Datasheet HI2304 Datasheet (Intersil Corporation)

August 1997
Semiconductor
See HI1178
NOT RECOMMENDED FOR NEW DESIGNS
HI2304
Triple 8-Bit, 20 MSPS, RGB,
3-Channel D/A Converter
Features
• Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . .Triple 8-Bit
• Maximum Conversion Speed . . . . . . . . . . . . . . . 20MHz
• Differential Linearity Error . . . . . . . . . . . . . . . ±0.5 LSB
• Low Power Consumption . . . . . . . . . . . . . . . . . . .50mW
(330 Load for 1.2V
P-P
Output)
• Single Power Supply . . . . . . . . . . . . . . . . . . . . . . . +3.3V
• Low Glitch Noise
• Direct Replacement for Sony CXD2304
Applications
• Digital TV
• Graphics Display
• High Resolution Color Graphics
• Video Reconstruction
• Instrumentation
• Image Processing
• I/Q Modulation
Description
The HI2304 is a triple 8-bit, high-speed, CMOS D/A converter designed for video band use. It has three separate, 8-bit, pixel inputs, one each for red, green, and blue video data. A single 3.3V power supply and pixel clock input can be controlled individually, or connected together as one. The HI2304 also has BLANK video control signal. For faster speed and 5.0V operation, refer to the HI1178.
Ordering Information
PART
NUMBER
HI2304JCQ -20 to 75 48 Ld MQFP Q48.7x7-S
TEMP.
RANGE (oC) PACKAGE PKG. NO.
Pinout
R0 R1 R2
R3 R4
R5 R6
R7 G0
G1 G2 G3
DD
DVDDAV
DV
1 2
3 4 5 6
7 8 9 10 11
12
13 14 15 16
G5
G4
G6
DD
G7
HI2304
(MQFP)
TOP VIEW
DD
DD
AV
AVDDAV
B1
B0
VG
B2
B3
B0
B4
B0
B5
G0
G0
B6
R0
373839404142434445464748
36 35 34 33 32 31 30 29 28 27 26 25
2423222120191817
B7
R0 I
REF
V
REF
AV VB DV
DV BCK
GCK RCK CE BLK
SS
SS SS
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright
© Harris Corporation 1997
10-1
File Number 4116.1
Functional Block Diagram
HI2304
(LSB) R0
R1 R2 R3 R4 R5 R6 R7
(LSB) G0
G1 G2 G3 G4 G5 G6 G7
(LSB) B0
B1 B2 B3 B4 B5 B6 B7
BLK
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25
DECODER
DECODER
DECODER
DECODER
DECODER
DECODER
LATCHES
LATCHES
LATCHES
2 LSBs
CURRENT
CELLS
6 MSBs
CURRENT
CELLS
CLOCK
GENERATOR
2 LSBs
CURRENT
CELLS
6 MSBs
CURRENT
CELLS
CLOCK
GENERATOR
2 LSBs
CURRENT
CELLS
6 MSBs
CURRENT
CELLS
CLOCK
GENERATOR
CURRENT CELLS
(FOR FULL SCALE)
47
DV
DD
48
DV
DD
36
RO
37
RO RCK
27
43
AV
DD
44
AV
DD
45
AV
DD
AV
46
DD
38
GO
39
GO
28
GCK
33
AV
SS
30
DV
SS
DV
31
SS
40
BO BO
41
BCK
29
42
VG
34
V
3532I
REF
REF
-
+
CE
26
BIAS VOLTAGE
GENERATOR
Pin Descriptions
PIN NO. SYMBOL EQUIVALENT CIRCUIT DESCRIPTION
1 to 8 R0 to R7 Digital Input.
9 to 16 G0 to G7
17 to 24 B0 to B7
1
TO
25
DV
DV
DD
SS
10-2
VB
HI2304
Pin Descriptions
(Continued)
PIN NO. SYMBOL EQUIVALENT CIRCUIT DESCRIPTION
25 BLK Blanking pin. No signal at “H” (Output 0V)
25
32 VB Connect a capacitor of about 0.1µF.
DV
32
DV
27 RCK Clock Pin.
DD
SS
DV
DV
DV
DD
SS
DD
DV
DD
Output condition at “L”.
