Datasheet HFA3624 Datasheet (Intersil Corporation)

Page 1
HFA3624
Data Sheet November 1998 File Number
2.4GHz Up/Down Converter
The Intersil 2.4GHz PRISM™ chip set is a highly integrated five-chip solution for RF modems employing Direct Sequence Spread Spectrum (DSSS)
signaling. The HFA3624 RF/IF converter is one of the five chips in the PRISM™ chip set (see Figure 1 for the typical application circuit).
The HFA3624 Up/Downcon verter is a monolithic bipolar device for up/do wn conversion applications in the 2.4GHz to
2.5GHz range. Manufactured in the Intersil UHF1X process , the device consists of a low noise amplifier and down conversion mix er in the receive section and an up conversion mixer with power preamp in the transmit section. An energy saving power enable control feature assures isolation between the receive and transmit circuits f or time division multiplexedsystems.The devicerequires lowdrive levelsfrom the local oscillator and is housed in a small outline 28 lead SSOP package ideally suited for PCMCIA card applications.
4066.8
Features
• Complete Receive/Transmit Front End
• RF Frequency Range. . . . . . . . . . . . . . 2.4GHz to 2.5GHz
• IF Operation . . . . . . . . . . . . . . . . . . . . .10MHz to 400MHz
• Single Supply Battery Operation . . . . . . . . . 2.7V to 5.5V
• Independent Receive/Transmit Power Enable Mode
Applications
• Systems Targeting IEEE 802.11 Standard
• PCMCIA Wireless Transceiver
• Wireless Local Area Network Modems
• TDMA Packet Protocol Radios
• Part 15 Compliant Radio Links
• Portable Battery Powered Equipment
Block Diagram
Ordering Information
TEMP.
PART NUMBER
RANGE (oC) PACKAGE
HFA3624IA -40 to 85 28 Ld SSOP M28.15 HFA3624IA96 -40 to 85 Tape and Reel
PKG.
NO.
Pinout
HFA3624
(SSOP)
TOP VIEW
LNA_RX_V
GND
LNA_RX_OUT
GND
LNA_RX_V
GND
LNA_RX_IN
PRE_TX_OUT
GND
PRE_TX_V
GND
PRE_TX_IN
GND
PRE_TX_V
CC2
CC1
CC2
CC1
1
2
3
4
5
6
7
8
9
10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
RX_PE RX_V
CC
RXM_RF GND RXM_IF+ RXM_IF­LO_BY LO_IN TXM_IF­TXM_IF+ GND TXM_RF TX_V
CC
TX_PE
LNA_RX_OUT
LNA_RX_IN
PRE_TX_OUT
PRE_TX_IN
LNA
PRE
RX BIAS
RXM
TXM
TX BIAS
RX_PE
RXM_RF
RXM_IF+ RXM_IF-
LO_BY LO_IN
LOB
TXM_IF­TXM_IF+
TXM_RF
TX_PE
2-27
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.com or 407-727-9207
PRISM® is a registered trademark of Intersil Corporation. PRISM logo is a trademark of Intersil Corporation.
| Copyright © Intersil Corporation 1999
Page 2
HFA3624
HF A3424 (NOTE)
(FILE# 4131)
HF A3624
UP/DOWN
CONVERTER
(FILE# 4066)
RFPA
HF A3925
(FILE# 4132)
NOTE: Required for systems targeting 802.11 Specifications.
FIGURE 1. TYPICAL TRANSCEIVER APPLICATION CIRCUIT USING THE HFA3624
VCO
DUAL SYNTHESIZER
HFA3524
(FILE# 4062)
VCO
HFA3724
(FILE# 4067)
÷2
QUAD IF MODULATOR
0o/90
TUNE/SELECT
I
M
o
U X
Q
HSP3824
(FILE# 4064)
RXI
RXQ
RSSI
M U X
A/D
DE-
SPREAD
A/D
CCA
A/D
TXI
SPREAD
TXQ
DSSS BASEBAND PROCESSOR
PRISM™ CHIP SET FILE #4063
DPSK
DEMOD
802.11
MAC-PHY
INTERFACE
DPSK
MOD.
DATA TO MACCTRL
For additional information on the PRISM™ chip set, call (407) 724-7800to accessIntersil’ AnswerFAXsystem. When prompted, key in the four-digit document number (File #) of the datasheets you wish to receive.
The four-digit file numbers are shown in Figure 1, and correspond to the appropriate circuit.
