 V or unconnected Disconnect for mixer only
12 AmpVe2 ground 0 V or unconnected Disconnect for mixer only
13 AmpRFout amplifier output +3 dBm into 50 load DC present (needs Cbl).
RF match required.
14 AmpVc amplifier Vcc input 3 V, 23 mA
15 gnd ground 0 V
16 MxVc mixer Vcc input 3 V, 15 mA
7-68
Page 4

HPMX-2006 Typical Performance

Standard test conditions apply unless otherwise noted.
30
25
20
15
10
CURRENT (mA)
5
0
0231456
TA = +85°C T
A
T
A
T
A
T
A
VOLTAGE (V)
= +50°C = +25°C = +0°C = –40°C
Figure 1. Mixer Device Current vs. Device Voltage over Temperature.
20
15
10
CURRENT (mA)
5
0
0231456
VOLTAGE (V)
Figure 2. Mixer Device Current vs. Device Voltage over Temperature.
TA = +85°C T
= +50°C
A
T
= +25°C
A
T
= +0°C
A
T
= –40°C
A
8
7 6 5 4
3
POWER (dBm)
2 1 0
-40 0 20 40-20 60 80 100
TEMPERATURE (°C)
Pin = -9.5 dBm
Gss
P1dB
Figure 3. Amp. Output at Pin = 9.5 dBm and at 1 dB Compression and Small Signal Gain vs. Temperature.
16
8
GAIN (dB)
0
0
P1dB
-10
-20
-30
POWER (dBm)
-40
-50 0 600 800200 400 1000
FREQUENCY (MHz)
300 mV
30 mV
LO lkg
Figure 4. Mixer Output at Vif = 30 mVpp and 300 mVpp, at P Suppression at Vif = 300 mVpp vs. IF
, and LO
1dB
Frequency.
0
-20
-40
-60
POWER (dBm)
-80
-100 1200
Figure 7. Mixer Output Spectrum for 1 GHz Bandwidth, Centered at 1900 MHz.
0 5
-10
-15
-20
-25
POWER (dBm)
-30
-35
-40
-10 -8 -2 0 2-6 -4
LO lkg
LO POWER (dBm)
300 mV
P1dB
30 mV
Figure 5. Mixer Output at Vif = 30 mVpp and 300 mVpp, at P Suppression at Vif = 300 mVpp vs. LO
, and LO
1dB
Power.
1600 1800 2000 2200 24001400
FREQUENCY (MHz)
-5
-10
-15
-20
-25
POWER (dBm)
-30
-35
-40
-40 20 40 60-20 0 80 100
TEMPERATURE (°C)
300 mV
P1dB
30 mV
LO lkg
Figure 6. Mixer Output at Vif = 30 mVpp and 300 mVpp, at P Suppression at Vif = 300 mVpp vs.
, and LO
1dB
Temperature.
Table 1. Typical Output Spurs for 0 – 6 GHz, Standard Test Conditions.
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
0 - -38.9 -32.2 -44.1 -49.3 -67.2 -64.4 <-80 -73.6 <-80 <-80
1 <-80 <-80 <-80 -70 -78.5 -52.1 -58.8 -33.2 -38.9 -10.1 -31.7 -8.7 -38.3 -38.3 -59.0 -50.1 -39.2 -50.1 -50.2 <-60 <-60
2 <-80 <-60 <-60 <-60 <-60 <-60 -49.5 -50.0 -33.2 -39.1 -42.1 -50.4 -36.1 -48.8 -58.8 <-60 <-60 <-60 <-60 <-60 <-60
3 <-60 <-60 -38.4 -58.6 <-60 <-60 <-60 -52.7 <-60 <-60 -45.6 -37.1 -52 <-60 <-60
4 <-60 -45.5 -52.0 <-60
7-69
Page 5