+
-
28 GCK 29 BCK
27 28 29
30, 31 DV
33 AV 26
CE
SS SS
DV
SS
Digital GND. Analog GND. Chip Enable Pin. No signal (Output 0V) at “H” and
DV
DD
26
DV
SS
minimizes power consumption.
10-3
HI2304
Pin Descriptions
(Continued)
PIN NO. SYMBOL EQUIVALENT CIRCUIT DESCRIPTION
35 I
34 V
REF
REF
AV
DD
AV
DD
Connect a resistance 16 times “16R” that of output resistance value “R”.
Set full scale output value.
42 VG Connect a capacitor of about 0.1µF.
35
AV
DD
AV
SS
34
AV
SS
43 to 46 AV
37 RO Current output pin. Voltage output can be obtained by
DD
AV
DD
39 GO 41 BO 36 RO Inverted current output pin. Normally dropped to analog 38 GO 40 BO
37 39
41
AV
SS
AV
DD
+
-
AV
DD
42
AV
SS
Analog VDD.
connecting a resistance.
GND.
47, 48 DV
DD
36 38 40
AV
SS
Digital VDD.
10-4
HI2304
Absolute Maximum Ratings T
Supply Voltage (VDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7V
Input Voltage (VIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD to V
Output Current (I
(Every Each Channel)
). . . . . . . . . . . . . . . . . . . . . . . . . .0mA to 15mA
OUT
Operating Conditions
Temperature Range (T Supply Voltage
AVDD, AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.0V to 3.6V
DVDD, DVSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.0V to 3.6V
Reference Input Voltage (V Clock Pulse Width
t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25ns (Min)
PW1
t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25ns (Min)
PW0
CAUTION: Stresses above those listed in “Absolute Maxim um Ratings” ma y cause permanent damage to the device . This is a stress only rating and oper ation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
) . . . . . . . . . . . . . . . . . . . . -20oC to 75oC
OPR
). . . . . . . . . . . . . . . . . . . . . . . . 1.2V
REF
Electrical Specifications f
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Resolution Maximum Conversion Speed f Linearity Error INL -2.5 - 2.5 LSB Differential Linearity Error DNL -0.5 - 0.5 LSB Full Scale Output Voltage V Full Scale Output Ratio (Note 1) F Full Scale Output Current I Offset Output Voltage V Power supply Current I Digital Input
Current Set Up Time t
Hold Time t Propagation Delay Time t Glitch Energy GE - 150 - pV/s Crosstalk CT 1MHz Sine Wave Output - 53 - dB
NOTE:
2. Full Scale Output Ratio = x 100(%).
H Level I L Level I
-------------------------------------------------------------------------------------------------------------------------------
Average of the full-scale voltage of the channels
=25oC Thermal Information
A
Thermal Resistance (Typical, Note 1) θJA (oC/W)
SS
MQFP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150oC
Maximum Storage Temperature (T
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . . 300oC
(Lead Tips Only)
= 20MHz, VDD= 3.3V, R
CLK
n
MAX
FS SR FS OS
DD
IH
IL
S
H
PD
Full scale voltage of channel
14.3MHz, at Color Bar Data input - 15 - mA
= 330, V
OUT
REF
1–
= 1.2V, R
) . . . . . . . . . .-65oC to 150oC
STG
= 5.1k, TA = 25oC
IRF
- 8 - Bit
20 - - MHz
1.12 1.24 1.36 V 0 1.5 3 %
- 3.8 - mA
--1mV
--5µA
-5 - - µA 7--ns 3--ns
-20- ns
I/O Chart
(When Full Scale Output Voltage at 2.00V)
INPUT CODE OUTPUT VOLTAGE
MSB LSB
11111111 1.2V
10000000 0.6V
00000000 0V
10-5
HI2304
Timing Diagram
CLK
DAT A
D/A OUT
Typical Application Circuit
DV
(LSB)
1 2 3
(MSB)
(LSB)
4 5 6 7 8
9 10 11 12
R (RED) IN
t
PW1tPW1
tSt
H
t
PD
AV
DD
DD
48 47 46 45 44 43 42 41 40 39 38 37
13 14 15 16 17 18 19 20 21 22 23 24
0.1µ
HI2304
t
t
S
H
t
PD
t
S
(BCK) (GCK) (RCK)
t
H
100%
50%
t
PD
0%
B (BLUE) OUT
330
AV
SS
G (GREEN) OUT
330
AV
SS
R (RED) OUT
330
AV
1.2V
0.1µ
DV
DV
SS
1K
SS
SS
AV
AV
DD
SS
5.1K AV
CLOCK IN
SS
36 35 34 33 32 31 30 29 28 27 26 25
G (GREEN) IN
(MSB)
(LSB)
(MSB)
B (BLUE) IN
10-6
Notes On Operation
• How to Select the Output Resistance The HI2304 is a current output D/A converter. To obtain
the output voltage, connect the resistance to IO pin (RO, GO, BO). For specifications we have:
Output Full Scale Voltage VFS = 1.2 [V]. Output Full Scale Current I
= 3.8 [mA].