2-28
Page 3
HFA3624
Absolute Maximum Ratings Thermal Information
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V
Voltage on Any Other Pin. . . . . . . . . . . . . . . . . . . -0.3 to VCC+0.3V
Operating Conditions
Supply Voltage Range. . . . . . . . . . . . . . . . . . . . . . . . . .2.7V to 5.5V
Temperature Range. . . . . . . . . . . . . . . . . . . . . . .-40oC TA≤ 85oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Thermal Resistance (Typical, Note 1) θJA (oC/W)
28 Lead Plastic SSOP. . . . . . . . . . . . . . . . . . . . . . . 88
Package Power Dissipation at 70oC
28 Lead Plastic SSOP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.9W
Maximum Junction Temperature. . . . . . . . . . . . . . . . . . . . . . .150oC
Maximum Storage Temperature Range . . . . . ..-65oC TA≤ 150oC
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . .300oC
(SSOP - Lead Tips Only)
Electrical Specifications V
PARAMETER SYMBOL TEMP (oC) MIN TYP MAX UNITS
LO INPUT CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, RSLO = 50, tested in both RX and TX modes, all unused inputs and
LO Input Frequency Range LO_f 25 2.0 - 2.49 GHz LO Input Drive Level LO_dr 25 -6 -3 3 dBm LO Input VSWR LO_SWR Full - 1.5 2.0:1 ­RECEIVE LNA CHARACTERISTICS (LNA_RX_IN = 2450MHz/-25dBm, RS = RL = 50, Receive Mode) Receive LNA Frequency Range LNA_f 25 2.4 - 2.5 GHz LNA Noise Figure LNA_NF 25 - 3.5 - dB LNA Power Gain LNA_PG Full 13.5 15.5 - dB LNA Reverse Isolation (Source = 2450MHz/-25dBm) LNA_ISO 25 - 30 - dB LNA Output 3rd Order Intercept
(LNA_RX_IN = 2449.9MHz, 2450.1MHz / -35dBm) LNA Output 1dB Compression LNA_P1D 25 - 5.5 - dBm LNA Input VSWR LNA_ISWR Full - 1.85:1 2.2:1 ­LNA Input Return Loss LNA_IRL Full - 10.5 8.5 dB LNA Output VSWR LNA_OSWR Full - 1.6 2.0:1 ­LNA Output Return Loss LNA_ORL Full - 12.7 9.5 dB RECEIVE MIXER CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, RXM_RF = 2450MHz/-25dBm, RSLO = 50, RSRF = 50,
Mixer RF Frequency Range RXM_RFf 25 2.4 - 2.5 GHz Mixer IF Frequency Range RXM_IFf 25 10 - 400 MHz SSB Noise Figure (Note 3) RXM_NF 25 - 15 - dB Mixer Power Conversion Gain (Note 2) RXM_PG 25 4 6 - dB
Mixer IF Output 3rd Order Intercept (RXM_RF = 2449.9MHz, 2450.1MHz/-30dBm)
Mixer IF Output 1dB Compression RXM_P1D 25 - -5 - dBm Mixer RF Input VSWR (2.4GHz to 2.5GHz) RXM_SWR 25 - 1.5:1 2.0:1 ­Mixer RF Input Return Loss RXM_IRL 25 - 14.0 9.5 dB IF Open Collector Output Resistance (IF = 280MHz) RXM_ROUT 25 - 1.5 - k IF Open Collector Output Capacitance RXM_COUT 25 - 0.4 - pF
= +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO=50Ω,
CC
Unless Otherwise Specified
outputs are terminated into 50)
LNA_IP3 25 - 18 - dBm
RLIF = 50 with external matching network (Note 2), Receive Mode)
85 3 - - dB
RXM_IP3 25 - 4.0 - dBm
2-29
Page 4
HFA3624
Electrical Specifications V
PARAMETER SYMBOL TEMP (oC) MIN TYP MAX UNITS
Mixer LO to RF Isolation RXA_LOR 25 - 22 - dB RECEIVE LNA/MIXER CASCADED CHARACTERISTICS (-3dB Loss RF Image Filter between LNA and Mixer, LNA_RX_IN = 2450MHz/-
Cascaded Noise Figure CRX_NF 25 - 6.24 - dB Cascaded Power Gain CRX_PG 25 15 18 - dB
Cascaded Input IP3 CRX_IP3 25 - -14.1 - dBm Cascaded Input Compression Point CRX_P1D 25 - -23.2 - dBm Maximum Input Power
(Output may be gain compressed, but functional) TRANSMIT MIXER CHARACTERISTICS (LO_IN = 2170MHz/-3dBm, TXM_IF+ = 280MHz/-13dBm, RSIF = 50, RSLO = 50,
IF Input Frequency Range TXM_IFf 25 10 - 400 MHz IF Input Resistance (IF = 280MHz) TXM_RIN 25 - 3 - k IF Input Capacitance (IF = 280MHz) TXM_CIN 25 - 0.5 - pF Power Conversion Gain (RSIF = 50) TXM_PG50 25 -6 -3.4 - dB
Power Conversion Gain (RSIF = 250) (Notes 4, 5) TXM_PG250 25 -0.5 2.1 - dB
Transmit Mixer LO Leakage TXM_LEAK 25 - -20 -18 dBm RF Output Frequency Range TXM_RFf 25 2.4 - 2.5 GHz TXM_RF VSWR (2.4GHz to 2.5GHz) TXM_OSWR Full - 1.5 2.0:1 ­TXM_RF Return Loss TXM_ORL Full - 14 9.5 dB Mixer Output 1dB Compression TXM_P1D 25 - -10.5 - dBm Output SSB Noise Figure (RSIF = 50) TXM_NF50 25 - 18.3 - dB Output 3rd Order Intercept (RSIF = 50) TXM_IP3_50 25 - 1.1 - dBm Output SSB Noise Figure (RSIF = 250) TXM_NF250 25 - 14.5 - dB Output 3rd Order Intercept (RSIF = 250) TXM_IP3_250 25 - -1.5 - dBm TRANSMIT POWER PRE-AMP CHARACTERISTICS (PRE_IN = 2450MHz/-13dBm, RS = RL = 50, Transmit Mode) Power Pre-Amp Frequency Range PRE_f 25 2.4 - 2.5 GHz Power Gain PRE_PG 25 10.8 12.3 - dB
PRE_AMP Output 1dB Compression PRE_P1D 25 5.0 5.6 - dBm PRE_AMP Noise Figure PRE_NF 25 - 5.7 - dB PRE_AMP Output 3rd Order Intercept PRE_IP3 25 - 15.3 - dBm PRE_AMP Input VSWR (2.4GHz to 2.5GHz) PRE_ISWR Full - 1.3:1 2.0:1 ­PRE_AMP Input Return Loss PRE_IRL Full - 17.7 9.5 dB PRE_AMP Output VSWR (2.4GHz to 2.5GHz) PRE_OSWR Full - 1.3:1 2.0:1 ­PRE_AMP Output Return Loss PRE_ORL Full - 17.7 9.5 dB
= +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO=50Ω,
CC
Unless Otherwise Specified (Continued)
25dBm, RLIF = 250 external matching network, (Note 6))
85 14 - - dB
CRX_dr 25 - +3 - dBm
RLRF = 50, Transmit Mode)
85 -7.5 - - dB
85 -2 - - dB
85 7.8 - - dB
2-30
Page 5
HFA3624
Electrical Specifications V
PARAMETER SYMBOL TEMP (oC) MIN TYP MAX UNITS
TRANSMIT MIXER/POWER PRE-AMP CASCADED CHARACTERISTICS (TXM_IF+ =280MHz/-13dBm, -3dBLoss RFImage Filterwith no LO
Cascaded Power Gain CTX_PG 25 8 11.4 - dB
Cascaded Output P1dB CTX_P1D 25 - -2.0 - dBm Cascaded Output NF CTX_NF 25 - 15 - dB Cascaded Output 3rd Order Intercept CTX_IP3 25 - 7.1 - dBm Cascaded LO Leakage CTX_LEAK 25 - -8.7 - dBm
POWER SUPPLY AND LOGIC CHARACTERISTICS
Voltage Supply Range V Transmit Mode Supply Current (VCC = 2.7V) TX_2.7I
Receive Mode Supply Current (VCC = 2.7V) RX_I
Power Down Current (VCC = 5.5V) ICC_PD Full - 0.3 10 µA Logic Input Low Level V Logic Input High Level V Logic Low Input Bias Current (VPE = 0V, VCC = 5.5V) IB_LO Full - - 1 µA Logic High Input Bias Current (VPE = 5.5V, VCC = 5.5V) IB_HI Full - - 150 µA TX/RX Power Enable Time (Note 7) PEt Full - 0.25 1 µs TX/RX Power Disable Time (Note 7) PDt Full - 0.25 1 µs
NOTES:
2. See Figure 5 Test Circuit for 50 IF matching network component values.
3. SSB (Single SideBand)NoiseFiguremeasurement requires the useofanIF Reject/Highpass Filter betweentheNoiseSource and the RXM_RF port. This filter prevents IF input noise from interfering with the Mixer IF output Noise Figure Measurement.
4. Transmit mixer measured with Impedance Transform Network 250 at device to 50 at the source. Refer to Figure 5, pin 19.
5. Implied limit, production measurement uses 50termination at pin 19 (RSIF=50Ω). Typical transmit conversion gain increase of 5.5dB with application circuit Figure 5 (RSIF = 250).
6. See Figure 2 for Typical Application Circuit.
7. Enable/Disable Time Specifications are tested with the external component values shown in the Figure 5 Test Circuit, with an IF frequency of 280MHz. Specifically the AC coupling capacitors on the TXM_IF+ and TXM_IF- pins are biased up to operating voltage from a fixed internal current source at power up. Increasing these AC coupling capacitors above 1000pF will slow Enable Time proportionately.
= +2.7V, LO = 2170MHz, IF = 280MHz, RF = 2450MHz, ZO=50Ω,
CC
Unless Otherwise Specified (Continued)
suppression between Mixer and Transmit Amp, RL = 50, RSIF = 250 (Note 6))
85 5.5 - - dB
CC
CC
CC
IL
IH
25 2.7 - 5.5 V 25 32 49 57 mA 85 43 - 64 mA 25 10 18 20.5 mA 85 19 22.5 24 mA
Full -0.2 - 0.8 V Full 2.0 - V
CC
V
POWER CONTROL TRUTH TABLE
STATE RX_PE TX_PE
Power Down (Receive/Transmit Channels Power Down)
Transmit Mode (Receive Channel Power Down)
Receive Mode (Transmit Channel Power Down)
Not Recommended High High
Low Low
Low High
High Low
2-31
Page 6
HFA3624
Pin Descriptions
PINS SYMBOL DESCRIPTION
1 LNA_RX_V
3 LNA_RX_OUT Receive Channel Low Noise Amplifier Output (2400MHz to 2500MHz). The nominal impedance of 50Ω,
5 LNA_RX_V
7 LNA_RX_IN Receive Channel Low Noise Amplifier Input (2400MHz to 2500MHz). The nominal impedance of 50,over
8 PRE_TX_OUT Transmit Channel Power Pre-Amplifier Output (2400MHz to 2500MHz). The nominal impedance of 50,
10 PRE_TX_V
12 PRE_TX_IN TransmitChannel Power Pre-Amplifier Input (2400MHz to 2500MHz). The nominal impedanceof 50Ω,over
14 PRE_TX_V
15 TX_PE Transmit Channel Power Enable Control Input. TTL compatible input. Refer to “Power Control Truth Table”
16 TX_V
17 TXM_RF Transmit Channel Mixer RF Output (2400MHz to 2500MHz). The nominal impedance of 50, over the op-
19 TXM_IF+ Transmit Channel Mixer IF+ Input (10MHz to 400MHz). The TXM_IF+ and TXM_IF- pins form a high input
20 TXM_IF- Transmit Channel Mixer IF- Input (10MHz to 400MHz). The TXM_IF+ and TXM_IF- pins form a high input
21 LO_IN Local Oscillator Input (2000MHz to 2490MHz). The LO_IN and LO_BY pins form a differential pair with a
22 LO_BY Local Oscillator Input Bypass (2000MHz to 2490MHz). The LO_IN and LO_BY pins form a differential pair
CC
Receive Channel LowNoise Amplifier Output Stage Positive Power Supply.Use highquality decouplingca-
CC2
pacitors right at the pin. A 5pF chip capacitor is recommended.
over the operating frequency range, is achieved with an on chip narrowband tuned circuit. This pinrequires AC coupling.
Receive Channel Low Noise Amplifier Input Stage Positive Power Supply. Use high quality decoupling ca-
CC1
pacitors right at the pin. A 200pF chip capacitor is recommended.
the operating frequency range,is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling.
overthe operatingfrequency range,is achieved with on chip narrowband tuned circuit. This pin requiresAC coupling.
TransmitChannel Power Pre-Amplifier OutputStage PositivePowerSupply.Use highquality decoupling ca-
CC2
pacitors right at the pin. A 200pF chip capacitor is recommended.
the operating frequency range,is achieved with an on chip narrowband tuned circuit. This pin requires AC coupling.