HPMX-2006 Mixer Port Impedances

GHz Mag. Deg.
0.05 0.86 -4
0.10 0.81 -3
0.15 0.84 -1
0.20 0.88 -3
0.25 0.93 -9
0.30 0.91 -15
0.40 0.80 -19
0.50 0.81 -23
0.60 0.80 -28
0.70 0.80 -30
0.80 0.85 -34
0.90 0.84 -39
Figure 8. Impedance of Mixer IF Port.
Circuit of Figure 11 with 1 k Pull up Resistors for the IFs and LO and RF Ports
Terminated in 50␣ .
GHz Mag. Deg.
[1]
0.50
0.49 -49
0.75 0.48 -63
1.00 0.46 -73
1.25 0.42 -82
1.50 0.40 -102
1.75 0.31 -114
[2]
1.75
0.24 -131
2.00 0.20 147
2.25 0.20 87
2.50 0.16 15
2.75 0.37 -131
3.00 0.53 168
Figure 9. Impedance of Mixer LO Port.
[1] Circuit of Figure 11 with IF and RF
Ports Terminated in 50␣ .
[2] As above but LO RC combination in
Figure 11 changed from 12␣ and 12␣ pF to 0␣ and 2.7␣ pF (recommended
use for >1.75 GHz).
GHz Mag. Deg.
0.50 0.60 82
0.75 0.55 38
1.00 0.52 -5
1.25 0.36 -35
1.50 0.18 -44
1.75 0.17 -17
2.00 0.20 5
2.25 0.24 13
2.50 0.28 17
2.75 0.34 12
3.00 0.37 3
Figure 10. Impedance of Mixer RF Port.
Circuit of Figure 11 with IF and LO Ports
Terminated in 50 .
Typical Scattering Parameters, Common Emitter, Z
Freq. S
11
S
21
= 50 , V
O
=3 V, IC␣=␣ 23 mA
CC
S
12
S
GHz Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang.
0.1 0.51 149 19.72 9.68 -26 -37.08 0.014 -43 0.91 -3
0.5 0.37 144 17.42 7.43 -49 -39.17 0.011 11 0.78 -16
0.8 0.37 120 16.56 6.73 -76 -43.10 0.007 1 0.80 -22
0.9 0.37 113 16.24 6.49 -85 -36.48 0.015 25 0.83 -23
1.0 0.39 104 15.99 6.30 -94 -40.00 0.010 22 0.84 -26
1.1 0.39 96 15.55 5.99 -101 -41.94 0.008 28 0.84 -29
1.2 0.40 88 15.16 5.73 -112 -47.96 0.004 118 0.84 -32
1.3 0.41 81 15.07 5.67 -120 -38.42 0.012 68 0.85 -33
1.4 0.40 75 14.50 5.31 -125 -40.92 0.009 85 0.87 -36
1.5 0.40 67 13.37 4.66 -134 -46.02 0.005 147 0.84 -40
1.6 0.38 62 12.69 4.31 -145 -33.98 0.020 99 0.85 -40
1.7 0.37 61 12.46 4.20 -148 -33.15 0.022 102 0.84 -44
1.8 0.36 58 11.64 3.82 -153 -32.77 0.023 102 0.84 -49
1.9 0.33 62 11.17 3.62 -161 -34.42 0.019 88 0.79 -51
2.0 0.33 62 10.81 3.47 -168 -34.89 0.018 91 0.77 -54
2.1 0.31 64 9.99 3.16 -175 -29.37 0.034 96 0.75 -58
2.2 0.31 70 9.37 2.94 178 -30.75 0.029 102 0.72 -62
2.3 0.30 75 8.66 2.71 173 -30.75 0.029 89 0.69 -65
2.4 0.32 79 8.10 2.54 170 -33.15 0.022 90 0.67 -70
2.5 0.32 84 7.16 2.28 166 -32.77 0.023 89 0.65 -76
3.0 0.32 94 4.45 1.67 134 -28.40 0.038 99 0.49 -103
22
7-70
Page 6

HPMX-2006 Test Circuit

off board Cbl (>100 pF)
mixer LO input
1000 pF
off board Cbl (>100 pF)
50 IF source
C1 R3
12 pF10 pF
off board Cbl (>100 pF)
12
5050
LO in
LO in Ref
50
IF in IF in
Amp1 Ve1
Mixer Vc
gnd
Amp Vc
Amp RF out
Amp Ve2
Amp1 Ve2
0.01 µF
22 pF
2.2 pF
100 pF
3V
Amp RF output
printed
3V
amp RF input
off board Cbl (>100 pF)
standby input
Amp RF in
enable
Mixer RF out
Figure 11. Test Board Configuration.