FS
Calculate the output resistance value from the relation of V
= IFS x R. Also, 16 times resistance of the output
FS
resistance is connected to reference current pin I
REF
some cases, however, this turns out to be a value that does not actually exist. In such a case a value close to it can be used as a substitute. Here, please note that V becomes VFS = V nected to IO while R is connected to I
x 16R/R. R is the resistance con-
REF
. Increasing the
REF
Test Circuits
HI2304
resistance value can curb power consumption. On the other hand, glitch energy and data settling time will inversely increase. Set the most suitable value according to the desired application.
• Phase Relation Between Data and Clock To obtain the expected performance as a D/A conver ter, it
is necessary to set properly the phase relation between data and clock, applied from the exterior . Be sure to satisfy the provisions of the set up time (t stipulated in the Electrical Characteristics.
. In
•V
DD
, V
SS
To reduce noise effects, separate analog and digital systems in the device periphery. For V
FS
log, bypass respective GNDs by using a cer amic capacitor of
DD
about 0.1µF, as close as possible to the pin.
) and hold time (tH) as
S
pins, both digital and ana-
CLK
1MHz
SQUARE
WAVE
CLK
20MHz
SQUARE
WAVE
8-BIT
COUNTER
WITH
LATCH
DV
0.1µ
SS
25 26 32
27 28 29
R0 TO R7 1 TO 8
G0 TO G7 9 TO 16 B0 TO B7
17 TO 24 BLK CE VB
HI2304
RCK GCK BCK
V
REF
I
REF
R0
G0
B0
VG
37
39
41
42 34 35
FIGURE 1. MAXIMUM CONVERSION RATE TEST CIRCUIT
8-BIT
COUNTER
WITH
LATCH
DELAY
CONTROLLER
DELAY
CONTROLLER
DV
SS
0.1µ
25 26 32
27 28 29
R0 TO R7 1 TO 8
G0 TO G7 9 TO 16 B0 TO B7
17 TO 24 BLK CE VB
HI2304
RCK GCK BCK
R0
G0
B0
VG
V
REF
I
REF
AV
AV
SS
SS
AV
0.1µ
5.1K
37
39
41
42 34 35
330
330
330
SS
AV
AV
AV
AV
AV
330
SS
330
SS
330
SS
DD
0.1µ
5.1K
OSCILLOSCOPE
DD
1K
AV
SS
1K
AV
SS
OSCILLOSCOPE
FIGURE 2. SET-UP HOLD TIME GLITCH ENERGY TEST CIRCUIT
10-7
HI2304
Test Circuits
(Continued)
DIGITAL
WAVEFORM
GENERATOR
R0 TO R7 1 TO 8
G0 TO G7 9 TO 16
B0 TO B7 17 TO 24
25
BLK
26
CE
32
VB
RCK
27 28
GCK
29
BCK
HI2304
37
R0
330
AV
SS
39
G0
330
AV
SS
41
B0
330
AV