Transmit Channel Power Pre-Amplifier Input Stage Positive Power Supply. Use high quality decoupling ca-
CC1
pacitors right at the pin. A 200pF chip capacitor is recommended.
on previous page. Transmit Channel Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF
chip capacitor is recommended.
erating frequency range, is achieved with an on chip narrowband tuned circuit. This pin requires AC cou­pling.
impedance differential pair. Either input (or both inputs for special applications) may be used for the IF sig­nal. Typically the TXM_IF- pin is bypassed to ground with a 470pF capacitor and the TXM_IF+ pin is AC coupled tothe transmit IF signal. The high impedance input requires external termination. The specified in­put impedance is modeled as a resistor in parallel with a capacitor derived from S parameters at 280MHz. The input Impedance will increase at lower IF frequencies.
This pin requires AC coupling. Increasing the AC coupling capacitor to larger than 1000pF will degrade Transmit Enable Time.
impedance differential pair. Either input (orboth forspecial applications) may be used for the IF signal.Typ­ically theTXM_IF- pin is bypassed toground with a 470pF capacitor and the TXM_IF+pin is AC coupled to the transmit IF signal. The high impedance input requires external termination. The specified input imped­ance is modeled as a resistor in parallel with a capacitor derived from S parameters at 280MHz. The input impedance will increase at lower IF frequencies.
This pin requires AC coupling. Increasing the AC coupling capacitor to larger than 1000pF will degrade Transmit Enable Time.
mutual broadband 50impedance. Refer to the LO_BY pin for details. The recommended LO power is ­3dBm, however usable performance is obtained for therange -6dBmto +3dBm.The LO_INpin requires AC coupling.
with a mutual broadband 50input impedance. The LO_BY pin can be used as a signal input, but may have slightly degraded performance due to a clamp circuit to GND. Typicallythe LO_BY pin is bypassed to GND with a 5pF capacitor. The LO_BY pin requires AC coupling.
2-32
Page 7
HFA3624
Pin Descriptions
(Continued)
PINS SYMBOL DESCRIPTION
23 RXM_IF- Receive Channel Mixer IF- Output (10MHz to 400MHz). The RXM_IF+ and RXM_IF- pins form a compli-
mentary open collector output driver pair. Theopen collector outputsrequire an external load to VCCnot to exceed 500Ω, for theSingle Ended IF case shown in Figure 3, or1kfor the Differential IF cases shown in Figures 2 and 4. This pin requires AC coupling.
24 RXM_IF+ Receive Channel Mixer IF+ Output (10MHz to 400MHz) The RXM_IF+ and RXM_IF- pins form a compli-
mentary open collector output driver pair. Theopen collector outputsrequire an external load to VCCnot to exceed 500Ω, for theSingle Ended IF case shown in Figure 3, or1kfor the Differential IF cases shown in Figures 2 and 4. This pin requires AC coupling.
26 RXM_RF Receive Channel Mixer RF Input (2400MHz to 2500MHz). The nominal impedance of 50, over the oper-
ating frequencyrange, isachieved with an on chip narrowband tuned circuit. Thispin requires AC coupling.
27 RX_V
CC
Receive Channel Positive Power Supply. Use high quality decoupling capacitors right at the pin. A 200pF chip capacitor is recommended.
28 RX_PE Receive Channel Power Enable Control Input. TTL compatible input. Refer to “Power Control Truth Table”
on previous page.
2, 4, 6, 9, 11,
GND Circuit Ground Pins (Qty 8). Internally connected.
13, 18, 25