HPMX-2006 Circuit Use

10 pF
Rterm
Cbl (>100 pF)
C1 R3
C6
R2
C6
R1
LO in
LO in Ref
IF in IF in
Amp1 Ve1
Amp RF in
enable
Sideband
Filter
Amp RF out
Mixer RF out
mixer LO input
1000 pF
IF source
(Rs = Rterm)
standby input
Figure 12. Schematic Diagram of Typical IC Use.
gnd
Mixer Vc
gnd
Amp Vc
Amp Ve2
Amp1 Ve2
gnd
Mixer RF output (at DC ground)
0.01 µF
22 pF
C8
L2
C12(100 pF)
C14C15
L3
Vcc
Amp RF output
Vcc
Table 2 lists values for compo­nents that change depending on
Table 2. Values for Variable Components (see next page for details).
frequency of operation and AC or DC coupling of the IF input. For
2.5 GHz operation, a pre-amplifier may be inserted between the Mixer output and the Amp RF in.
Component Function Value Condition Value Condition Notes
C1, R3 LO AC coupling 12 pF + 12 F LO < 1.75 GHz 2.7 pF + 0 F LO > 1.75 GHz de-Q with R = 12 for
broadband operation < 1.75 GHz
C6 IF AC coupling 100 pF typ AC coupled short ckt DC coupled see also R1,R2
R1,R2 biases IF bases 50 Ω typ AC coupled open ckt DC coupled also sets load for
optimum IF
C8, L2 amp out match see Table 3 for values vs. frequency L2 set by position of C12
L3, C14 mixer output match not used 1900 MHz operation 27 nH 900 MHz operation 900 MHz operation only
[2]
1.3 pF
C15 amp input match not used 1900 MHz operation 3.3 pF
Notes:
1. Noise Optimum at R1, R2 = 150
2. Optional
7-71
[2]
900 MHz operation 900 MHz operation only
[1]
Page 7
mixer IF input
standby input
mixer LO input
Cbl
C1 R3
10 pF1000 pF
C6
R2
Rterm
C6
R1
LO in LO in Ref
IF in IF in
Amp1 Ve1 Amp RF in enable
Mixer Vc
gnd
Amp Vc
Amp RF out
Amp Ve2
Amp1 Ve2
gnd
Mixer RF out
Vcc
0.01 µF
22 pF
mixer RF output
L3
standby
input
Amp1 Ve1
Amp RF in
enable
Sideband
Filter
Amp RF out
Amp Ve2
Amp1 Ve2
gnd
Mixer RF out
C8
L2
C12 (100 pF)
C14C15
L3
Amp
RF output
Vcc
Frequency, MHz L2, nH C8, pF
900 12.5 2.2
1500 5.4 2.2
1800 3.1 2.2
1900 2.8 2.2
2400 1.6 2.2
Figure 13. Mixer Only Use (AC Coupled Single-ended Use Shown). Refer to Table 2 for Component Values.
single-ended
mixer LO input
Cbl (>100 pF)
LO in
C1 R3
LO in
Figure 15. LO Connections for Single­ended Operation.
10 pF
1000 pF
Ref
C6
R1
IF in
single-ended
Rterm
mixer IF input,
AC coupled
R2
IF in
C6
Figure 17. IF Connections for AC Coupled Single-ended Use.
Figure 14. 900 MHz Use. Refer to Table 2 for Component Values.
differential
mixer LO input
Cbl (>100 pF)
LO in
LO in
Cbl (>100 pF)
Figure 16. LO Connections for Balanced Operation.
10 pF
1000 pF
Ref
balanced
C6
mixer IF input,
AC coupled
R1
IF in
R2
IF in
C6
Figure 18. IF Connections for AC Coupled Balanced Use.
Table 3. Amp Output Match Component Values vs. Frequency.
1. LO in and LO bar in are identical; either can be used as the single-ended LO input with the other AC grounded.
2. R3 lowers the Q of the blocking capacitor to remove possible reso­nances for broadband operation below
1.75 GHz.
1. The IF pins require a bias voltage to operate properly (see Table 4). When the IF is AC coupled, this voltage is supplied from the Ref pin via R1 and R2. When the IF is DC coupled, the voltage is externally generated and the Ref pin is not used.
2. The base current is small, so to 1st order the value of R1, R2 can be selected to set the IF load impedance (50 -200 ohm typ.)
3. IF in and IF bar in are identical; either can be used as as the single-ended IF input with the other AC grounded.
4. R
(optional) should be the same
term
value as the IF source impedance. It improves LO rejection by balancing the IF port and also de-Q’s C6.
balanced mixer IF input,
DC coupled. DC level of
IF source must be at
Ref
V base (Table 4).
IF in
IF @ V base
IF in
Figure 19. IF Connections for DC Coupled Use.
Vcc, V V
base
2.7 1.5
3.0 1.5
3.5 1.5-1.75
4.0 1.5 - 2.0
4.5 1.5 -2.25
5.0 1.5 - 2.5
Table 4. V required bias at the IF ports.
vs. Vcc. V
base
base
is the
7-72
, V
1. For DC coupled operation, the IF input must also supply V
to both IF in and
base
IF in bar, per the values in Table 4. Ref pin is not used.
Page 8

Part Number Ordering Information

Part Number No. of Devices Container
HPMX-2006-TR1 1000 Tape and Reel
HPMX-2006-BLK 25 Tape

Package Dimensions

JEDEC Standard SSOP-16 Package
4.445 (0.175) REF.
SYMBOL
A
HPMX
2006
YYWW
e TYP.
D
E1
E
A1
b C D E e
E1
h L
θ
DIMENSIONS
MIN.
1.372 (0.054)
0.127 (0.005)
0.203 (0.008)
0.178 (0.007)
4.801 (0.189)
5.867 (0.231)
0.635 BSC (0.025)
3.835 (0.151)
0.305 (0.012)
0.533 (0.021) 0
MAX.
1.575 (0.062)
0.254 (0.010)
0.305 (0.012)
0.254 (0.010)
5.004 (0.197)
6.121 (0.241)
3.988 (0.157)
0.457 (0.018)
0.787 (0.031) 8
h x 45°
b TYP.
A
A1
DIMENSIONS IN MILLIMETERS AND (INCHES).
°
L
C
7-73
Loading...