SS
AV
DD
42
VG
0.1µ
34
V
REF
35
I
REF
5.1K AV
1K
SS
CLK
20MHz
SQUARE
WAVE
ALL “1”
0.1µ
DV
SS
FIGURE 3. CROSSTALK TEST CIRCUIT (See Figure 7)
SPECTRUM
ANALYZER
CONTROLLER
SQUARE
R0 TO R7
CLK
20MHz
WAVE
DV
SS
0.1µ
1 TO 8 G0 TO G7 9 TO 16
B0 TO B7 17 TO 24
25
BLK
26
CE
32
VB
RCK
27 28
GCK
29
BCK
HI2304
37
R0
330
AV
SS
39
G0
330
AV
SS
41
B0
330
AV
SS
AV
DD
42
VG
0.1µ
34
V
REF
35
I
REF
5.1K AV
FIGURE 4. DC CHARACTERISTICS TEST CIRCUIT
DVM
1K
SS
10-8
HI2304
Test Circuits
(Continued)
FREQUENCY
DEMULTIPLIER
CLK
1MHz
SQUARE
WAVE
R0 TO R7
DV
SS
0.1µ
1 TO 8 G0 TO G7 9 TO 16
B0 TO B7 17 TO 24
25
BLK
26
CE
32
VB
27
RCK
28
GCK
29
BCK
HI2304
37
R0
330
AV
SS
39
G0
330
AV
SS
41
B0
330
AV
SS
AV
DD
42
VG
0.1µ
34
V
REF
35
I
REF
5.1K AV
1K
SS
FIGURE 5. PROPAGATION DELAY TIME TEST CIRCUIT
OSCILLOSCOPE
DIGITAL
WAVEFORM
GENERATOR
SQUARE
ALL “1”
R0 TO R7
CLK
20MHz
WAVE
ALL “1”
0.1µ
DV
SS
1 TO 8 G0 TO G7 9 TO 16
B0 TO B7 17 TO 24
25
BLK
26
CE
32
VB
RCK
27 28
GCK
29
BCK
HI2304
37
R0
39
G0
41
B0
42
VG
34
V
REF
35
I
REF
FIGURE 6. SNR TEST CIRCUIT (See Figure 8)
AV
AV
AV
AV
330
SS
330
SS
330
SS
DD
0.1µ
AV
SPECTRUM
ANALYZER
SNR: Difference between primary component and secondary distortion.
1K
SS
10-9
Typical Performance Curves
HI2304
80
60
40
CROSSTALK (dB)
20
0
1.27
1.26
80
60
40
SNR (dB)
20
0
0.1M 1M 10M OUTPUT FREQUENCY (Hz)
0.1M 1M 10M OUTPUT FREQUENCY (Hz)
FIGURE 7. CROSSTALK FIGURE 8. SNR (DIFFERENCE BETWEEN PRIMARY
COMPONENT AND SECONDARY DISTORTION)
20
10
OUTPUT FULL SCALE VOLTAGE (V)
0
-25 0 25 50 75 AMBIENT TEMPERATURE (
o
C)
FIGURE 9. OUTPUT FULL SCALE VOLTAGE vs AMBIENT
TEMPERATURE
400
200
GLITCH ENERGY (pV/s)
0
200 400 600
FIGURE 11. OUTPUT RESISTANCE vs GLITCH ENERGY
CURRENT CONSUMPTION (mA)
0
10K 100K 1M 10M
OUTPUT FREQUENCY (Hz)
FIGURE 10. OUTPUT FREQUENCY vs CURRENT
CONSUMPTION
10-10
HI2304
Reference Measurement Condition and Description
AVDD = 3.3V.
= 3.3V.
DV
DD
= 1.2V.
V
REF
= 5.1kΩ.
R
IRF
= 25oC.
T
A
Figure 7 and Figure 8 refer to the measurement circuit. Figure 9 is input data = all 1. Figure 10 is input data = output of incremental counter,
current consumption is total of 3ch.
10-11
Loading...