Typical Application Circuits
-3dB/50 BPF
2450MHz
LFJ30-03B2442B084
muRata
RECEIVE
RX_PE
28
RX_V
27
RXM_RF
26
GND
25
RXM_IF+
24
RXM_IF-
23
LO_BY
22
LO_IN
21
TXM_IF-
20
TXM_IF+
19
GND
18
TXM_RF
17
TX_V
16
TX_PE
15
ENABLE
CC
22 22
C27
C28
CC
TRANSMIT
ENABLE
C25
C23
C19
C21
C45
L46 L47 R50
LO INPUT
R35 250
2170MHz 50
IF INPUT 280MHz, 250
C26
C37
C51
C14
RF INPUT
2450MHz
50
RF OUTPUT
2450MHz
50
C15
V
C12
C13
C41
C40
C11
CC
= 2.7V
RXA_V
RXA_OUT
RXA_V
RXA_IN
TXA_OUT
TXA_V
TXA_IN
TXA_V
C10
CC2
GND
GND
CC1
GND
GND
CC2
GND
GND
CC1
C32
1 2 3 4 5 6 7 8
9 10 11 12 13 14
LFJ30-03B2442B084
RX BIAS
RXA
HFA3624
TXA
TX BIAS
-3dB/50 BPF
2450MHz
muRata
RXM
LOB
TXM
IF OUTPUT 280MHz 250
C48
FIGURE 2. DIFFERENTIAL TO SINGLE ENDED IF OUTPUT TRANSLATION WITH 250 IF IMPEDANCE
2-33
Page 8
HFA3624
Typical Application Circuits
V
= 2.7V
CC
C14
C12
RXA_V
CC2
GND
RXA_OUT
RF INPUT
2450MHz
50
RF OUTPUT
2450MHz
50
C15
C13
C41
C40
C11
RXA_V
RXA_IN
TXA_OUT
TXA_V
TXA_IN
TXA_V
C10
GND
CC1
GND
GND
CC2
GND
GND
CC1
(Continued)
LFJ30-03B2442B084
C32
1
2
3
4
5
6
7
8
9 10 11 12 13 14
RXA
-3dB/50 BPF
2450MHz
muRata
RX BIAS
HFA3624
LOB
TXA
TXM
TX BIAS
RXM
RX_PE
28
RX_V
27
RXM_RF
26
GND
25
RXM_IF+
24
RXM_IF-
23
LO_BY
22
LO_IN
21
TXM_IF-
20
TXM_IF+
19
GND
18
TXM_RF
17
TX_V
16
TX_PE
15
RECEIVE
ENABLE
CC
C27
C28
CC
C25
C23
C19
C21
22
C51
R50
LO INPUT 2170MHz 50
IF INPUT 280MHz, 250
C26
C37
L46
R35 250
IF OUTPUT 280MHz 250
C48
TRANSMIT
ENABLE
-3dB/50 BPF
2450MHz
LFJ30-03B2442B084
muRata
FIGURE 3. SINGLE ENDED IF OUTPUT WITH 250 IF IMPEDANCE
2-34
Page 9
HFA3624
Typical Application Circuits
V
= 2.7V
C12
C13
C41
C40
C11
CC
RXA_V
RXA_OUT
RXA_V
RXA_IN
TXA_OUT
TXA_V
TXA_IN
TXA_V
C10
C31
CC2
GND
GND
CC1
GND
GND
CC2
GND
GND
CC1
C14
RF INPUT
2450MHz
50
RF OUTPUT
2450MHz
50
C15
(Continued)
LFJ30-03B2442B084
1 2 3 4 5 6 7 8
9 10 11 12 13 14
-3dB/50 BPF
2450MHz
muRata
C32
RX BIAS
RXA
HFA3624
TXA
TX BIAS
LOB
TXM
RXM
RX_PE
28
RX_V
27
RXM_RF
26
GND
25
RXM_IF+
24
RXM_IF-
23
LO_BY
22
LO_IN
21
TXM_IF-
20
TXM_IF+
19
GND
18
TXM_RF
17
TX_V
16
TX_PE
15
RECEIVE
ENABLE
CC
C27
C28
CC
C25
C23
C19
22 22
C27
C21
R50
C26
C37
C4
R35 250
XFMR
500:250 (2:1)
IF OUTPUT 280MHz 250
LO INPUT 2170MHz 50
IF INPUT 280MHz 250
TRANSMIT
ENABLE
-3dB/50 BPF
2450MHz
LFJ30-03B2442B084
muRata
FIGURE 4. DIFFERENTIAL TO SINGLE ENDED IF OUTPUT TRANSLATION USING TRANSFORMER INTO 250
2-35
Page 10
HFA3624
Typical Application Circuits
VCC = 2.7V
C15 5pF
RECEIVE
AMP RF
OUTPUT
50
SIG. GEN.
2450MHz
50
TRANSMIT
AMP RF
OUTPUT
50
SIG. GEN.
2450MHz
50
C16 5pF
C3
5pF
C7
200pF
C8
5pF
C9
5pF
C26
200pF
C4
5pF
C19
200pF
LNA_V
LNA_VCC1
TXA_V
PRE_V
CC
GND
LNA_OUT
GND
GND
LNA_IN
PRE_OUT
GND
CC
GND
PRE_IN
GND
CC
2
2
1
(Continued)
C13
2.2µF
1 2 3 4 5
LNA
6
HFA3624
7 8
PRE
9
AMP 10 11 12 13 14
RX
BIAS
LOB
TX
BIAS
C11 2200pF
RXM
TXM
200pF
C2
RX_PE
28
RX_V
27
RXM_RF
26
GND
25
RXM_IF+
24
RXM_IF-
23
LO_BY
22
LO_IN
21
TXM_IF-
20
TXM_IF+
19
GND
18
TXM_RF
17
TX_V
16
TX_PE
15
RECEIVE ENABLE
C1 200pF
CC
CC
TRANSMIT
ENABLE
C20
10pF
C24
470pF
22 22
C14 5pF
C22 5pF
2.7pF
C23 200pF
C10
200pF
C17
C28
10pF
C21
470pF
R6 2k
R5 250
L1 68nH
SIG. GEN. 2170MHz 50
C25
1.5pF
C6
470pF
L2 39nH
L4
47nH
L3
12nH
C18
470pF
SIG. GEN. 2450MHz 50
IF OUTPUT 280MHz 50
C5
6.8pF
SIG. GEN. 280MHz 50
TRANSMIT. MIXER RF OUTPUT 50
FIGURE 5. OPTIMIZED LAB EVALUATION CIRCUIT
Typical Performance Curves
VCC = 2.7V
16
15
14
13
POWER GAIN (dB)
12
= 25oC
T
A
1dB COMPRESSION POINT
-25 -21 -17 -13 -9 -5 IF INPUT POWER (dBm)
1dB
FIGURE 6. TRANSMIT PRE-AMP 1dB COMPRESSION FIGURE 7. TRANSMIT MIXER 1dB COMPRESSION
VCC = 2.7V
-3 = 25oC
T
A
-4
-5
-6
CONVERSION GAIN (dB)
-7
-20 -17 -14 -11 -8 -5 IF INPUT POWER (dBm)
1dB COMPRESSION POINT
1dB
2-36
Page 11
HFA3624
Typical Performance Curves
VCC = 2.7V
= 25oC
T
A
10
0
MAG (dB)
-10
-20
1.0 2.0 3.0
DUT
FREQUENCY (GHz)
(Continued)
DUT + FIXTURE
FIGURE 8. PRE-AMPLIFIER S11LOG MAG INPUTRETURN
LOSS
VCC = 2.7V
= 25oC
T
A
-20
DUT
VCC = 2.7V
30
= 25oC
T
A
20
10
MAG (dB)
0
1.0 2.0 3.0 FREQUENCY (GHz)
DUT
DUT + FIXTURE
FIGURE 9. PRE-AMPLIFIER S21 LOG MAG FORWARD GAIN
VCC = 2.7V
= 25oC
T
A
0
-30
MAG (dB)
-40
-50
1.0 2.0 3.0 FREQUENCY (GHz)
DUT + FIXTURE
FIGURE 10. PRE-AMPLIFIER S12LOG MAG REVERSE
ISOLATION
VCC = 2.7V
= 25oC
T
A
10
0
MAG (dB)
-10
-20
DUT + FIXTURE
DUT
-10
MAG (dB)
-20 DUT
-30
1.0 2.0 3.0 FREQUENCY (GHz)
DUT + FIXTURE
FIGURE 11. PRE-AMPLIFIER S22LOG MAG OUTPUTRETURN
LOSS
VCC = 2.7V
30
T
= 25oC
A
20
10
MAG (dB)
0
-10
DUT
DUT + FIXTURE
1.0 2.0 3.0 FREQUENCY (GHz)
1.0 2.0 3.0 FREQUENCY (GHz)
FIGURE 12. LNA S11 LOG MAG INPUT RETURN LOSS FIGURE 13. LNA S21 LOG MAG FORWARD GAIN
2-37
Page 12
HFA3624
Typical Performance Curves
VCC = 2.7V
0
T
= 25oC
A
-20
-40
MAG (dB)
-60
-80
1.0 2.0 3.0
DUT + FIXTURE
DUT
FREQUENCY (GHz)
(Continued)
VCC = 2.7V
10
T
= 25oC
A
0
DUT
-10
MAG (dB)
-20
-30
1.0 2.0 3.0 FREQUENCY (GHz)
DUT + FIXTURE
FIGURE 14. LNA S12 LOG MAG REVERSE ISOLATION FIGURE 15. LNA S22 LOG MAG OUTPUT RETURN LOSS
0
VCC = 2.7V, (NOTE) T
= 25oC
A
-10
-20
10
0
VCC = 2.7V T
= 25oC
A
MAG (dB)
-10
-20
1.0 2.0 3.0 FREQUENCY (GHz)
FIGURE 16. TRANSMIT MIXERS22LOG MAG RF OUTPUT
RETURN LOSS
2.3
0.3
-1.7
MAG (dB)
-3.7 VCC = 2.7V, (NOTE)
= 25oC, LO = 2.17GHz
T
A
-30
MAG (dB)
-40
230 270 330
FREQUENCY (MHz)
310290250
NOTE: Transmit mixer measured with Impedance Transform Net­work 250 at device to 50 at the source. Refer to Figure 5, pin 19.
FIGURE 17. TRANSMIT MIXERS11LOG MAG IF INPUT
RETURN LOSS
VCC = 2.7V T
= 25oC
A
10
0
MAG (dB)
-10
-20
2.4 2.45 2.5 FREQUENCY (GHz)
NOTE: Transmit mixer measured with Impedance Transform Net­work 250 at device to 50 at the source. Refer to Figure 5, pin 19.
FIGURE 18. TRANSMIT MIXER CONVERSION GAINvs IF
FREQUENCY SWEEP
2-38
1.0 2.0 3.0 FREQUENCY (GHz)
FIGURE 19. RECEIVE MIXERS11LOG MAG RF INPUT
RETURN LOSS
Page 13
HFA3624
Typical Performance Curves
VCC = 2.7V T
= 25oC
A
0
-10
MAG (dB)
-20
230 270 330310290250
FREQUENCY (MHz)
(Continued)
FIGURE 20. RECEIVE MIXERS22LOG MAG IF OUTPUT
RETURN LOSS
VCC = 2.7V
= 25oC
T
A
0
-10
7
5
3
MAG (dB)
1
230 270 330310290250
FREQUENCY (MHz)
VCC = 2.7V, TA = 25oC R
= 2.45GHz
F
FIGURE 21. RECEIVE MIXER CONVERSION GAINvs LO
FREQUENCY SWEEP
VCC = 2.7V
= 25oC
T
A
0
-10
MAG (dB)
-20
-30
1.0 2.0 3.0 FREQUENCY (GHz)
FIGURE 22. LO_IN S11LOG MAG RECEIVE MODE LO INPUT
RETURN LOSS
19
TA = 25oC
18
5.5V
17
4.0V
3.0V
16
GAIN (dB)
2.7V
15
14
13
2.3 2.35 2.4 2.45 2.5 2.55 2.6 FREQUENCY (GHz)
-20
MAG (dB)
-30
1.0 2.0 3.0 FREQUENCY (GHz)
FIGURE 23. LO_IN S11LOG MAG TRANSMIT MODE LO INPUT
RETURN LOSS
23
TA = 25oC, F1-F2 = 200kHz
22
5.5V
21
20
19
4.0V
18
3.0V
17
2.7V
16
THIRD ORDER INTERCEPT (dBm)
15
2.3 2.35 2.4 2.45 2.5 2.55 2.6
FREQUENCY (GHz)
FIGURE 24. LOW NOISE AMPLIFIER GAIN vs FREQUENCY FIGURE 25. LOW NOISE AMPLIFIER IP3 vs FREQUENCY
2-39
Page 14
HFA3624
Typical Performance Curves
4.3 TA = 25oC
4.2
4.1
4.0
3.9
5.5V
3.8
3.7
NOISE FIGURE (dB)
4.0V
3.0V
3.6
2.7V
3.5
3.4
2.3 2.35 2.4 2.45 2.5 2.55 2.6 FREQUENCY (GHz)
(Continued)
FIGURE 26. LOW NOISE AMPLIFIER NOISE FIGURE vs
FREQUENCY
10
9
4.0V
8
3.0V
7
2.7V
6
5
1dB COMPRESSION (dBm)
4
3
2.3 2.35 2.4 2.45 2.5 2.55 2.6
5.5V
FREQUENCY (GHz)
TA = 25oC
FIGURE 28. PRE-AMPLIFIER RF OUTPUT 1dB COMPRESSION
vs FREQUENCY
15
14
13
2.7V
5.5V
12
11
GAIN (dB)
10
9
8
2.3 2.35 2.4 2.45 2.5 2.55 2.6
4.0V
3.0V
FREQUENCY (GHz)
TA = 25oC
FIGURE 27. PRE-AMPLIFIER GAIN vs FREQUENCY
7.3
7.2
7.1
7.0
6.9
6.8
6.7
GAIN (dB)
6.6
6.5
6.4
6.3
6.2
2.3 2.35 2.4 2.45 2.5 2.55 2.6 RF FREQUENCY (GHz)
3.0V
2.7V
TA = 25oC IF = 280MHz
5.5V
4.0V
FIGURE 29. RECEIVE MIXER GAIN vs RF FREQUENCY
FOR FIXED IF FREQUENCY
7.0 TA = 25oC
6.5
6.0
5.5
5.0
4.5
4.0
3.5
THIRD ORDER INTERCEPT (dBm)
3
2.3 2.35 2.4 2.45 2.5 2.55 2.6
5.5V
4.0V
3.0V
2.7V
RF FREQUENCY (GHz)
F1-F2 = 200kHz IF = 280MHz
16.5 TA = 25oC, IF = 280MHz
16.0
15.5
5.5V
15.0
4.0V
14.5
NOISE FIGURE (dB)
14.0
13.5
3.0V
2.7V
2.3 2.35 2.4 2.45 2.5 2.55 2.6 RF FREQUENCY (GHz)
FIGURE 30. RECEIVE MIXER IP3 vs RF FREQUENCY FIGURE 31. RECEIVE MIXER SSB NOISE FIGURE vs RF
FREQUENCY
2-40
Page 15
HFA3624
Typical Performance Curves
-24.0 TA = 25oC, LO_IN = -3dBm
-24.5
-25.0
-25.5
-26.0
-26.5
4.0V
-27.0
POWER (dBm)
-27.5
-28.0
-28.5
-29.0
2.02 2.07 2.12 2.17 2.22 2.27 2.32
5.5V
2.7V
3.0V
LO FREQUENCY (GHz)
(Continued)
FIGURE 32. RECEIVE MIXER LO TO RF PORT LEAKAGE vs LO
FREQUENCY
6
5
4
3
2
GAIN (dB)
1
0
TA = 25oC, IF = 280MHz (NOTE)
5.5V
4.0V
3.0V
2.7V
-34 TA = 25oC, LO_IN = -3dBm
-35
-36
-37
-38
POWER (dBm)
-39
-40
-41
5.5V
2.7V
3.0V
2.02 2.07 2.12 2.17 2.22 2.27 2.32
4.0V
LO FREQUENCY (GHz)
FIGURE 33. RECEIVE MIXER LO TOIF PORTLEAKAGE vs LO
FREQUENCY
-6
-7
-8
-9
-10
-11
1dB COMPRESSION (dBm)
-12
5.5V
4.0V
3.0V
2.7V
TA = 25oC, IF = 280MHz (NOTE)
-1
2.3 2.35 2.4 2.45 2.5 2.55 2.6 RF FREQUENCY (GHz)
NOTE: Transmit mixer measured with Impedance Transform Net­work 250 at device to 50 at the source. Refer to Figure 5, pin 19.
FIGURE 34. TRANSMIT MIXER GAIN vs RF FREQUENCY
16.5
16
15.5
15
5.5V
14.5
14
NOISE FIGURE (dB)
13.5
13
2.3 2.35 2.4 2.45 2.5 2.55 2.6
4.0V
3.0V
2.7V
RF FREQUENCY (GHz)
TA = 25oC, IF = 280MHz (NOTE)
NOTE: Transmit mixer measured with Impedance Transform Network 250 at device to 50 at the source. Refer to Figure 5, pin 19.
FIGURE 36. TRANSMIT MIXER SSB NOISE FIGURE
vs RF FREQUENCY
-13
2.3 2.35 2.4 2.45 2.5 2.55 2.6 RF FREQUENCY (GHz)
NOTE: Transmit mixer measured with Impedance Transform Net­work 250 at device to 50 at the source. Refer to Figure 5, pin 19.
FIGURE 35. TRANSMIT MIXER OUTPUT 1dB COMPRESSION
vs RF FREQUENCY
-17
-18
TA = 25oC, LO_IN = -3dBm
-19
-20
-21
-22
-23
-24
-25
POWER (dBm)
-26
-27
-28
-29
-30
2.02 2.07 2.12 2.17 2.22 2.27 2.32
2.7V
3.0V
4.0V
LO FREQUENCY (GHz)
5.5V
FIGURE 37. TRANSMIT MIXER LO TO RF PORT LEAKAGE
vs LO FREQUENCY
2-41
Page 16
HFA3624
Typical Performance Curves
-34 TA = 25oC, LO_IN = -3dBm
-35
-36
-37
-38
-39
-40
POWER (dBm)
-41
-42
-43
-44
FIGURE 38. TRANSMIT MIXER LO TO IF PORT LEAKAGE
2.7V
3.0V
4.0V
5.5V
2.02 2.07 2.12 2.17 2.22 2.27 2.32 RF FREQUENCY (GHz)
(Continued)
40
35
30
25
(mA)
CC
I
20
15
10
-40 -30 -20 -10 0 10 20 30 40 50 60 70 85
+5.5V
+2.7V
TEMPERATURE (oC)
FIGURE 39. RECEIVE MODE ICC vs TEMPERATURE
vs LO FREQUENCY
120 110 100
90 80 70
(mA)
CC
I
60 50 40 30 20
-40 -30 -20 -10 0 10 20 30 40 50 60 70 85
+5.5V
+2.7V
TEMPERATURE (oC)
17.5
17.0
16.5
16.0
15.5
GAIN (dB)
15.0
14.5
14.0
+5.5V
+2.7V
-40 -30 -20 -10 0 10 20 30 40 50 60 70 85 TEMPERATURE (oC)
FIGURE 40. TRANSMIT MODE ICC vs TEMPERATURE FIGURE 41. LOW NOISE AMPLIFIER GAIN vs TEMPERATURE
8.0
7.5
7.0
6.5
6.0
GAIN (dB)
5.5
5.0
4.5
-40 -30 -20 -10 0 10 20 30 40 50 60 70 85
+5.5V
+2.7V
TEMPERATURE (oC)
IF = 280MHz, RF = 2.45GHz LO = -3dBm
15 14 13 12 11 10
9
GAIN (dB)
8 7 6 5
-40 -30 -20 -10 0 10 20 30 40 50 60 70 85
+5.5V
+2.7V
TEMPERATURE (oC)
FIGURE 42. RECEIVE MIXER GAIN vs TEMPERATURE FIGURE 43. PRE-AMPLIFIER GAIN vs TEMPERATURE
2-42
Page 17
HFA3624
Typical Performance Curves
4
3
2
1
GAIN (dB)
0
-1
-2
-40 -30 -20 -10 0 10 20 30 40 50 60 70 85
+5.5V
+2.7V
IF = 280MHz, RF = 2.45GHz LO = -3dBm
TEMPERATURE (oC)
(Continued)
-24.5 LO_IN = -3dBm AT 2.17GHz
-25.0
-25.5
-26.0
POWER (dBm)
-26.5
-27.0
-27.5
-40 -30 -20 -10 0 10 20 30 40 50 60 70 85
+5.5V
+2.7V
TEMPERATURE (oC)
FIGURE 44. TRANSMIT MIXER GAIN vs TEMPERATURE FIGURE 45. RECIEVE MIXER LO TO RF PORT LEAKAGE
vs TEMPERATURE
-20 LO_IN = -3dBm AT 2.17GHz
-21
-22
-23
-24
-25
-26
POWER (dBm)
-27
-28
-29
-30
-40 -30 -20 -10 0 10 20 30 40 50 60 70 85 TEMPERATURE (oC)
+2.7V
+5.5V
-26.0 LO_IN = -3dBm AT 2.17GHz
-26.5
-27.0
-27.5
-28.0
POWER (dBm)
-28.5
-29.0
-40 -30 -20 -10 0 10 20 30 40 50 60 70 85
+5.5V
+2.7V
TEMPERATURE (oC)
FIGURE 46. TRANSMIT MIXER LO TORF PORTLEAKAGE vs
TEMPERATURE
7.3
7.2
7.1
7.0
6.9
6.8
6.7
GAIN (dB)
6.6
6.5
6.4
6.3
6.2
-6 -5 -4 -3 -2 -1 0 1 2 3 LO DRIVE (dBm)
TA = 25oC, IF = 280MHz RF = 2.45GHz
FIGURE 47. RECEIVE MIXER LO TO IF PORT LEAKAGE
vs TEMPERATURE
5.5
5
4.5
4
3.5
3
2.5
2
THIRD ORDER INTERCEPT (dBm)
1.5
-6 -5 -4 -3 -2 -1 0 1 2 3
TA = 25oC, IF = 280MHz RF = 2.45GHz, F
LO DRIVE (dBm)
FIGURE 48. RECEIVE MIXER GAIN vs LO DRIVE FIGURE 49. RECEIVE MIXER IP3 vs LO DRIVE
2-43
- F2 = 200kHz
1
Page 18
HFA3624
Typical Performance Curves
16.5 TA = 25oC, IF = 280MHz LO = 2.17GHz
16
15.5
15
14.5
NOISE FIGURE (dB)
14
13.5
-6 -5 -4 -3 -2 -1 0 1 2 3 LO DRIVE (dBm)
(Continued)
FIGURE 50. RECEIVE MIXER SSB NOISE FIGURE vs LO DRIVE
-9.2 TA = 25oC, RF = 2.45GHz
-9.3
IF = 280MHz (NOTE)
-9.4
-9.5
-9.6
-9.7
-9.8
1dB COMPRESSION (dBm)
-9.9
-10.0
-6 -5 -4 -3 -2 -1 0 1 2 3 LO DRIVE (dBm)
2.35
2.30
2.25
2.20
2.15
GAIN (dB)
2.10
2.05
2.00
-6 -5 -4 -3 -2 -1 0 1 2 3 LO DRIVE (dBm)
TA = 25oC, RF = 2.45GHz IF = 280MHz (NOTE)
NOTE: Transmit mixer measured with Impedance Transform Net­work 250 at device to 50 at the source. Refer to Figure 5, pin 19.
FIGURE 51. TRANSMIT MIXER GAIN vs LO DRIVE
4.0 TA = 25oC, RF = 2.45GHz (NOTE)
3.5
3.0
2.5
2.0
GAIN (dB)
1.5
1.0
0.5
0
10 40 100 200 400
+5.5V
+4.0V
+3.0V
+2.7V
806020
IF FREQUENCY (MHz)
NOTE: Transmit mixer measured with Impedance Transform Net­work 250 at device to 50 at the source. Refer to Figure 5, pin 19.
FIGURE 52. TRANSMIT MIXER OUTPUT 1dB COMPRESSION
NOTE: TXM_IF input matching network modified for each IF fre­quency as described in Table 1.
FIGURE 53. TRANSMIT MIXER GAIN vs IF FREQUENCY
vs LO DRIVE
TABLE 1. TXM_IF INPUT 50 TO 250 IMPEDANCE TRANSFORM CIRCUIT
COMPONENT VALUES
IF FREQ
LO CAPACITORS
C20, C28
IF BYPASS
C24, C21
IF SHUNT C
C25
10MHz 5pF 0.1µF 150pF 1.2µH 20MHz 5pF 0.022µF 68pF 680nH 40MHz 5pF 0.012µF 33pF 330nH
70MHz 5pF 0.0068mF 18pF 180nH 100MHz 7pF 0.0033mF 12pF 120nH 200MHz 7pF 1000pF 3.9pF 68nH 280MHz 10pF 470pF 1.5pF 47nH 400MHz 10pF 330pF 0 33nH
NOTE: Refer to Figure 5, pin 19.
2-44
IF SERIES L
L4
Page 19
HFA3624
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by descriptiononly.Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which mayresult from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
2-45
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...